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Abstract – Wireless ad hoc sensor networks have 
emerged as one of the key growth areas for wireless 
networking and computing technologies. So far these 
networks/systems have been designed with static and 
custom architectures for specific tasks, thus providing 
inflexible operation and interaction capabilities. Our 
vision is to create sensor networks that are open to 
multiple transient users with dynamic needs. Working 
towards this vision, we propose a framework to define 
and support lightweight and mobile control scripts that 
allow the computation, communication, and sensing 
resources at the sensor nodes to be efficiently 
harnessed in an application-specific fashion. The 
replication/migration of such scripts in several sensor 
nodes allows the dynamic deployment of distributed 
algorithms into the network. Our framework, 
SensorWare, defines, creates, dynamically deploys, and 
supports such scripts. Our implementation of 
SensorWare occupies less than 180Kbytes of code 
memory and thus easily fits into several sensor node 
platforms. Extensive delay measurements on our 
iPAQ-based prototype sensor node platform reveal the 
small overhead of SensorWare to the algorithms (less 
than 0.3msec in most high-level operations). In return 
the programmer of the sensor network receives 
compactness of code, abstraction services for all of the 
node’s modules, and in-built multi-user support. 
SensorWare with its features apart from making 
dynamic programming possible it also makes it easy 
and efficient without restricting the expressiveness of 
the algorithms.* 

I. INTRODUCTION 

Wireless ad-hoc sensor networks (WASNs) have 
drawn a lot of attention in recent years from a diverse set 
of research communities. Researchers have been mostly 
concerned with exploring applications such as target 
tracking and distributed estimation, investigating new 
routing and access control protocols, proposing new 
energy-saving algorithmic techniques for these systems, 
and developing hardware prototypes of sensor nodes.  

Little concern has been given on how to actually 
program the WASN. Most of the time, it is assumed that 
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the proposed algorithms are hard-coded into the memory 
of each node. In some platforms the application developer 
can use a node-level OS (e.g. TinyOS) to create the 
application, which has the advantages of modularity, 
multi-tasking, and a hardware abstraction layer. 
Nevertheless the developer still has to create a single 
executable image to be downloaded manually into each 
node. However, it is widely accepted that WASNs will 
have long-deployment cycles and serve multiple transient 
users with dynamic needs. These two features clearly 
point in the direction of dynamic WASN programming. 

What kind of dynamic programmability do we want 
for WASNs? Having a few algorithms hard-coded into 
each node but tunable through the transmission of 
parameters, is not flexible enough for the wide variety of 
possible WASN applications. Having the ability to 
download executable images into the nodes is not feasible 
because most of the nodes will be physically unreachable 
or reachable at a very high cost. Having the ability to use 
the network in order to transfer the executable images to 
each and every node is energy inefficient (because of the 
high communication costs and limited node energy) and 
cannot allow the sharing of the WASN by multiple users. 
What we ideally want is to be able to dynamically 
program the WASN as a whole, an aggregate, not just as a 
mere collection of individual nodes. This means that a 
user, connected to the network at any point, will be able to 
inject instructions into the network to perform a given 
(possibly distributed) task. The instructions will task 
individual nodes according to user needs, network state, 
and physical phenomena, without any intervention from 
the user, other than the initial injection. Furthermore, since 
we want multiple users to use the WASN concurrently, 
several resources/services of the sensor node should be 
abstracted and made sharable by many users/applications. 

One approach of programming the WASN as an 
aggregate is a distributed database system (e.g., [21]). 
Multiple users can inject database-like queries to be 
autonomously distributed into the network. The WASN is 
viewed as a distributed database and the query's task is to 
retrieve the needed information by finding the right nodes 
and possibly aggregate the data as they are routed back to 
the user. This approach ignores though the fact that 
information is not always resident in nodes but sometimes 
has to be retrieved by custom collaboration among a 
changing set of nodes (e.g., target tracking). Thus even 



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association188

though the database model is programming the network in 
the desirable way, it is not expressive enough to 
implement any distributed algorithm.  

The other approach to WASN programmability that is 
used by our framework, and is gaining momentum lately, 
is the "active sensor" approach. This term was used in 
[20], to describe a family of frameworks that try to task 
sensor nodes in a custom fashion, much like active 
networking frameworks task data network nodes. The 
difference is that while active networking tasks are 
reacting only to reception of data packets, active sensor 
tasks need to react to many types of events, such as 
network events, sensing events, and timeouts. Active 
sensor frameworks abstract the run-time environment of 
the sensor node by installing a virtual machine or a high-
level script interpreter at each node. For example, single 
instructions of the scripts (or bytecodes) can send packets, 
or read data from the sensing device. Moreover, the scripts 
(or bytecodes) are made mobile through special 
instructions, so nodes can autonomously task their peers. 

The difficulty in designing an active sensor framework 
is how to properly define the abstraction of the run-time 
environment so that one achieves compactness of code, 
sharability of resources for multi-user support, portability 
in many platforms, while at the same time keeping a low 
overhead in delays and energy. Our proposal of such a 
framework, called SensorWare, employs lightweight and 
mobile control scripts that are autonomously populated in 
sensor nodes after a triggering user injection. The sensor 
node abstraction was made in such a way so that multi-
user accessibility is given to all of the node's modules 
(e.g., radio, sensing devices) while also creating other 
services (e.g., real-time timers). Considerable attention 
was given to the portability and expandability of the 
framework by allowing the definition of new modules. By 
choosing the right level of abstraction the scripts are 
compacted to 10s-100s of bytes. For the non-trivial 
application examined in section V.A, the SensorWare 
script is smaller than the code of other frameworks with 
comparable capabilities in algorithm expressiveness (e.g. 
other active sensors scripts, binary images).  

Our implementation and porting of SensorWare in 
several sensor node platforms shows that the size of the 
framework is small enough (<180Kbytes) to fit in most 
current sensor node designs. Moreover, extensive 
measurements in our prototype iPAQ-based sensor node 
platform reveal the delay and energy overheads of 
SensorWare. Every SensorWare script command has a 
delay less than 0.3msec showing the limits of real-time 
operation. Note that the script commands have a high-
level of abstraction (i.e., each command performs multiple 
low-level operations). Experiments with both compiled 
and interpreted versions of the scripts are conducted in 

order to explore the energy trade-off space between 
different representations of an algorithm.  

Section II discusses in depth the nature of WASNs, 
approaches to WASN programmability, and the general 
idea of our approach. Section III presents related work. 
Section IV presents SensorWare's architecture. Section V 
illustrates how is SensorWare ported to a platform and 
explains a moderately large script solving a real problem. 
Section VI presents our current implementation and the 
measurements we acquired through it. Finally, section VII 
concludes the paper. 

II. MOTIVATION AND BACKGROUND 

A.   Wireless Ad hoc Sensor Networks  

Figure 1 shows an example of a WASN, highlighting 
its main characteristics. An ad hoc network of miniature, 
resource-limited, static, wireless, sensor nodes is being 
used to monitor a dynamic physical environment. The use 
of low power communication and the need for diversity in 
sensing necessitates a multi-hop, distributed architecture 
[24]. Typically a user queries the network (consider the 
term “query” in the broad sense, not just database query), 
the query triggers some reaction from the network, and as 
the result of this reaction the user receives the information 
needed. The reaction to the query can vary from a simple 
return of a sensor value, to a complex unfolding of a 
distributed algorithm among some or all of the sensor 
nodes, such as a collaborative signal processing algorithm 
or a distributed estimation algorithm. Furthermore, there 
are multiple users who are transiently connected to the 
network; each having different needs in requested 
information. 

Figure 1: Wireless Ad-hoc Sensor Network 
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These systems are quite different from traditional 
networks. First, they have severe energy, computation, 
storage, and bandwidth constraints. Second, their overall 
usage scenario is quite different from traditional networks. 
There is not a mere exchange of data between users and 
nodes. The user will rarely be interested in the readings of 
one or two specific nodes. The user will be interested in 
some parameters of a dynamic physical process. To 
efficiently achieve this, the nodes have to form an 
application-specific distributed system to provide the user 
with the answer. Moreover, the nodes that are involved in 
the process of providing the user with information are 
constantly changing as the physical phenomenon is 
changing. Therefore the user interacts with the system as a 
whole. The WASN is not there to connect different parties 
together as in the traditional networking sense but to 
provide information services to users. 

As a consequence, efficiently designed WASNs 
operate in a fashion where a node's actions are affected 
largely by physical stimuli detected by the node itself or 
nearby nodes. Frequent long trips to the user are 
undesirable because they are time and energy consuming. 
This decentralized (i.e. not all traffic flows to/from user), 
autonomous (i.e., user out-of-the-loop most of the time) 
way of operating, is called “proactive computing” (as 
opposed to interactive) by David Tennenhouse [29]. We 
also adopt the term “proactive” throughout the paper to 
denote an autonomo us and non-interactive nature.  

Efficiently designed WASNs are application-specific 
distributed systems that require a different distributed 
proactive algorithm as an efficient solution to each 
different application problem. Given the nature of SNs, 
one can coarsely define two classes of problems in their 
design. First, the application-specific problem: How does 
one find the most efficient distributed algorithm for a 
particular problem? Second, the generic problem: How 
does one dynamically deploy different algorithms into the 
network, what is the programming model that will 
implement these algorithms, and what general support 
does one need from the framework? The second class of 
problems is the focus in this paper, emphasizing in the 
description of our own framework, i.e., SensorWare.  

B.   Approaches to WASN programmability 

As mentioned in the introduction, a popular approach 
to dynamic WASN programmability views the WASN as 
a distributed database. The data exist in the network and 
have to be found, probably processed in predefined ways 
(e.g., aggregated) and delivered to the user. Heidemann et 
al. [10], closely follow this model without explicitly 
employing traditional database terms  and mechanisms . 
They focus on a data-driven low-level naming scheme 
based on attributes. A query describes the data it is 
looking for and directed diffusion [15] is used as the 

underlying routing protocol. The data can be processed 
with predefined filters as they are routed back to the user. 
Other systems , such as Cougar [1], focus more on 
transferring the SQL semantics of traditional databases to 
the distributed setting of WASNs. In this case, the naming 
system developed in [10] is replaced by an SQL 
equivalent. Each node is equipped with a fixed database 
query resolver. As queries arrive to a node, the local 
resolver decides on the best, distributed plan to execute the 
query and distributes the query to the appropriate nodes. 
The more recent and probably more advanced system that 
follows the database model is TinyDB [21] developed in 
Berkeley. Their main focus is aggregate queries (e.g., min, 
max, avg) thus they provide special optimizations for them 
(e.g., exploit the shared medium, perform hypothesis 
testing).  

The strong point of the database approach is that it 
offers an intuitive way to extract information from a 
WASN hiding the complications of embedded and 
distributed programming. The model’s limitation though 
is that there are only pre-defined ways to process the data, 
which implies that only certain types of applications (i.e. 
applications that were studied by the specific researchers 
and are mainly aggregation applications) are addressed in 
the most efficient way by the database model. If a new 
way to process and react to the data is needed by 
application N&U (New-and-Unexplored), this  can only be 
done at the user node (assuming that the human-controlled 
user node is easily upgradeable). Consequently, the 
algorithmic pattern to address application N&U under the 
database model will be an iteration of the generalized 
steps: 1) partially processed data arriving to the user node, 
2) data undergoing custom processing and 3) based on the 
result a new database query is issued. In most cases, this is 
not the structure of the most efficient algorithm to solve an 
application problem. 

C.   SensorWare 

Our proposal seeks to remedy the limited flexibility 
problem at the expense of increased responsibility for the 
programmer. SensorWare provides a language model 
powerful enough to implement any distributed algorithm 
while at the same time hiding unnecessary low-level 
details from the application programmer and providing a 
way to share the resources of a node among many 
applications and users that might concurrently use the 
WASN. A distributed algorithm can be viewed as a set of 
collaborating programs  executing in a corresponding 
(often time-varying) set of nodes. In SensorWare these 
programs are sensor-node control scripts. The sensing, 
communication, and signal-processing resources of a node 
are exposed to the control scripts that orchestrate the 
dataflow to assemble custom protocol and signal 
processing stacks. 
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Equally important is the role of SensorWare in the 
dynamic deployment of the distributed algorithms into the 
network. Usually this means that a distributed algorithm 
has to be incorporated in several sensor nodes, which in 
turn means that these sensor nodes have to be dynamically 
programmed. A user-friendly and energy-efficient way of 
programming the nodes keeps the user out-of-the-loop 
most of the time by allowing sensor nodes to program 
their peers. By doing so, the user does not have to worry 
about the specifics of the distributed algorithm (because 
the information on how the algorithm unfolds lies within 
the algorithm), and the nodes save communication energy 
(because they interact with their immediate neighbors and 
not with the user node through multi-hop routes). In order 
to facilitate the user-friendly and energy-efficient dynamic 
deployment of an algorithm the scripts are made mobile 
using special language commands and directives. A script 
can replicate or migrate its code and data to other nodes, 
directly affecting their behavior. The replication or 
migration of a script will be called “population” in the 
paper. The user "injects" the query/program into the 
network, and the query autonomously unfolds the 
distributed algorithm into the nodes that should be 
affected.  

A usage scenario can be like the following: A user 
sends a query to the sensor network. The query is a script, 
a state machine in its simplest form, which is injected to 
one or more sensor nodes. The script will describe among 
other things how it is going to populate itself to other 
nodes. The process of population can continue depending 
on events and the current state. For example as the events 
of interest are moving to a different area, the scripts can 
move along with them, possibly trying to predict their next 
move. The populated scripts will collaborate among 
themselves in order to extract the information needed by 
the user, and when this information is acquired it is sent 
back to the user. Although the scripts are defining 
behavior at the node level, SensorWare is not a node-level 
programming language. It can be better viewed as an 
event-based language since the behaviors are not tied to 
specific nodes but rather to possible events that depend on 
the physical phenomena and the WASN state. 

It should be also noted that this model comes at a cost, 
compared to the database model. The programmer has to 
explicitly take care of the distribution of the algorithm, so 
only the complications of embedded programming are 
hidden. 

III. RELATED WORK 

SensorWare falls under the family of active sensor 
frameworks. Its closest relatives in the traditional 
networks realm are Mobile Agent frameworks. Other 
active networking frameworks exhibit similarities, such as 
the scripting abstraction. In this section we only consider 

work that tries to make WASNs programmable using 
active sensor concepts . Therefore, general mobile-agent 
and active-network platforms are not presented, nor any 
distributed database systems for WASNs are further 
discussed.  The interested reader can refer to [2] for a 
comprehensive comparison of SensorWare with mobile 
agent platforms, as well as with an active networking 
framework called PLAN [11]. 

An active sensor framework for WASNs is currently 
being developed in Berkeley under the name Maté. Maté 
[20] is a tiny virtual machine build on top of TinyOS [13]. 
TinyOS is an operating system, designed specifically for 
the Berkeley-designed family of sensor nodes, generically 
named "motes" [12][13]. Maté's goal is to make a WASN 
made of motes dynamically programmable in an efficient 
manner. This includes the capability to dynamically 
instruct a mote to execute any program, and expressing 
this program in a concise way. They achieve this by 
building a virtual machine (VM) for the motes. The virtual 
machine supports a very simple, assembly-like language, 
to be used for all needs of mote-tasking. Programs (called 
capsules) written on the VM language can be injected to 
any node and perform a task. Furthermore the capsules 
have the ability to self-transfer themselves by using 
special language commands. This model seems extremely 
like our own in SensorWare. Indeed, Maté shares the same 
goals as SensorWare as well as the same basic principles 
to achieve these goals. Differences appear though when 
one looks thoroughly into each platform's implementation. 

Maté, like its substrate TinyOS, was built with a 
specific platform in mind: the extremely resource-limited 
mote. The main restriction for the developer of mote-
targeted frameworks (such as an OS or a VM) is memory. 
The newest version of a mote called mica offers 
128Kbytes of program memory and 4Kbytes of RAM. An 
older version called rene2 has 16Kbytes of program 
memory and 1Kbyte of RAM. Maté, with an ingenious 
architecture, supports both platforms. Being so memory 
constrained, Maté has to sacrifice some features that 
would make programming easier and more efficient. First, 
a stack-based architecture with an ultra-compact 
instruction set (all instructions are 1 byte) is adopted 
which is reminiscent of a low-level assembly language or 
the byte code of the Java VM. This kind of model makes 
programming of even medium-sized tasks difficult. 
Furthermore, due to the ultra-compact instruction set, 
many 1-byte instructions are needed to express a medium 
complexity algorithm, which in turn leads to large 
programs, compared to a higher-level, more abstracted 
scripting language. The size of programs is important 
since the code is transmitted/received using the radios of 
the nodes spending energy for every transmitted/received 
bit. Second, the behavior of a program when radio packets 
are received is rather rigid. A handler to process such 
events is essentially stateless in Maté. Thus, if a new 



MobiSys 2003: The First International Conference on Mobile Systems, Applications, and Services USENIX Association 191

pattern of packet processing is needed, a new handler has 
to be transferred through the network. This imposes an 
overhead in energy consumption and execution time. 
Third, because there is only one context (i.e., handler) per 
event (e.g., clock tick, reception of packet) multiple 
applications cannot run concurrently in one mote. 

SensorWare cannot fit in the restricted memory of a 
mote. SensorWare targets richer platforms that we believe 
are going to be the mainstream in sensor node design in 
the immediate future. Such platforms (e.g., [26]) include a 
1Mbyte of program memory and 128Kbytes of RAM. 
Having the luxury of more memory, SensorWare supports 
easy programming with a high-level scripting language, as 
well as concurrent multi-tasking of a node so that multiple 
applications can concurrently execute in a WASN. The 
programming model and properties of SensorWare are 
extensively discussed in section IV. 

Particularly instructive is to study the relationship 
between SensorWare’s mobile scripting approach and the 
mobile code approach in Penn State’s Reactive Sensor 
Network [25] (RSN) project under DARPA’s SenseIT 
program [27]. RSN’s focus is on providing an architecture 
whereby sensor nodes can: (i) download executables and 
DLLs, identified by URLs, from repositories or their 
cache, (ii) execute the program at the local node using 
input data which itself may be remotely located and 
identified by a URL, and (iii) write the data to a possibly 
remote URL. The RSN model is in essence Java’s applet 
model generalized to arbitrary executables and data, and 
combined with a lookup service. The focus of RSN is 
quite different from SensorWare. Differences include: (i) 
RSN provides a general lookup and download service, (ii) 
RSN does not seek to provide a scripting environment 
with an associated sensor node resource model for use by 
scripts, and (iii) RSN’s notion of mobility is download 
oriented, as opposed to SensorWare’s  approach of a script 
which can autonomously spawn scripts to remote nodes. 
RSN views sensor nodes as network switches with 
dynamically adaptable protocols, trying to directly map 
the motivation and methods of classical active networks 
into sensor networks. Unfortunately such an approach 
does not address the basic problems of sensor networks. 
Although one might be able to construct some distributed 
applications using the above scheme, by no means the 
creation and diffusion of distributed proactive applications 
into the network is supported by its architecture. 

Finally, extremely relevant is the work that is being 
conducted in University of Delaware by Jaikaeo et al. [17] 
called SQTL (Sensor Querying and Tasking Language). 
Having the same goals as our research, but starting from a 
different point (database-like queries), the researchers end 
up with the same basic solution as SensorWare, namely a 
tasking language for sensor networks. To lively 
demonstrate the relevance to our work we are quoting an 

excerpt from [17].”We model a sensor network as a set of 
collaborating nodes that carry out querying and tasking 
programmed in SQTL. A frontend node injects a message, 
that encapsulates an SQTL program, into a sensor node 
and starts a diffusion computation. A sensor node may 
diffuse the encapsulated SQTL program to other nodes as 
dictated by its logic and collaboratively perform the 
specified querying or tasking activity.”  

SQTL fits in a more general architecture for sensor 
networks called SINA (Sensor Information Networking 
Architecture) [28]. SINA uses both SQL-like queries as 
well as SQTL programs. Some of its main features 
include: 1) hierarchical clustering, 2) attribute-based 
naming, 3) a spreadsheet paradigm for organizing sensor 
data in the nodes. SQL-like queries use these three 
features to execute simple querying and monitoring tasks. 
When a more advanced operation is needed though, SQTL 
plays the essential role by programming (or “tasking” as 
the researchers from Delaware call it) the sensor nodes 
and allowing proactive population of the program. In 
SINA, SQTL is used as an enhancement of simple SQL-
like queries. The framework is there mainly to support the 
queries not the mobile scripts. As a consequence, SQTL 
scripts do not have all the provisions that SensorWare 
scripts have. The most important of them are: 1) Rich 
sensor-node-related APIs (e.g. for networking, sensing). 2) 
Diverse rules for mobility. A SQTL script can only specify 
the nodes to be populated. SensorWare first checks if the 
script is already in the remote node and offers a multitude 
of possibilities depending on how many instances of the 
script are already running in the remote node. 3) Code 
modularity in order to share functionality and avoid 
redundant code transfers 4) Support for multi-user scripts. 
5) Resource management in the presence of multiple 
scripts running in the node. 

IV. ARCHITECTURE 

First, we show SensorWare's place inside the overall 
sensor node's architecture (Figure 2). The architecture of a 
sensor node can be viewed in layers. The lower layers are 
the raw hardware and the hardware abstraction layer (i.e., 
the device drivers). An operating system (OS) is on top of 
the lower layers. The OS provides all the standard 
functions and services of a multi-threaded environment 
that are needed by the layers above it. The SensorWare 
layer for instance, uses those functions and services 
offered by the OS to provide the run-time environment for 
the control scripts. The control scripts rely completely on 
the SensorWare layer while populating around the 
network. Static applications and services coexist with 
mobile scripts. They can use some of the functionality of 
SensorWare as well as standard functions and services of 
the OS. These applications can be solutions to generic 
sensor node problems (e.g., location discovery), and can 
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be distributed but not mobile. They will be part of the 
node's firmware. 

Figure 2: The general sensor node architecture 

Two things comprise SensorWare: 1) the language, 
and 2) the supporting run-time environment. The next two 
subsections describe each of the parts in detail. A third 
subsection discusses issues of portability and 
expandability, and presents the final SensorWare code 
structure. Finally, the fourth subsection discusses the 
issues of addressing and routing in SensorWare. 

A.   The language 

As discussed earlier, the basic idea is to make the 
nodes programmable through mobile control scripts. Here 
the basic parts that comprise the language will be 
described as well as the programming model that emerges 
from the parts. 

First, a scripting language needs proper 
functions/commands to be defined and implemented in 
order to use them as building blocks (i.e., these will be the 
basic commands of the scripts). Each of these commands 
will abstract a specific task of the sensor node, such as 
communication with other nodes, or acquisition of sensing 
data. These commands can also introduce needed 
functionality like moving a script to another node or 
filtering the sensing data through a filter implemented in 
native code. Second, a scripting language needs constructs 
in order to tie these building blocks together in control 
scripts. Some examples include: constructs for flow 
control, like loops and conditional statements, constructs 
for variable handling and constructs for expression 
evaluation. We call all these constructs the "glue core" of 
the language, as they combine several of the basic building 
blocks to make actual control scripts.  

Figure 3 illustrates the different parts of the 
SensorWare language. Several of the basic 
commands/functions are grouped in theme-related APIs. 

We use the term API in a generic fashion, to denote a 
collection of theme-related functions that provide a 
programming interface to a resource or a service. As the 
figure hints, there is a question on what happens when we 
are dealing with different sensor node platforms that may 
support different/additional kinds of modules. Do we 
allow the set of APIs to be expandable? If so, who has the 
authority to name and define new commands? We will 
return to this topic with a solution in subsection C.     

Figure 3: The language parts in SensorWare 

As a glue core we can use the core from one of the 
scripting languages that are freely available, so we are not 
burdened with the task of building and verifying a core. 
One such scripting language, that is well suited for 
SensorWare's purposes, is Tcl [22], offering great 
modularity and portability. Thus, the Tcl core is used as 
the glue core in the SensorWare language. All the basic 
commands, such as wait, or the ones included in the 
APIs, are defined as new Tcl commands using the 
standard method that Tcl provides for that purpose.  

The set of APIs is basically a way of easily exporting 
services and shared resources to the scripts. For example, 
the Timer API defines and sets/resets real time timers, 
while the Mobility API provides the basic functions to the 
scripts so they can transfer themselves around the 
network.  

A.1 The general programing model 

As discussed earlier, according to the proactive 
distributed model the scripts will look mostly like state 
machines that are influenced by external events. Such 
events include network messages from peers, sensing data, 
and expiration of timers. The programming model that is 
adopted is equivalent to the following: An event is 
described, and it is tied with the definition of an event 
handler. The event handler, according to the current state, 
will do some (light) processing and possibly create some 
new events or/and alter the current state. Figure 4 
illustrates SensorWare's programming model with an 
example. 
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Figure 4: The programming model 

The behavior described above is achieved through the 
wait command. Using this command, the programmer 
can define all the events that the script is waiting upon, at 
a given time. Examples of events that a script can wait 
upon are: i) reception of a message of a given format, ii) 
traversal of a threshold for a given sensing device reading, 
iii) filling of a buffer with sensing data of a given 
sampling rate, iv) expiration of several timers. When one 
of the events declared in the wait command occurs, the 
command terminates, returning the event that caused the 
termination. The code after the wait command processes 
the return value and invokes the code that implements the 
proper event handler. After the execution of the event 
handler, the script moves to a new wait command, or 
more usually it loops around and waits for events from the 
same wait command. 

B.   The run-time environment 

Equally important to the programming model is the 
run-time environment that supports the scripts. Figure 5 
illustrates the basic tasks performed by the environment. 
We separate tasks into fixed and platform-specific. The 
fixed tasks are always included in a SensorWare 
implementation, while the platform-specific depend on the 
existence of specific modules and services in the node 
platform. Again, the problem of expandability and 
portability appears. Do we allow any developer to 
arbitrarily define and create any tasks, according to the 
specific needs of each platform? Subsection C addresses 
this question. The Script Manager is the task that accepts 
all requests for the spawning of new scripts. It forwards 
the request to the Admission Control task and upon 
receiving a positive reply, it initiates a new thread/task 
running a script interpreter for the new script. The Script 

Manager also keeps any script-related state such as script-
data for as long as the script is active. 

Figure 5: Tasks in the SensorWare run-time 
environment 

The Admission Control and Policing of Resource 
Usage task, as the name reveals, takes all the script 
admission decisions, makes sure that the scripts stay under 
their resource contract, and most importantly checks the 
overall energy consumption. If the overall consumption 
exhibits alarming characteristics (e.g., the current rate 
cannot support all scripts to completion) the task 
selectively terminates some scripts according to certain 
SensorWare policies. For more information on resource 
management the interested reader can refer to [4]. 

The run-time environment also includes "Resource 
Abstraction and Resource Metering" tasks (sometimes 
referred to as "Resources Handling" tasks for brevity). 
Each task supports the commands of the corresponding 
APIs and manages a specific resource. There are two fixed 
tasks in this category since every platform is assumed to 
have at least one radio and a timer service. The “Radio” 
task manages the radio: i) it accepts requests from the 
scripts about the format of network messages that they 
expect, i) it accepts all network messages and dispenses 
them to the appropriate scripts according to their needs, 
and finally iii) measures the radio utilization for each 
script, a quantity that is needed by the “Admission Control 
& Policing of Resource Usage” task. The second fixed 
task, the "Timer service", accepts the various requests for 
timers by all the scripts and manages to service them using 
a real-time timer the embedded system provides. In 
essence the task provides many virtual timers relying on 
one timer provided by the system. According to platform 
capabilities a specific porting of SensorWare may run 
additional tasks For instance, a “Sensor Abstraction” task 
manages a sensing device. It accepts all requests for sensor 
data from all the scripts and decides on the optimal way to 
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control the sensing device (e.g., setting the A/D sampling 
rate). It also measures the sensing device utilization for 
each script. Figure 6 depicts an abstracted view of 
SensorWare's run-time environment for an example 
platform with one sensing device. 

Figure 6: Abstracted view of SensorWare's run-time 
environment for an example platform 

Most of the threads running are coupled with a generic 
queue. Each thread "pends" on its corresponding queue, 
until it receives a message in the queue. When a message 
arrives it is promptly processed. Then the next message 
will be fetched, or if the queue is empty, the thread 
"pends" again on the queue. A queue associated with a 
script thread is receiving events (e.g., reception of network 
messages, sensing data, or expiration of timers). A queue 
associated with one of the resource handling tasks, 
receives events of one type (from the specific device 
driver that is connected to), as well as messages that 
declare interest in this event type. For instance, the 
Sensing resource-handling task is receiving sensing data 
from the device driver and interests on sensing data from 
the scripts. The Script Manager queue receives messages 
from the network that wish to spawn a new script. There 
are also system messages that are exchanged between the 
system threads (like the ones that provide the Admission 
Control thread with resource metering information, or the 
ones that control the device drivers). 

Finally, concerning security, we distinguish between 
code safety and security in the following sense: code 
safety relates to the execution of a script in the 
SensorWare run-time environment inside a node, whereas 
security relates to the network as a whole. For code safety, 
one would want guaranties that a buggy or malicious 
script will not have any effect on other scripts or on the 
run-time system. For security, one would want guaranties 
that an intruder could not gain access to resources or 
information of the network, and could not affect the use of 
the network by legitimate users. SensorWare does not 
consider general security issues. The major problems are 
authenticating the current set of users and deny any 
service to anyone else, as well as encrypt the data. Wen et 
al. [31] describe a security scheme for sensor networks 
called SPINS that could work alongside with SensorWare. 
Code safety on the other hand is an integral part of 
SensorWare as it is closely related to the language and 
run-time environment design choices. For more 
information on SensorWare’s code safety the reader can 
refer to [2]. 

C.   Portability and expandability of SensorWare 

In the previous subsections the problem of platform 
variability was revealed. Here we will present a solution 
for SensorWare's code structure. There are two kinds of 
platform variability: 1) capabilities variability (i.e. having 
different modules, such as sensing devices, GPS), 2) 
HW/SW variability (i.e. although the capabilities are the 
same we have different OS and/or specifics of hardware 
devices). We will explore solutions for each kind in two 
different subsections.  

C.1 Capabilities variability 

Different platforms may have different capabilities. 
For instance, imagine that one platform A has a radio and 
a magnetometer, while another platform B has two radios 
(a normal and a paging one) and a camera. How will we 
abstract the two platforms with the same framework? 
Since SensorWare's building blocks are the interface to the 
abstracted modules/services, we can allow an expandable 
API. Further, most modules/services will need a 
supporting task (as described in subsection B), so we can 
allow the definition and addition of arbitrary tasks in 
SensorWare's run-time environment. This kind of solution 
would create severe problems in the manageability of the 
code by different developers. SensorWare advocates a 
more modular and well-structured solution. SensorWare 
declares, defines, and support virtual devices (an idea 
triggered by Linux's virtual devices). Any module or 
service is represented as a virtual device. For example a 
radio, a sensing device, the timer service, a location 
discovery protocol are all view as virtual devices.  

There is a fixed interface for all devices. More 
specifically there are four commands that are used to 
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communicate with the device.  They are: query, act, 
createEventID, and disposeEventID. Query 
asks for a piece of information from the device and 
expects an immediate reply. Act instructs the device to 
perform an action (e.g., modify some parameters of the 
device, or if the device is an actuator perform an action). 
CreateEventID describes a specific event that this 
device can produce and gives this event a name/ID. The 
name can be used subsequently from the wait command 
to wait on this specific event. DisposeEventID just 
disposes that name. Additionally, if a device can produce 
events, a task is needed to accept createEventID and 
disposeEventID commands and react to wait commands 
that are waiting on the device's events. The task definition, 
and the parsing of the arguments of the four commands are 
defined in a custom fashion by the developer. This is 
where the expandability stems from, while at the same 
time keeping a structured form.  

C.2 HW/SW variability 

Even though two platforms may have the same 
capabilities (i.e., the same modules/services), they may 
rely on different hardware and/or operating system. In 
order to facilitate the porting process it is desirable to 
clearly separate the OS and HW-specific code from the 
fixed code and the capabilities-definition code. To achieve 
this we need to identify the dependencies of the code to 
the OS and the hardware and create abstracted wrapper 
functions. The wrapper functions are actually defined in 
separate sections of the code (i.e., different .c files) so that 
the developer can easily identify the points of change for a 
porting procedure.  

Figure 7:SensorWare code structure 

From the OS we need support to create and initiate 
threads/tasks, and support to define, post, and pend into 

mailboxes/queues. Thus, we create wrapper functions for 
these operations. We also need low-level functions to 
access the hardware, thus we create wrapper functions 
around them (these functions will depend on the specific 
capabilities the platform supports). Figure 7 illustrates 
SensorWare's code structure. 

D.   Addressing and routing 

Addresses in SensorWare have the generic format: 
[nodes_specification.script_name.userID.appID]. 
Currently nodes_specification is just a node ID but we are 
extending it to attribute-described nodes. Script_name is a 
string with a hierarchical structure: [namelevel_0. 
namelevel_1.... namelevel_n]. UserID is just a user id. AppID 
is an id denoting the application (i.e. collection of scripts) 
that the particular instance of a script belongs to. It is also 
used to distinguish instances of the same script running 
under the same node and under the same user (but for 
different applications).  

Although a fixed addressing scheme is necessary we 
cannot say the same for a fixed routing scheme. Routing 
can take multiple facets in a WASN (e.g. directed 
diffusion, geographical routing, energy aware unicast, 
multicast to members of a cluster, etc). All these examples 
can be used by different applications or even by the same 
application according to circumstances. Furthermore, 
many applications can use their own custom-made routing, 
or more frequently, no routing at all, as they are restricted 
to purely 1-hop local interaction (e.g., the aggregation 
application we describe in the paper). Thus, SensorWare 
needs to provide a way to easily export the functionality of 
multiple routing protocols to the scripts and allow the easy 
insertion of new routing protocols at SensorWare compile 
time. The clearest way to achieve this is to define routing 
protocols as devices in SensorWare. Furthermore, in order 
to support application-level routing we define a special 
device that gives scripts the ability to handle system-kept 
routing tables, so they are alleviated from this burden. 

V. CODE EXAMPLES 

In order to make SensorWare more concrete, we will 
present code examples and porting details in the next two 
subsections. The first one involves the creation of a 
specific application using the SensorWare script language. 
The second example, present details on how to port 
SensorWare in a specific platform. More specifically, we 
will show how to define new devices and how to connect 
the framework with the existing OS and hardware.  

A.   Script example 

In this subsection we will present the code for the 
snapshot aggregation application with multiple (static) 
users support. The specific problem that we are solving is 
to find the global maximum among current sensor node 
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readings and report it back to the user. Furthermore, 
multiple users may request this maximum while the 
algorithm is running (i.e., time to populate the script into 
the network, collect and aggregate data towards the user). 
The users are accommodated with the minimum traffic, 
without the need to launch a different application/script for 
each user. Finding the minimum, average, or any other 
aggregation function, among different kinds of sensor 
node readings or state, can be easily achieved by trivial 
modification in our script. More on aggregation 
applications in general can be found in [3]. 

Before proceeding with the script code, it is beneficial 
to describe the internal workings of two Sensorware 
commands, namely "replicate" and "wait". 
Replicate (possibly) transfers the script that it was 
called from, to other node(s). It does not blindly pack and 
transmit the code and state of the script like analogous 
commands of other active sensor approaches currently do. 
Replicate first starts with a transmis sion of "intention 
to replicate" message, carrying the name of the script and 
the issuing user. If the same script already exits in the 
other node(s) replicate, according to options, defined 
by the user, may choose not to transfer the code, may 
choose to initiate a second script of the same type in the 
node, or if the script has multi-user support, send an "add 
user" message. By default, replicate will send the 
"intention to replicate" message to avoid unnecessary code 
transfers, and will spawn a second script only if the 
requesting user is different by the existing one. 
Furthermore, it is assumed by default that the parent of the 
script (i.e., the node that spawned the script to the current 
node) already has the code for the script, thus does not 
need an "intention to replicate" message. The arguments of 
the replicate command are:  

replicate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [node_list]    
[ ] means optional 
f : forced replicate, no  "intention to replicate" message sent 
d: duplication of script at remote node irrespective of user 
p: parent not assumed to have script in memory 
m: script supports multi-users. Do not spawn new script in 

remote    node, instead send "add user" message to existing 
script  

rc: return nodes that code was transferred 
rs: return nodes that spawned new script 
ru: return nodes "add user" message was sent 
by default option rsru is in effect. 
node_list: nodes to replicate. Leaving this field empty implies a 
broadcast to neighbors. Parent is excluded unless p is chosen. 
 

It is also useful to reveal some of the details of the 
wait command. Wait returns when an event named in 
the command's arguments occurs. In order to expedite 
processing of the event by the subsequent scrip code, the 
wait command sets the following predefined variables: 

event_name :   the name of the occurred event. It indicates the 
device that caused the event and the type of the event 
event_data: data returned by the event 
If the event is a packet reception the following are defined and 
set:  msg_sender, msg_body 
 

 Listing 1 shows the actual SensorWare script. 
SensorWare commands and reserved words are in 
boldface. Variable names are in italics. Reserved variable 
name are in boldface and italics. Basic Tcl knowledge is 
needed to follow the script, although we do explain most 
of the code step by step. The example is sufficient to 
illustrate the programming style and the use of some of the 
most important commands, while solving a real problem. 

set need_reply_from [ replicate -m] 
set maxvalue [ query sensor value ]  
if {$need_reply_from == ""} { send $parent $maxvalue; exit } 
else { set return_reply_to $parent } 
set first_time 1 
while {1} { 
        wait anyRadioPck  // "anyRadioPck" is a predefined eventID 
        if { $msg_body ==add_user } { 
         if { $first_time == 1 } { 
  send $parent $msg_body 
  set first_time 0 
 } 
 set return_reply_to "$return_reply_to $msg_sender" 
        }else {  

set maxvalue [expr {($maxvalue<$msg_body) ? $maxvalue 
: $ msg_body }] 

set n [lsearch  $need_reply_from $ msg_sender] 
set need_reply_from [lreplace $need_reply_from $n $n] 

        } 
        foreach node $return_reply_to { 
 if { ($need_reply_from=="")||($need_reply_from==$node)} { 
  send $node $maxvalue 
  set n [lsearch  $return_reply_to $node] 
              set return_reply_to [lreplace $return_reply_to $n $n] 
 } 
        } 
        if {$return_reply_to==""} {exit} 
} 

Listing 1: Multi-user aggregation code 

The specific script keeps two important variables at 
each node: a list of nodes that replies are needed from, and 
a list of nodes that replies are due. The first command tries 
to replicate the script to all the neighbors (except the 
parent), declaring that this is a multi-user script. The nodes 
that the script was spawned or an "add user" message was 
sent are returned and added to the need_reply_from 
variable. The second command reads the current value 
from the sensing device and sets the maxvalue variable 
with it. If there are no nodes to return a reply the script 
sends the maxvalue to the parent node and exits. 
Otherwise the parent node is added to the list 
return_reply_to and the big loop begins. Each time a 
packet is received we check if it is a data reply or an "add 
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user" message and modify our lists and maxvalue 
accordingly. To graphically see how this algorithm works, 
refer to [3]. 

The script is its raw form is 882 bytes. If reserved 
words and variable names are compressed, the script 
becomes 277 bytes. If furthermore, we compress this 
intermediate form with gzip, we end up with 209 bytes. 
This is a compact description for this non-trivial 
algorithm. An equivalent SQTL script has a size in the 
order of 1000 bytes (based on the simpler algorithm of 
aggregation for a single user and without replication 
checking). Building the same algorithm in Maté was 
proven impossible due to its limited heap and stack sizes. 
There was not enough space to hold the need_reply_from 
and return_reply_to lists. Even with a larger memory 
space though, Maté's stack based architecture and lack of 
higher-level services results in code of many instructions 
even for simple tasks. As stated earlier, Maté's restrictions 
are a design choice, coming from the desire to support the 
restrictive underlying platform. Finally, C code is written 
for this algorithm, with external references to SensorWare 
functions. The compiled native code has a size of 764 
bytes (without including the size of SensorWare functions 
called from within the native code). 

B.   Porting SensorWare to a platform 

In this subsection we will present some of the issues 
while porting SensorWare to a platform. We consider our 
iPAQ-based prototype as the testbed. A full description of 
the platform can be found in section VI.A. Here it is 
sufficient to know that the node has one radio and one 
sensing device, and that the underlying OS is Linux.  

First, we should add the proper capabilities to 
SensorWare by creating a virtual device for the sensing 
device (the radio has a virtual device by default). This 
means name and register the device by calling the 
function: 

create_device(char* name, int (*query)(), int (*act)(), void* 
(*createEventID)(), int (*disposeEventID)(), void* (*task)() ) 

As it can be seen by the declaration of the 
create_device function we need to define the four 
functions to parse the arguments of the four standard 
interface commands, plus a function to be executed by the 
thread/ task of the device. Not going any further into the 
definition of these functions, we are sufficed to say that 
they are very similar to the radio device functions. 

The next step is to define the OS-specific code. More 
precisely, have the ability to create threads and use 
mailboxes/queues. For the definition and creation of 
threads we use the pthreads (i.e., posix threads) provided 
by Linux. Even though mailboxes are available in Linux, 
we chose to construct our own structures using 

semaphores. Finally, the hardware-specific code is directly 
provided by the Linux's device drivers. 

VI. IMPLEMENTATION 

Some active sensor frameworks choose to evaluate 
their performance by showing their expressiveness. They 
create a distributed algorithm for a particular application 
and compare it against a more centralized approach 
(usually a distributed database approach). We believe that 
the energy savings from such comparisons are evident for 
any active sensor framework and do not add value to the 
investigation and evaluation of the framework.  To 
evaluate SensorWare we chose to implement it and 
measure the overheads we are paying for dynamic 
programmability. How much memory do SensorWare and 
its components occupy? How much delay is introduced by 
various SensorWare operations? How much slower and 
consequently how much more energy-consuming is 
SensorWare compared to native code approaches? These 
questions are answered in the following subsections. We 
begin by a description of the implementation platform. 

A.   Platform description 

The prototype platform used in the implementation and 
evaluation of SensorWare was built around the iPAQ 3670 
[16]. The iPAQ has an Intel StrongARM 1110 rev 8 32 bit 
RISC processor, running at 206Mhz. The flash memory 
size is 16Mbytes and the RAM memory size 64Mbytes. 
The OS installed is a familiar v0.5 Linux StrongARM port 
[9], kernel version 2.4.18-rmk3. The compiler used, is the 
gcc cross-compiler. A wavelan card [30] is used as the 
radio device and a Honeywell HMR-2300 Magnetometer 
[14] as the sensing device. 

Figure 8: The implementation platform 

SensorWare is also ported into the Rockwell WINS 
nodes [26] that also have a StrongARM processor, but 
only 1Mbyte of flash memory. Both eCos [6] and 
microC/OS-II [19] were used as operating systems for 
these nodes.  
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B.   Memory size measurements  

The first question to answer is how much size does the 
whole framework occupy. Figure 9 shows that the total 
size is 179Kbytes and it is consisted of 74Kbytes of Linux 
specific code (e.g., kernel, libraries), 74Kbytes of a 
stripped down Tcl core called tinyTcl, 22Kbytes of 
SensorWare code and 8Kbytes of platform dependent code 
(i.e., functions to access the hardware). The bottom part of 
the figure shows the breakdown of the SensorWare core 
part into smaller parts. 

0

20

40

60

80

100

120

140

160

180

200

C
o

d
e 

S
iz

e 
(K

b
yt

es
)

linux specific

platform dependent
code
SensorWare Core

tinytcl core

SensorWare binary breakdown

4692

2728

2432

400

3284

508

1828

696

5372

0 1000 2000 3000 4000 5000 6000

script manager

device manager

delta queue

event object

mailbox

main 

user terminal

timer service

radio device

binary size (bytes)

Figure 9: Code size breakdown 

C.   Delay measurements 

The next question to answer is how long do different 
basic commands need to execute. We measured each 
command individually 100 times under the same basic 
conditions (only one script executing) and derived an 
average and standard deviation for the delay. Most 

commands exhibited negligible variance. All the 
commands, except the ones that used the radio and the one 
that spawned a 50byte script, have an execution time less 
than 0.3msec. 
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Figure 10: Execution times of SensorWare commands  

The top graph of the figure 10, shows commands with 
less than 0.06msec delay. The last two commands that 
return some part of the device's state are internal to 
SensorWare and not exported for script use. The middle 
graph shows the most time consuming commands. The 
first one spawns a 50 byte script locally. The other two 
commands use the radio to spawn a script in a neighboring 
node and send a message in a neighboring node. The delay 
for achieve these two operations is dominated by the radio 
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transmission time. Note that the send command and some 
operation modes of the spawn command, do not wait for 
the whole operation to finish, instead they return as soon 
as they hand off the task to the radio device. In the graph, 
the total operation time is shown. The bottom graph of 
figure 10, shows yet another set of delays. Of particular 
interest is the set/wait timer delay. For this instance, we 
measure the delay to set a zero-valued timer and wait for 
its expiration. In essence we are measuring the overhead 
of real-time measurements in scripts. The overhead is 
0.25msec with very small variation, which means that the 
overhead is virtually constant. Therefore, we can 
internally subtract this number each time a script sets a 
timer, in order to measure the true desired time.   

In order to acquire all delay measurements we used the 
gettimeofday() system call. This function is based on the 
timer count register found in the StrongARM processor. 
The accuracy of this method is measured to be 1µsec.   

D.   Energy measurements and related tradeoffs 

Finally, we are interested in knowing the energy 
overhead from the interpreted nature of SensorWare. For 
that purpose we compare the interpreted version of the 
script presented in section V.A., with a compiled native 
code version of the same algorithm. The native version 
uses the services that SensorWare provides by directly 
calling the appropriate functions. Since most of the work 
inside a script is done by the SensorWare commands and 
services (which are implemented in native code) we do not 
expect a significant change when we resort to fully native 
code. Indeed, we measured an 8% speedup of the native 
code compared to the interpreted code. We acquired this 
number by measuring the total execution times of both 
codes, and excluding time periods when the code was 
accessing the radio, or was waiting for events to occur. 
Essentially, the time we measured, was the non-idle CPU 
time. This time is linearly coupled with the energy spent 
on the CPU, assuming that we have a mechanism to shut 
down the CPU during idle time. Thus a reduction of 8% in 
the non-idle time, directly translates to a reduction of 8% 
in CPU-energy spent.  

As we already mentioned in section V.A, the script has 
a final compressed size of 209 bytes, while the native code 
has a size of 764 bytes. So even if the native version 
executes faster (and potentially consumes less energy, by 
allowing to shut down the CPU during idle time), there is 
an energy overhead related to its transmission. The 
wavelan radio in typical operation would spent 0.47mJ to 
transmit the script, and 1.10mJ to transmit the native code 
(including the MAC overhead). Thus, the energy 
difference between the two transmissions is 0.63mJ. The 
typical power for the StrongARM is 230mW, so 0.63mJ 
are spent in 2.7msec. From these numbers we deduce that 
if the native code uses StrongARM for 2.7msec less than 

the interpreted code then its initial transmission energy 
overhead is balanced. For the particular algorithm that we 
tested, 8% speedup is translated into 1.2msec gain in 
absolute numbers. So for the particular algorithm and 
hardware platform, transmitting and executing native code 
is not beneficial overall. For applications with heavier 
computation workload it might be desirable, from an 
energy viewpoint, to transmit and execute native code. 
Also in other platforms the tradeoff points might change 
as the CPU and radio characteristics change. Although 
usually, in low-end nodes, the CPU is slower and the radio 
much slower than our platform making the communication 
costs more dominant and thus favoring the script 
approach. Finally, a native-code approach would sacrifice 
the portability of the code in several platforms, and most 
importantly would sacrifice the code safety offered by the 
scripts (refer to [2] for more information on scripts code 
safety).  

VII. CONCLUSIONS 

In this paper we argue that the development of a 
framework based on a scripting abstraction where the 
scripts are mobile, will help bring many desired properties 
in sensor networks. It will make the sensor networks 
programmable and open to external users and systems, 
keeping at the same time the efficiency that distributed 
proactive algorithms have. We explain the framework's 
architecture and present code examples. Through our 
implementation we are able to measure the time and 
energy overheads that we are paying for programmability 
and explore some part of the solution space for sensor 
node run-time environment abstractions.   
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IX. APPENDIX 

A.   The SensorWare Language 

SensorWare supports Tcl syntax and the following 41 
Tcl commands: append, array, break, case, catch, concat, 
continue, error, eval, expr, for, foreach, format, global, if, incr, 
info, join, lappend, lindex, linsert, list, llength, lrange, lreplace, 
lsearch, lsort, proc, regexp, regsub, rename, return, scan, set, 
split, string, trace, unset, uplevel, upvar, while. 

There are 11 other commands defined by SensorWare 
that essentially abstract the node's run-time environment. 
They are: 

spawn [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>] <code> 
[<variable_list>] 

replicate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>]  
[<variables_list>]  

migrate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>]  
[<variables_list>] 

send (<node_id>|*)[:<script_name>[:<user_id>[:<app_id>]]]   
<message> 

setTimer  <timer_name> <value> 

disposeTimer  <timer_name> 

query <device_name> [ var_arg... ] 

act <device_name> [ var_arg... ] 

createEventID <device_name> <eventID> [ var_arg... ] 

disposeEventID <device_name> <eventID> 

wait <event_name>... 

Legend: [ ] indicates optional, < > indicates a variable 
(either a Tcl variable or an SensorWare variable such as an 
eventID or a timer name), the suffix "_list" in variable 
names indicates that the variable is a list (i.e., zero or more 
elements). The symbol "var_arg ..." indicates variable 
arguments. The modifier "..." indicates a list of arguments 
of the preceding argument type. 

There are 6 reserved Tcl variable names. These are: 
parent, neighbors, event_name, event_data, msg_sender, 
msg_body. 

There are 7 reserved words used as arguments in 
some commands. By reserving words for commonly used 
features we compact the scripts further. These are: 
anyRadioPck, anyTimer, add_user, sensor, value, radio, timer. 


