i

The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA '98)
Boston, Massachusetts, December 6-11, 1998

Infrastructure:
A Prerequisite for Effective Security

Bill Fithen, Steve Kalinowski
Jeff Carpenter, and Jed Pickel
CERT Coordination Center

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Infrastructure: A Prerequisite
for Effective Security

Bill Fithen, Steve Kalinowski, Jeff Carpenter, and Jed Pickel — CERT Coordination Center

ABSTRACT

The CERT Coordination Center is building an experimental information infrastructure
management system, SAFARI, capable of supporting a variety of operating systems and
applications. The motivation behind this prototype is to demonstrate the security benefits of a
systematically managed infrastructure. SAFARI is an attempt to improve the scalability of
managing an infrastructure composed of many hosts, where there are many more hosts than
hosts types. SAFARI is designed with one overarching principle: it should impact user,
developer, and administrator activities as little as possible. The CERT Coordination Center is
actively seeking partners to further this or alternative approaches to improving the
infrastructural fabric on which Internet sites operate. SAFARI is currently being used by the
CERT/CC to manage over 900 collections of software on three different versions of UNIX on
three hardware platforms in a repository (/afs/cert.org/software) that is over 20 GB in size.

Background

Since the formation of the Computer Emergency
Response Team, ten years ago, it and nearly a hundred
other subsequently formed incident response teams
have been providing assistance to those involved in
computer and network security incidents. The CERT®
Coordination Center has participated in the response
to well over 10,000 incidents over that period.
Throughout that interval, incident response teams have
attempted to convince their constituencies to apply
security patches and countermeasures to hosts on a
routine basis. Over the course of its life, the CERT/CC
alone has issued over 160 advisories, 70 vendor-initi-
ated bulletins, and 20 summaries. Most of these docu-
ments urge system administrators to apply a variety of
countermeasures. Yet, on a daily basis the CERT/CC
receives incident reports involving hosts that have
been compromised by intruders exploiting vulnerabili-
ties with publicly available patches or countermea-
sures. The overwhelming majority of compromises
continue to be a result of sites running hosts without
applying available countermeasures.

In a recent survey we conducted, the most fre-
quent reasons for continuing to operate hosts without
available countermeasures were:

e Insufficient resources

e Difficulty in finding and understanding coun-
termeasure information

¢ The inability to administer configuration man-
agement across a large number of hosts.

At many of these sites, the basic computing
infrastructure is an impediment to timely distribution
of configuration changes. These sites operate at a sub-
stantially higher level of risk than those with solid
infrastructures. Such sites are not only more likely to
be compromised, but they are also less likely to be
able to adequately detect and recover from

1998 LISA XII — December 6-11, 1998 — Boston, MA

compromises. They are often forced to undertake large
efforts to secure their hosts and networks. Often the
required resources are unavailable, preventing admin-
istrators from completely recovering from compro-
mises, usually leading to subsequent compromises.

In this paper, when we refer to an organization’s
information infrastructure, we mean:

¢ The organization’s installed base of computing
and networking hardware,

¢ The system and application software operating
on that hardware,

e The policies and procedures governing the
design, implementation, operation, and mainte-
nance of the software and hardware, and

e The people who perform those procedures.

One assumes that, in general, such an infrastruc-
ture exists only to serve some business purpose of the
organization. In a very real sense, an organization’s
information infrastructure is business overhead-part of
the cost of doing business.

An information infrastructure management sys-
tem (IIMS) is a system whose purpose is to automate
the maintenance of an information infrastructure.

Motivation

A site with an adequate information infrastruc-
ture finds itself able to detect and recover from com-
promises in short order. It can repair or recreate hosts
using automated mechanisms designed to deal with
such demands. It can also protect itself from many
types of attacks through proactive deployment of
countermeasures.

A site without such an information infrastructure
must spend much greater effort to detect and recover
from compromises or to proactively deploy counter-
measures. This effort is proportional to the number of
hosts being managed. At a small site, this may be

11

Infrastructure: A Prerequisite for Effective Security

acceptable or even ideal, but tends not to be scalable
as the site grows due to resource constraints.

At a site with an effective information infrastruc-
ture management system, the effort to detect and
recover from compromises or to proactively deploy
countermeasures is substantially less. In general, the
effort to deploy a change is proportional to the number
of different types of hosts, rather than the number of
hosts. However, the effort to prepare for such a
deployment is higher due to packaging requirements
of the IIMS.

Chart 1 shows some simpleminded math to illus-
trate these ideas.

Let:

Ny be the number of hosts

Np be the number of host platforms

Ey be the effort to make a manual change on one
host

Ep be the effort to prepare a change for automatic
deployment on any host of one platform

Ep be the effort to deploy a change to one host auto-
matically

Then:

E), is the total effort to make a manual change on Ny

hosts:

Ey=Ey* Ny
E, is the total effort to make a change automatically
on Ny hosts
EA :EPXNP +ED><NH

Therefore:
The scalability breakeven point is when:
E M= E A
If one assumes that in a good IIMS, the effort to
deploy a change on one host automatically (Ep) is
negligible, then the breakeven point is when:
N H xE H= N P x E P
Chart 1: Mathematical derivation of fundamentals.

As you can see from this simplified model, at the
breakeven point, the effort to deploy change manually
is proportional to the number of hosts, while the effort
to deploy the same change is proportional to the num-
ber of host platforms (types of hosts).

Requirements

The CERT Coordination Center is currently
developing an experimental IIMS called the Securely
Accessible Federated Active Repository for Infrastruc-
tures (SAFARI). Via SAFARI, the CERT/CC is purs-
ing two primary goals:

¢ Enable sites to effectively, securely, and eco-
nomically distribute host-resident software
from one or more managed repositories.

¢ Enable sites to manage all software throughout
its entire operational lifecycle focusing on qual-
ity, reliability, and integrity.

12

Fithen, et al.

SAFARI is being designed to meet four primary
objectives:

e Construct each host in its configured state auto-
matically from an empty disk with minimal
manual intervention.

e Reconstruct each host to its configured state
after a security compromise or catastrophic fail-
ure automatically with minimal manual inter-
vention.

¢ Upgrade each host with new applications, oper-
ating systems, patches, and fixes automatically
on a regular basis with no manual intervention.

¢ Maintain each host in its configured state auto-
matically with no manual intervention.

In order to achieve the desired influence in the
system administration community, three additional
secondary objectives must be met:

¢ It should be engineered for an extremely high
host-to-administrator ratio.

e It should facilitate the sharing of software
among multiple, not necessarily mutually trust-
ing, administrative domains.

e It should follow a policy-based model that
works with a wide range of organization sizes.

Whatever compromises are necessary throughout
the evolution of SAFARI, the following constraints
must not be relaxed:

e Guarantee that software is distributed onto
authorized hosts only.

e Guarantee that software is delivered with
integrity to each host and that it is installed cor-
rectly.

The design should be guided by the following
overarching philosophy:
¢ It should support user, developer, and adminis-
trator activities in a manner that most closely
parallels those same activities before SAFARI.

Design Assumptions

This work differs from related projects in some
ways. While there have been many projects relating to
large scale host administration or software distribu-
tion, this project is motivated primarily by scalable
security. As a result, we have made certain design
assumptions that run counter to prior published work.

We don’t consider disk space conservation to be
a significant design motivator. Our most recent acqui-
sitions of reasonably inexpensive 18 GB disks sup-
ports our assumption. Therefore, a number of space
conservation techniques can be immediately dis-
carded. For example, the process of preparing soft-
ware for distribution via SAFARI is complex enough
without an extensive set of space saving rules to fol-
low. Therefore, we decided not to have such rules.
Unlike systems that divide a software package
between platform-independent and platform-specific
[20], we decided that minimal impacts on the build
and installation process would easily pay for the

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

additional disk space. Another impact of this assump-
tion is that everything that goes into building a unit of
deployable software is important and should be pre-
served. This includes files produced during intermedi-
ate steps of a build and install procedure. Such inter-
mediate files can be useful during testing and debug-
ging a deployed unit.

We consider individual host performance to be
more important than local disk space. We decided to
take the default position, that unless otherwise
directed, it is the host administrator’s intention to
install all distributed software locally. We realize
though that it might be necessary to locate certain
parts of a local host filesystem on a fileserver.

We believe that software maintenance and distri-
bution should be as automated as possible. As a result,
we have decided that every available function within
SAFARI must be available via a shell command; no
GUI only capabilities are allowed. At the appropriate
time, we will introduce GUI capabilities to reduce the
complexity of the system, but not before a reasonably
complete set of functions are already available.

We believe that end-to-end repeatability is of
great importance. Repeatability and security are very
closely related; security cannot be maintained without
repeatability. Therefore, we decided to define the
SAFARI model to include package construction activi-
ties in SAFARI; this increases the probability of being
able to either repeat a build process or to audit it--trac-
ing binaries back to source.

SAFARI, like virtually all similar systems, is
focused on the management of small, cohesive, largely
independent software units (SU). Unlike other sys-
tems, SAFARI manages four types of SU’s, each use-
ful for a different phase of the software operational
lifecycle. All of these SU’s are stored in a relocatable
structured filesystem tree, called the SAFARI Reposi-
tory. The matrix in Table 1 shows how the various
types of SU’s relate to one another.

SAFARI is designed to manage software targeted
for multiple platforms in a single repository. Both
packages and images are labeled with a platform label.
Neither collections nor clusters are platform specific.
We will examine each of these in more detail.

As an aside, the current implementation of
SAFARI depends heavily on Transarc AFS [8] for a
variety of administrative functions. This has two

Infrastructure: A Prerequisite for Effective Security

significant consequences (in the genre of good
news/bad news):

e The fundamental architecture of SAFARI is
greatly enhanced by basic AFS capabilities
(e.g., network authentication, integrity, and
security). Consequentially, a wide variety of
SAFARI administrative tasks (e.g., space allo-
cation, quotas, access control) are greatly facili-
tated by the use of AFS administrative capabili-
ties. The capabilities provided by AFS were
considered a required architectural foundation
for a system on which every host at a site may
depend. Any other environment that provides
similar functions would be acceptable (e.g.,
DEFS).

e The current implementation of SAFARI is
tightly integrated with and dependent on AFS
and is therefore useless to sites unwilling or
unable to run AFS. Note, however, that
SAFARI does not require that a site use AFS
for anything other than housing the SAFARI
repository.

Platforms

Being a multi-platform information infrastruc-
ture management system, SAFARI must define and
manage the concept of a platform. Attempting to be
as flexible as possible, SAFARI makes few assump-
tions regarding characteristics of platforms or the rela-
tionships among platforms. In SAFARI, platforms are
assigned arbitrary labels by SAFARI administrators as
they are needed. SAFARI platform names are com-
posed of any combination of mixed case alphanumeric
characters plus dash and underscore, starting with an
alphabetic character; they match the regular expres-
sion:

/" la-zA-Z] [-a-zA-70-9_1*$/.
SAFARI assigns no meaning to the contents of the
name; SAFARI administrators are free to choose any
platform naming convention they like.

Each SAFARI host must be assigned a platform
name. Typically, a host platform name refers to a spe-
cific combination of hardware and system software.
For example, Sun Solaris 2.5.1 running on a Sun Ultra
2 model 2170 is a platform that one SAFARI site may
assign the label sparc-4u-sunos-5.5.1; another may
assign solaris-2.5.1 sparc4u, and a third may choose
sundu 251.

Source Software Units

Deployable Software Units

Development of Independent
Software Units

Collection

Package

Configuration or Integration
of Software Units

Cluster

Image

Table 1: Relationships between software units.

1998 LISA XII — December 6-11, 1998 — Boston, MA

13

Infrastructure: A Prerequisite for Effective Security

Each SAFARI deployable software unit (package
or image) is also assigned a platform name. Deploy-
able software unit (DSU) platform names are typically
more abstract than host platform names. For example,
a PERL script might easily be written so as to run on
Solaris 2.5.1 on SPARC and Red Hat Linux 5.1 on
Intel. In which case, one might choose to assign to the
package containing the PERL script a platform name
such as unix. Choosing an appropriate platform name
for a DSU can sometimes be challenging. Continuing
this example, suppose that the PERL script did not
work on AIX 4.3 on PowerPC. What platform name
would be appropriate then?

All platform names are recorded in the SAFARI
repository database. In addition, the repository con-
tains a mapping between each host platform name and
the platform names of DSU’s that are allowed to run
on hosts of that platform. That is, it documents which
DSU’s can be run on which hosts by platform name.
For example, the repository might declare that a host
platform named sparc-4m-sunos-5.5.1 can run pack-
ages or images tagged with platform names sparc-4m-
sunos-3.5.1, sparc-sunos-3.5.1, sparc-sunos-5, sunos-3,
SUNOS, UNIX.

All SAFARI tools that deal with platform names
require that platforms be recorded in the SAFARI
repository database.

Packages

The SAFARI package is the easiest class of
SAFARI software unit to understand. SAFARI pack-
ages are logically equivalent to the installable units in
many other software management systems: packages
in Sun Solaris [1] and UNIX System V [2], packages
in Red Hat Linux [3], packages in IBM AIX [4], and
many others. In fact, the design for SAFARI packages
was taken almost directly from CMU Depot [5] (an
ancestor of SAFARI, Alex, developed at the University
of Pittsburgh [6] actually uses depot internally).

A SAFARI package is a sparse relocatable
filesystem tree. It has exactly the same internal direc-
tory structure as a host at which it is targeted for
installation. That is, if a given package is intended to
install the files /etc/hosts and /usr/bin/cp,
then one would find within the package filesystem tree
the files etc/hosts an usr/bin/cp. There is
currently no canonical transportable format for a
SAFARI package (such as far or RPM). Within each
package is a special directory which contains meta-
information about the package and is not intended to
be installed on the target system. This directory is cur-
rently named depot (more ancestral evidence). It
contains a manifest of the package’s contents and a
certificate of authenticity, digitally signed by the per-
son who produced the package. SAFARI currently
uses PGP 2.6 [10] for digital signatures and MD5 [11]
for message digests of files described by the manifest.

14

Fithen, et al.

It may be obvious from the above description,
but SAFARI packages are platform dependent. Each
package is labeled as being applicable to (installable
on) a particular platform.

SAFARI provides tools to aid both the SAFARI
administrator and the SAFARI collection manager in
the creation, population, release, integration, testing,
deployment, deprecation, withdrawal, and destruction
of packages in a repository and on client hosts.

In most software management systems, package-
like entities come from outside the software manage-
ment system. In SAFARI, a package is derived from
another software unit, a SAFARI collection.

Collections

The easiest way to understand SAFARI collec-
tions is to think of them as package sources. One set
of sources targeted at n platforms requires one
SAFARI collection from which » SAFARI packages
are produced. SAFARI collections are structured as
filesystem trees, similar to packages, but in contrast to
packages, have minimal mandatory internal structure.
This flexibility is required to support the wide struc-
tural variety of open source systems. There are three
generic areas (subdirectories) within a collection:

e build. This area is used to house collection
source code, makefiles, etc. There is no pre-
ferred structure within this area. Collection
managers are free to establish their own con-
ventions for structure in this area. For example,
in our repository, it is typical that a tar.gz
file for sources resides in the build directory
with the expanded tar.gz file in lower directo-
ries. The extensive use of RCS [12] or SCCS
[13] is strongly encouraged, but remains a col-
lection manager choice.

e OBJ. This area is used to house compiled pre-
installation binaries (e.g., * .o, *.a) for each
platform. The OBJ tree is expected to be man-
aged by a SAFARI tool named pf (described
below), but may be used as the collection man-
ager sees fit. The pf command establishes a par-
allel tree of symbolic links for each platform
rooted in the second level of the OBJ tree that
mirrors the build tree. Those familiar with
the use of the Indir command in the X11 distri-
bution [7] to accomplish multi-platform builds
can imagine how pf works.

e META. This area is used by SAFARI to hold
meta-information about the collection. For
example, the mapping between build platforms
(the platform on which the build is performed)
and installation platforms (the platform on
which the package is expected to run) is con-
tained in META/platforms .map.

In addition, for the sake of convenience to the
collection manager, any existing unreleased packages

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

are available under the following area within a collec-
tion.

e DEST. This area contains one directory for
each existing unreleased package for the collec-
tion. Technically, these directories are not part
of the collection. They are AFS volumes
mounted here to make the build process easier
for the collection manager by allowing the
installation destination to be specified using
short relative (and therefore relocatable) paths
in makefiles.

Of course, many packages are only available in
binary, platform-specific form. For such packages,
SAFARI provides tools that can create a package from
a delta of a manual installation host. This idea came
from the WinINSTALL [9] tool which does the same
thing for Microsoft Windows operating systems. It
takes a snapshot of an existing host before some soft-
ware is installed. After the installation, the tool com-
pares the before and after states of the host to produce
a SAFARI package that when deployed via SAFARI
results in the same host changes as the software instal-
lation steps. This approach can be used for any arbi-
trary modifications, but is better left for situations
where software must be installed via an installation
procedure that cannot easily be reverse engineered.
For some platforms (i.e., Sun SunOS 4), this may be
the easiest way to capture patches for distribution to
other hosts via SAFARI. Repeatability using such a
tool capturing manual steps is poor. Fortunately, this
tool is rarely needed since most software installation
procedures allow for one to install wherever one
wants.

Clusters and Images

In cases where a collection and its packages do
not depend on other packages or local configuration
conventions to operate properly when installed,
SAFARI host managers can select which packages
they wish to use with little difficulty. An example of
such a collection might be GNU CC. GNU CC really
only depends on having the proper operating system in
place to function properly. Any host manager who was
interested in GNU CC could safely just select a GNU
CC package appropriate for the host’s platform and be
highly certain that it will deploy and operate properly.

However, relatively few collections depend so
little on other collections and have no dependence on
local configuration conventions. For example, the col-
lection that contains the SAFARI software itself, being
written in C++ and PERL, depends on a variety of
other collections being available to be able to operate
properly. The process of selecting, ordering, integrat-
ing, configuring, and testing a set of interdependent
packages can be complex. In addition, it occasionally
happens that combining particular packages requires
significant configuration to get them to work correctly.

1998 LISA XII — December 6-11, 1998 — Boston, MA

Infrastructure: A Prerequisite for Effective Security

Facilitating this process is the purpose of
SAFARI clusters and images. A SAFARI cluster is
structured and managed exactly like a collection;
images are produced from clusters exactly like pack-
ages are produced from collections. Like collections,
clusters are not tagged with a platform name; like
packages, images are tagged with a platform name.

The principle distinction between collections
(and their packages) and clusters (and their images) is
that clusters produce images that reflect local configu-
ration conventions, while collections produce pack-
ages that are intended to be deployable on any host in
the world. The normal progression is to build one or
more packages from collections with no local assump-
tions about deployment hosts and then build a cluster
which integrates and configures the packages accord-
ing to local conventions to be deployable on local
hosts. Others not following those conventions can
build clusters in the same or a different repository
according to their conventions using the same pack-
ages, thereby, reusing the existing packages.

A cluster can be thought of as a set of collec-
tions, integrated together, and its images can be
thought of as the set of packages from those collec-
tions integrated together. The primary purposes of
clusters and images is to reduce the effort expended by
host managers trying to integrate packages together.
An image is a pre-configured set (including a set of
one) of packages that can be selected as a single unit
for deployment.

Two reasons for this approach of separation
based on configuration information are:

e Technical: This separation facilitates the con-
struction of collections/packages that can be
readily used at multiple sites. That is, the col-
lections and packages thus created can be easily
shared between SAFARI repositories by con-
centrating configuration information, which is
typically very local, in clusters and images.
Thus collaborating sites can easily share pack-
ages without extensive human interaction. The
clusters, presumably, reflect local configuration
conventions and must be reengineered from one
repository (domain of local configuration con-
ventions) to another.

e Organizational: Some persons are better at
building packages one at a time and others are
better at integrating a group of packages
together. This approach allows staff to be
applied more effectively to the tasks to which
they are better suited. Explicitly separating the
integration and configuration step from the
development step allows the developer to con-
centrate on producing a higher quality package
faster. Developers focus on the internals of a
package; integrators focus on the world around
a package.

15

Infrastructure: A Prerequisite for Effective Security

The Repository

The SAFARI repository houses:

¢ Collections and their packages

¢ Clusters and their images

¢ Database
e Meta-information about collections,

packages, clusters, and images

¢ Policy settings
¢ Database meta-information

The SAFARI repository is a relocatable filesys-
tem tree. For current SAFARI commands, its location
is specified by the REPO_ROOT environment vari-
able. Future versions of SAFARI will incorporate
inter-repository capabilities.

Collections, Packages, Clusters, and Images

Each different class of SAFARI software unit has
its own area in a repository.

e collection. The collection directory is the
parent directory of all collections. Each collec-
tion is housed in a separate subdirectory. As
described above, each collection holds four
internal areas (META, build, OBJ, and
DEST). As an example, the source to the
SAFARI version 1.0 collection might, depend-
ing on collection names chosen, be found
somewhere in collection/cert.org/
safari/1.0/build/. The SAFARI ad-
ministrator safari collection create subcom-
mand creates the appropriate AFS volumes (for
each area), creates the appropriate AFS protec-
tion groups, mounts the volumes in the collec-
tion directory tree, sets access controls and quo-
tas, and transfers subsequent control of the col-
lection to the collection’s managers to manage
the build, release, and test steps.

e package. The package directory is the parent
directory for all released packages. Unreleased
packages are AFS volumes mounted under the
collection’s DEST area only. After completing
the build and DEST area installation steps,
the collection manager uses the safari package
prepare and safari package seal subcommands
to collect meta-information about the package
and certify the contents of the package as suit-
able for release (at least in the mind of the col-
lection manager). The SAFARI administrator
then uses the safari package release subcom-
mand to transform the package into the correct
form for deployment (e.g., set owners and
groups according to policy) and mount it in the
appropriate place below the package direc-
tory. Released packages are housed in directo-
ries below package with naming conventions
that parallel the collection directory. For
example, revision 10 of the SAFARI version
1.0 package for platform sparc-sunos-5 can be
found under package/cert.org/safari/
1.0/10/sparc-sunos-5/.

16

Fithen, et al.

e cluster. The cluster directory is the parent
directory of all clusters. The structure below
cluster is exactly the same as that below col -
lection. The safari cluster subcommands
parallel the safari collection subcommands.

e image. The image directory is the parent
directory of all images. The structure below
image is exactly the same as that below
package. The safari image subcommands
parallel the safari package subcommands.

Each collection and each cluster has a unique
name (i.e., collections and clusters have separate name
spaces and can therefore have the same name). Pack-
ages and images inherit their name from the collection
or cluster from which they were derived. Clusters and
collections are named using the same syntactic and
semantic conventions. A cluster or collection name is
composed of three parts separated by forward slashes:

e Authority. The authority is the organization or
person who is officially responsible for the files
found in the cluster’s or collection’s build
area. For example, the officially responsible
organization for GNU Emacs is the Free Soft-
ware Foundation. For the Red Hat Package
Manager, it is Red Hat, Inc. The authority is
encoded as the closest possible representation
of the organization or person as an appropriate
Domain Name Service Start of Authority
record name. This means that the syntactical
requirements for the authority part are exactly
the same as those for a domain name [17]. In
the preceding two examples, Free Software
Foundation would be encoded as fsf.org
and Red Hat, Inc. would be encoded as
rpm.org, since RPM developers have regis-
tered an organizational name just for that soft-
ware. The rationale for including an authority
in a collection or cluster name rather than mak-
ing it an internal attribute of the cluster or col-
lection was to avoid naming wars. Sometimes
there are multiple possible authoritative sources
for Internet free software; including the author-
ity in the name avoids the problem of requiring
a SAFARI administrator to arbitrate which
source is more authoritative.

e Common name. The common name is the
name by which the collection or cluster is com-
monly known. It is typically exactly the same
name as that assigned by the authority. The
only restrictions on this part of the collection or
cluster name is that it comply with the POSIX
requirements for a file name (a single compo-
nent of a path) [18]. For example, GNU Emacs
might be reasonably assigned the common
name “emacs” or ‘‘gnu-emacs.”

¢ Version. The version is the version string by
which the collection or cluster is commonly
known. It is typically exactly the same version
string as that assigned by the authority. The

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

only restrictions on this part of the collection or
cluster name is that it comply with the POSIX
requirements for a file name [18]. For example,
GNU Emacs version 19.34 would likely be
assigned the version “19.14,”, while Samba
version 1.1.18p12 would likely be assigned the
version “1.1.18p12.”

Thus the full name of the GNU Emacs 19.34 col-
lection might be fsf.org/gnu-emacs/19.34.

Meta-Information about Collections, Packages,
Clusters, and Images

The SAFARI repository database is a directory
of ordinary UNIX files, formatted so that the SAFARI
administrator can make manual changes in emergency
situations. As such, the database is neither highly par-
allel nor impervious to failed transactions. The
database is protected against concurrent access via a
simple lock file mechanism. All of the meta-informa-
tion and policy files are under RCS control to provide
assistance during a manual recovery as well as exten-
sive historical information. For reference, our
db/packages database is at RCS revision 1.3729
as of 8/24/1998 having started at revision 1.1 on
1/27/1997 (yes, 3,728 revisions).

The repository database is
${REPO_ROOT}/db.

e db/collections. The collections
database contains the mapping between each
collection name and its sequence number.
Sequence numbers, which can never be safely
reused, are used to form AFS volume names.
The presence of a record in this database
implies that the collection filesystem tree is pre-
sent in the repository for that collection (the
safari repository check subcommand reports
differences between the collections database
and collection filesystem). The use of
sequence numbers is intended to deal with
severe name length restrictions in AFS volume
names (and potentially other underlying tech-
nologies that might be supported by SAFARI in
the future). Through this indirection, SAFARI
supports long collection names that greatly
increase understanding in casual SAFARI users
(e.g., single-host host managers). Even
SAFARI aficionados can benefit from long
clear collection names. Our repository currently
has over 900 collections; clear naming really is
a requirement. When collections are destroyed,
their sequence record is moved to the collec-
tions.destroyed database for historical refer-
ence. The content of this database is managed
by the safari collection subcommand.

e db/collections-families. The data-
base of collection-families is used to
determine the precedence among a set of col-
lections implementing different major versions
of the same software. Each record defines a

located in

1998 LISA XII — December 6-11, 1998 — Boston, MA

Infrastructure: A Prerequisite for Effective Security

family of collections from the collections
database. The purpose of this database is to
deal with collections whose name changes in
unpredictable ways as they evolve. In particu-
lar, it is rarely the case that the next version
number of a given piece of software can be pre-
dicted from the current one. The Linux kernel
[15] version numbering scheme is a good
example: how should the following version
numbers be ordered: 2.0, 2.0.1, 2.0.10, 2.0.100,
2.0.9? Because we know the convention, we
know that the proper order is: 2.0, 2.0.1, 2.0.9,
2.0.10, 2.0.100. But we have all seen number-
ing schemes more unpredictable that this. Each
collection family explicitly defines the ordering
among a set of collections. The package
deployment selection mechanism (see parcel
below) will automatically choose the latest col-
lection with an appropriate platform and status
for the given host.
e db/packages. The packages database
contains one record for each existing package.
Each package is named for the collection with
which it is associated. In addition, each package
is assigned a monotonically increasing (for
each collection) revision number and a platform
name. The first package created from a collec-
tion is assigned revision number 1. It is
expected that two packages of the same collec-
tion with the same revision number (but differ-
ent platform names) implement the same func-
tionality when deployed. This revision synchro-
nization convention makes it easier for a host
manager who is managing multiple hosts of dif-
ferent platforms to configure them to provide
the same functions to their users. Lastly, each
package is assigned a status tag. Status tags are
fully described in db/lifecycles under
Policies below.
db/clusters. The clusters database
contains the mapping between cluster names
and sequence numbers. The clusters database
has the same format as the collection
database and serves the same purpose for clus-
ters as the collections database has for
collections.
e db/clusters-families. The clus-
ter-families database is used to deter-
mine the precedence among a set of clusters
configuring different major versions of the
same software. It has the same format as the
collection-families database and
serves the same function for clusters that col -
lection-families serves for collections.
db/images. The images database contains
one record for each existing image. It has the
same format as the packages database and
serves the same function for images that
packages serves for packages.

17

Infrastructure: A Prerequisite for Effective Security

Policies

A variety of functional policies have been exter-
nalized from code into policy specification files.
Future versions of SAFARI will expand the use of
external policy specifications. There were two pur-
poses behind this decision. First, we thought it likely
that many of these policies might vary between sites.
Configuration files are easier to change than code.
Second, we were ourselves not sure what our polices
should be. Moving these policies from code into con-
figuration files has allowed us to easily experiment
with alternative policies and to evolve policy over
time.

e db/allocation. The allocation configura-
tion file sets the policy for how AFS volumes
are named and where they are allocated and
replicated. There are currently six types of AFS
volumes managed by SAFARI, which are ini-
tially mounted at the mount points shown in
Table 2.

The allocation policy allows one to select AFS

volume naming conventions using printf-like

“%"” syntax to conform to local AFS volume

naming conventions. It also allows one to

define AFS fileservers and partitions that are to
be considered as candidates for holding each
type of volume. One can also specify which
volumes, if any, are to have read-only replicants
and where they can be located. The safari com-
mand uses this policy to guide its creation of

Fithen, et al.

AFS volumes. The server selection portion of
this policy is only enforced at creation time;
volumes can be moved after allocation however
a site wishes.

e db/lifecycles. The lifecycle con-
figuration file sets the policy for lifecycle
phases through which packages and images can
pass. The policy defines each phase by assign-
ing it a label called the status. Each status
label is an opaque string that SAFARI uses for
tracking the lifecycle of packages and images.
The special status label unreleased is built-in
and is automatically assigned to packages and
images when they are created. When a package
or image is released by the safari package
release or safari image release subcommand
respectively, the SAFARI administrator must
provide a status label to be assigned to the
newly released package or image as the last
step of the release process. The status labels are
recorded in the db/packages and
db/images databases for each package and
image respectively. The lifecycle policy gov-
erns which lifecycle phase transitions are
allowed by means of a transition matrix. The
matrix is composed of cells that contain per-
mit/deny indicators for each possible starting
and ending status label.

Using this mechanism, a site can define a com-
plex lifecycle through which packages and

Creation Mount Point
(below ${REPO_ROOT})

Released Mount Point
(below ${REPO_ROOT})

collection build volume

collection/collection/build

collection OBJ volume

collection/collection/OBJ

package volume collection/collection/DEST/platform P a.c.k age/collection/
revision/platform

cluster build volume cluster/cluster/build

cluster OBJ volume cluster/cluster/OBJ

image volume cluster/cluster/DEST/platform P a.c'k age/collection/
revision/platform

Table 2: Mount points.

Status Label Status of Package or Image

alpha Is being tested iI.l operation on a real machine by its manager; no other hosts
should try to run it.

beta Is being tested by end-users on a small set of beta test hosts.

gamma Is production quality and can be run anywhere the function it provides is useful.

deprecated Is being withdrawn for some reason (typically because it is being superseded).

obsolete Has been withdrawn and no host is allowed to use it anywhere.

destroyed Has been destroyed (deleted).

Table 3: Status labels.

18

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

images must progress from creation to destruc-
tion. For example, in the CERT repository, we
have defined a series of status labels as shown
in Table 3.

We define our lifecycle transition matrix to
force packages and images to evolve from
alpha toward destroyed; we do not allow tran-
sitions in the other direction. We do, however,
allow phases to be skipped (e.g., alpha to
gamma, beta to obsolete, unreleased to beta).
db/platforms. The platforms config-
uration file sets the policy for naming plat-
forms. Every platform supported by a reposi-
tory must be defined in this configuration file.
Packages and images are labeled with platform
names to indicate on which hosts they were
intended to be deployed. For any given collec-
tion or cluster, packages or images with the
same revision number and differing platform
names are expected to implement the same
functionality. Each platform defined in the plat-
form policy is assigned a unique (across all
platforms) small integer to be used in naming
AFS volumes. This number is used in a way
similar to the collection and cluster sequence
number--to reduce the length of the AFS vol-
ume name without loss of information. Once a
platform is assigned a number, the number can
never be reused again (unless one can somehow
guarantee that there are not now and never were
any AFS volumes created using it).
db/platform-families. The plat-
form-families configuration files sets the
policy for how platforms, defined in
db/platforms, relate to one another. Each
platform family is, in effect, a sequence of syn-
onyms. The first platform in each sequence is
used as a key and serves as the name of the
family. It is expected that the platform name
assigned to every host is also the name of a

Infrastructure: A Prerequisite for Effective Security

(see parcel below) uses the host platform name
as a key to locate the sequence of synonyms for
that platform name from the platform family
policy. The deployment mechanism then con-
siders any package (or image) that has been
labeled with any of the synonyms as a candi-
date for deployment to the host. Ambiguities
are resolved by selecting the first candidate
encountered in the order of the synonyms in the
sequence.

Using the platforms policy and the platform
families policy, one can create a taxonomy of
platform names. Consider Figure 1 as a plat-
form taxonomy.

The leaf nodes would then be defined as plat-
form families and the synonym sequence would
be all nodes encountered along a directed path
from the leaf to the root. Then the platform
family sparc-4m-sunos-5.5.1 would be defined

as the platform sequence: [sparc-4m-
sunos-5.5.1, sparc-sunos-5, sunos-5, unmix,
generic]. Therefore, when the deployment

mechanism was activated on a sparc-4m-
sunos-5.5.1 host, it would search for sparc-4m-
sunos-5.5.1 packages (or images) first, fol-
lowed by sparc-sunos-5, sunos-5, unix, and
generic.

db/protections. The protections
configuration file sets the access control policy
for released packages and images. It controls
file and directory ownerships, UNIX modes,
and AFS access controls lists. It does not con-
trol local file system access control lists. This
configuration file sets the global policy that
governs all packages and images. In addition,
each package and image can supply its own
policy, overriding the global policy, in
depot/protections in the package or
image. The protections policy provides a
default value for AFS access control lists, file

platform family. The deployment mechanism ownership, file group, and positive and
| generic |
|
| iz | urlutx | | mac |
| nt | sunos-5 | | macs |
| nt-< | | spare-sunos5 | | ppe-mac-g

iS5 -}

alph & nt-4

spare-dm-sunos-5.5.1

spare-drsunes-5.5.1

Figure 1: Platform Taxonomy.

1998 LISA XII — December 6-11, 1998 — Boston, MA

19

Infrastructure: A Prerequisite for Effective Security

20

negative mode masks. Owners and groups can
be specified as names or IDs, but names are
preferred (being less platform dependent). The
positive mode mask is a mask of mode bits that
are unconditionally OR’ed on at release time.
The negative mode mask is a mask of mode
bits that are unconditionally AND’ed off at
release time. Not all mode bits need to be
included in either of these masks. If these
masks overlap (affect the same bits) the result
is undefined.
It is not typically the case that a package or
image will override the protection defaults from
the global policy, although that is permitted.
More often, the package or image protections
policy will specify particular paths for which
ownerships, modes, or ACL’s should differ
from the default. This approach is required
since collection managers are not typically AFS
administrators and as such do not have the priv-
ilege necessary to actually set file ownerships
or groups. The package or image protection
policy is used to convey the collection man-
ager’s intent regarding protections to the
SAFARI administrator for the safari package
release or safari image release process. Cur-
rently, collection managers can request any pro-
tection policy they want; it is up to the SAFARI
administrator to recognize that a particular
release request ought to be rejected due to a
suspicious protections policy (e.g., making
/bin/ sh set-UID roof).
db/pubring.pgp. The pubring.pgp
configuration file contains the PGP 2.6 public
keys of all persons that can digitally sign some-
thing in SAFARI. This is typically collection
and cluster managers as well as SAFARI
administrators.
db/relations. The relations config-
uration file sets the experimental policy regard-
ing relationships between and among collec-
tions, packages, clusters, and images. As of this
writing, this policy is still being defined. The
intention of this policy is to specify the follow-
ing relationships:
¢ Conflict resolution is necessary when
two packages or images both wish to
deploy the same path. The current
deployment mechanism has an implicit
conflict resolution policy, but it is con-
sidered inadequate for large complex
configurations. The depot [16] conflict
resolution mechanism is also regarded as
too weak.
¢ Deployment dependence occurs when
the deployment of a package depends on
the prior deployment of some other
package. This is typically only the case
when SAFARI related packages are

Fithen, et al.

deployed.

e Operational dependence occurs when a
package depends on the concurrent
deployment of another package in order
be able to function. The deployment
mechanism must be able to follow these
dependencies and either automatically
add missing dependencies or produce
diagnostics regarding missing dependen-
cies.

Construction dependence occurs when
a collection depends on the prior deploy-
ment of another package in order to be
built (to produce a package). This is
mostly a documentation issue for collec-
tion and cluster managers, but plays a
role in version and revision tracking.
Once in a while it happens that it is nec-
essary to restore a destroyed collection
and rebuild it for some reason. To be
able to get back to a known state, one
must know not only what the state of the
collection in question was at that point in
history, but one must also know the state
of all of the packages that the collection
depended on during the build process.
We have several times found ourselves
in the state where we knew for certain
that a given package was built from a
particular set of sources, but we could
not reconstruct what packages that col-
lection depended on during its build pro-
cess. This typically happens when the
build process of one collection uses a
1ib*. a file provided by another pack-
age.

e Mutual exclusion occurs when the
deployment of one package or image
degrades or destroys the ability of
another concurrently deployed package
or image. The deployment mechanism
must be able to detect and avoid this sit-
uation.

Experimentation with representation of rela-
tionships has been underway without a clear
resolution for almost a year. This turns out to be
a hard problem.

db/roles. The roles configuration file
sets the policy regarding who can do what. It
defines a set of roles using UNIX or AFS
groups. That is, rather than using UNIX or AFS
groups throughout SAFARI to authorize opera-
tions, SAFARI uses a set of roles for authoriza-
tion and determines who is in each role once at
program initialization time. This allows a site to
define the set of UNIX or AFS groups they
wish to use to authorize SAFARI operations.
There are no predefined roles. A site may
define as many or as few roles as their

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

organizational structure justifies. For each
SAFARI operation, the roles policy defines
which roles can perform that operation. Each
operation also defines who (in the form of an
email address) should be notified about each
operation.

e db/structure. The structure config-
uration files sets the experimental policy
regarding file system structure for release vali-
dation. To reduce the possibility of totally
invalid file system structures being deployed,
even in testing, and destroying a machine, the
release process must be expanded to perform a
variety of conformance tests on release candi-
dates. For example, if some package acciden-
tally provided a file named /usr/1ib most
hosts would cease to function shortly after that
file was deployed. The structure policy is the
first of several policies aimed at release confor-
mance tests.

Database Meta-Information

e db/databases. The databases config-
uration file specifies the actual location of all of
the above databases. The paths shown above
are the ones defined in the CERT SAFARI
repository, but any of these databases can be
renamed or relocated. In the current implemen-
tation, we don’t recommend this as it has not
been tested. It is possible that some lingering
path names may be embedded in code some-
where.

e db/hashes. The hashes configuration file
contains the official MDS5 hashes of every
database defined in db/database as of the
end of the last database update transaction.
These hashes are used as a high performance
mechanism for database consistency checking
by the deployment mechanism (since it cannot
actually lock the database).

Programs

SAFARI includes a number of programs and
scripts. Some are provided for repository administra-
tors, some for collection managers, and others for host
managers. Even though end-users should be com-
pletely unaware of the existence of SAFARI, one tool
is provided that may be useful to them.
safari

The safari command is the principle tool for
repository administrators. Nearly all of its functions
are aimed at administration and maintenance of a
SAFARI repository. The safari command presents a
simple object-oriented view of the repository. The
repository is divided into several classes of objects
and a set of operations that apply to each class. Each
class and its applicable operations are presented
below.

1998 LISA XII — December 6-11, 1998 — Boston, MA

Infrastructure: A Prerequisite for Effective Security

Creation

safari {collection | cluster} \
create name \
-manager principal... \

[-quota blocks]

This subcommand creates a new SU, either a col-
lection or a cluster, assigning it a unique new name
and one or more principals as managers for the SU.
Assignment of multiple managers is not discouraged,
but neither is it facilitated in any way by SAFARI.
Multiple managers must coordinate their activities
regarding the SU. It is common to assign two man-
agers for each SU, one as primary and one as backup.
The primary manager has the responsibility to keep
the backup manager informed enough so that the
backup manager can act in absence of the primary
manager (usually this means fixing a bug and releas-
ing a new DSU).

safari {package | image} \
create name \
-platform name \
[-revision integer] \
[-quota blocks]

This subcommand creates a new DSU, either a
package or an image, which is targeted at a particular
platform. When managing multiple platforms at differ-
ent times, it is sometimes impossible for safari to cor-
rectly choose a revision number since safari cannot
know what the manager intends the DSU to contain.
Therefore, an explicit revision number can be speci-
fied.

Examination

safari {collection | cluster} \
list regexp

This subcommand lists SU’s by matching a (PERL)
regular expression against the names of all known
SU’s.
safari {package | image} \

list [name]

[-platform name] \

[-status tag] [-managers] \

[-sizes]
This subcommand lists DSU’s by matching a regular
expression against the names of all known DSU’s, by
target platform, by status, or some combination of the
above.

Preparation for Release
safari {package | image} \
prepare name
-platform name

This subcommand produces the DSU’s
depot/MANIFEST file, listing the complete con-
tents of the DSU. Cryptographic hashes (MD5) are
used to describe the contents of all files. The manifest
does not describe itself. The manifest is constructed in

21

Infrastructure: A Prerequisite for Effective Security

such a way as to include the intended modes and own-
erships of files and directories, rather than their cur-
rent modes and ownerships. The manifest is used in
the release process (below) to actually change the
modes and ownerships before releasing the DSU. This
allows non-privileged managers to ask for modes and
ownerships they would not normally be allowed to set
themselves.

safari {package | image} \
seal name \
-platform name \
[-user pgpuser]

This subcommand produces the DSU’s
depot/AUTHORITY file, which is a certificate of
authenticity for the DSU. The certificate includes a
cryptographic hash (MD5) of the manifest, as well as
other meta-information, and is digitally signed. In this
way, the entire DSU is sealed under the authority of
the manager and cannot be altered from the configura-
tion specified in the manifest file without detection.
All prospective users of the DSU can see who certified
the DSU’s contents and decide for themselves what
level of trust to accord it.

Validation
safari {package | image} \
check name

-platform name \
[-revision integer]

This subcommand validates the content of a
DSU. It checks the digital signature on the DSU cer-
tificate (depot/AUTHORITY), uses the certificate
to check the contents of the manifest (depot/MAN-
IFEST), and uses the manifest to check the contents
of the DSU. All checks must match exactly for valida-
tion to succeed. Any deviation is reported.

Release
safari {package | image} \
release name \

-platform name \
-status tag

This subcommand transforms an unreleased
DSU into its released form, mounts the AFS volume
in its correct location, and updates the repository
database regarding the status change for that DSU.
The transformation process includes validation of the
contents of the DSU (except for modes and owner-
ships), alteration of modes and ownerships to match
the manifest, and alteration of AFS ACL’s according
to the protection policy in effect for the DSU (global
policy + DSU policy).

It is expected that the status assigned to a newly
released DSU represents semantics of minimal trust.
For example, we use status ‘alpha’ to indicate that no
one except the SU manager should trust the DSU’s
contents. This prevents accidental deployment of
newly released DSU’s onto production quality hosts.

22

Fithen, et al.

Lifecycle Management
safari {package | image} \
setstatus name
-platform name \
-revision integer \
-status tag

This subcommand changes the status label asso-
ciated with an already released DSU. This is the
mechanism that a manager uses to signal his intent
that others can begin to trust the contents of the DSU.
Multiple levels of trust may be appropriate at a given
site. In our repository, we use status beta to mean that
a DSU can be deployed onto certain hosts which have
been designated for end user functional testing. This
deployment automatically occurs, announcements are
sent out, and users try out the newly released software
on the beta hosts. After the manager receives feed-
back, he can decide to promote the DSU into full pro-
duction use (status gamma in our repository) or out of
service (status deprecated in our repository) to be
replaced by a new revision.

Repository Management

safari repository lock
safari repository unlock

These subcommand can be used to manage the
reservation of the repository database for extended
periods of time. The typical use of this function is to
perform several related actions that should be seen by
repository users all together, such as releasing multiple
interdependent packages at one time. If a host in the
process of being constructed were to select some, but
not all of the interdependent set of packages for
deployment, a variety of inconsistency-related failures
may occur (e.g., shared library skew).

safari repository check

This subcommand is a maintenance function,
typically run regularly by a SAFARI administrator to
ensure that the repository database is syntactically cor-
rect and that the database actually reflects what is
installed in the repository, and vice versa. In addition
to detecting several different kinds of inconsistencies,
this subcommand can propose (for certain kinds of
inconsistencies) corrective actions to be taken by the
administrator. Inconsistencies between the repository
and the repository database almost always occur as a
result of AFS administrative failures of some sort, lost
AFS volumes being the most common.

safari repository addkey
safari repository listkey

These subcommands are used to manage PGP
public keys stored in the repository database. Every
administrator and manager must have a PGP public
key stored in the database.

safari repository showpolicy

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

This subcommand can be used to print human
readable forms of a variety of repository policies
(described above).

of

The pf command is designed to help the collec-
tion manager build binaries for multiple platforms
from one set of sources with minimal impact on uni-
platform build procedures. The pf command is an
abbreviation for platform; it is so short because it is
used often enough that brevity is valuable. The first
and foremost task of pfis to determine the name of the
target platform for the build process. If pf'is invoked
with no arguments, it simply prints the target platform
name on stdout. This is sometimes useful in scripts
and makefiles. Since it requires the platform.map
file in the collection’s or cluster’s META area to deter-
mine the build target platform from the actual platform
of the build host, it does not function outside of a col-
lection or cluster.

Pf provides multi-platform build assistance in
two ways: platform-specific parallel trees of symbolic
links and shell command wrapping. The parallel trees
of symbolic links are managed by two command line
options: - -update and --clean, typically used
together.

The pf command also provides multi-platform
installation assistance hiding the installation location
from the collection manager. This is accomplished via
the - -install and - - purge options.

The basic syntax of the pf command is:

pf [--clean] [--update] \
[--purge] [--install] \
[shell-command [shell-args] . . .]

The --clean and --update options are con-
cerned with maintaining the platform specific trees of
symbolic links in the cluster’s or collection’s OBJ
area.

e --cleanor -c: The - -clean option speci-
fies that any dangling symbolic links in the
symbolic links tree are to be removed. Any
empty directories are also removed.

e --update or -u: The --update option
specifies that before executing any shell com-
mand specified (see below), the platform spe-
cific tree of symbolic links located in the col-
lection’s or cluster’s OBJ tree should be
updated to match the current directory and all
of its subdirectories. Any missing or incorrect
symbolic links in the symbolic link tree are cor-
rected to point to their corresponding file in the
build tree. Any missing directories are also
created.

When --clean and - -update are both specified,
cleaning occurs before updating.

The --purge and --install options are
concerned with constructing the platform specific

1998 LISA XII — December 6-11, 1998 — Boston, MA

Infrastructure: A Prerequisite for Effective Security

packages or images mounted in the cluster’s or collec-
tion’s DEST area.

e --purge or -P: The - -purge option sim-
ply removes all contents of the platform spe-
cific package or image mounted in the DEST
area. This option is almost always used in com-
bination with the --install option to
accomplish a completely clean installation into
a package or image.

e --install or -i: The - -install option
simply defines the DESTDIR environment
variable to the root of the platform specific tar-
get package or image mounted in the DEST
area. Many makefiles already expect a variable
defined in this manner, making its use com-
pletely transparent. For those that don’t use
DESTDIR, trivial changes in the makefiles are
required to support this convention. For exam-
ple, in software constructed using a recent ver-
sion of autoconf [19], one can define the prefix
to support DESTDIR in the following way:

./configure \
--prefix="$(DESTDIR) /usr/whatever’

The pf command is also used to execute every
command in the build procedure. After processing the
above options, if there is a shell command and
optional arguments remaining on the command line, pf
will change directory to the parallel directory in the
symbolic link tree in the OBJ area and the execute the
specified command via execve(2) [20]. This is easier
to see by example. The following example assumes a
normal autoconf managed piece of software named
fsf.org/something/1.0:

$ cd SREPO_ROOT/collection/fsf.org/\

something/1.0/build/something-1.0

$ pf -cu ./configure \
--prefix="$(DESTDIR) /usr/local’

$ pf gmake

$ pf -Pi gmake install

Using this exact same set of commands, one can
build this collection for every platform one wishes
(assuming the software was written to support the tar-
get platforms). As one can see, this is a minimal alter-
ation from the normal uni-platform build procedure.

St

The f (short for filetree) command is also aimed
at simplifying the life of the collection manager. While
building Internet-available software from source is
desirable, little commercial software is delivered in
source form. The ft command is designed to help in
dealing with software delivered in binary-only form.
In particular, it is helpful when such software comes
with an obscure installation procedure that is difficult
or impossible to coerce into installing properly into
the DEST area of a collection.

The theory of operation of the ft command is
simple. First, record the state of a given host’s filesys-
tems. Second, install the software in question on that

23

Infrastructure: A Prerequisite for Effective Security

host using its documented installation procedure.
Third, compare the before and after installation states
of the host’s filesystems and create a package that
when deployed via SAFARI will result in the same
changes to the host that the software’s installation pro-
cedure made.

parcel

The parcel command is responsible for deploy-
ment of DSU’s onto individual hosts. A special
SAFARI configuration cluster is created for each host.
The manager of a host cluster is the host manager. A
host cluster defines the complete configuration of the
host. It includes any files that uniquely identify the
host (e.g., /etc/hostname.le0 on Solaris) as
well as a software configuration that specifies what
DSU’s are to be deployed onto the host.

The parcel command uses the list of DSU’s to
construct a virtual configuration of the host and then
takes whatever steps are necessary to make the host
comply with that configuration. Parcel supports a
variety of mechanisms for abstractly selecting DSU’s
without having to precisely name each one. Examples
include, selection by platform, by status, by revision
number, by package family, and by image family. The
goal of these mechanisms is to maximize the lifetime
of a particular configuration specification. This means
that once a host manager has expressed his intentions
for the host, parcel will automatically keep that host
synchronized with the DSU’s in the repository.

For example, once a host manager has said “I
want the latest revision of GNU Emacs that is certified
as production quality,” parcel will automatically make
sure that when a new revision of GNU Emacs appears
with the correct status, it will be deployed to the host,
without the host manager having to say that he wants
the new revision.

The host image from the host cluster is not really
special in any way, other than it being the first image
that parcel processes.

Parcel also offers the capability to choose
whether DSU files to be deployed into host directories
are copied locally or referenced in the repository via
symbolic links. The ability to reference files in DSU’s
in the repository allows the host manager to effec-
tively multiply the size of his local disk to accommo-
date host configurations that would normally require
more disk space that is available. This can also be a
very powerful tool for SU managers (who are typi-
cally host managers for their own desktop worksta-
tions). Deploying an alpha status DSU for testing via
symbolic links is extremely fast, and reduces the
develop-deploy-test cycle time. Parcel can even be
instructed to deploy an unreleased DSU for pre-alpha
testing by the SU manager.

Parcel is designed to be able to build a host from
an effectively empty disk. For example, when we
build Solaris hosts, we boot the host via the network,

24

Fithen, et al.

format, partition, and mount the local disk, and then
run parcel to install the software. Everything installed
on the host comes from the repository. This means that
recovery from catastrophic failure is the same as ini-
tial installation.

Parcel can be run as often as desired to update a
host from its repository. Since extensive changes to
the host may result, it is typically wise to run parcel
only at shutdown or boot time. Parcel can also simu-
late an update so that the host manager can decide if
an update is required and if he wishes to risk updating
an operating host.

Cooperating Repositories

We have thus far engaged in considerable specu-
lation regarding the practicality of multiple cooperat-
ing repositories. These speculations include:

¢ Demonstrating to vendors the value of a canon-
ical distribution mechanism.

e Sharing of technical talent between repositories
(e.g., operating systems are hard to put into a
repository, but only one repository needs to
contribute an operating system; then all other
repositories can use it).

¢ Open source software can be packaged once by
its developers or delegated builders and every-
one can choose to use it or not based on their
trust of the developers or builders.

¢ Local repositories can be used to cache DSU’s
from around the world, making a network of
high performance deployment servers.

We don’t propose that SAFARI is the canonical
deployment vehicle. We only seek to show the bene-
fits from having such a world-wide mechanism.

Availability

The CERT Coordination Center offers a web site,
http://www.cert.org/safari, that describes the project in
more detail and provides access to the available soft-
ware components.

Future Work

Future work includes:

e Canonical seekable transportable format for
packages and images.

¢ Managing dependencies between and among
collections, packages, clusters, and images.

¢ Better cryptographic and message digest tech-
nology.

¢ General purpose configuration file delta proces-
sor, a la patch [14].

¢ Local file system access control lists support.

¢ Release conformance validation (structure and
protections).

¢ Client-server administration.

e Taking snapshots of build and OBJ areas at
package/image release time.

¢ Support for multiple collaborating repositories.

1998 LISA XII — December 6-11, 1998 — Boston, MA

Fithen, et al.

¢ Support for OSF’s DCE/DFS.
e Supporting Windows NT 5 and CIFS, both as a
server, to house a repository, and as a client.

Acknowledgments

SAFARI is built upon ideas that emerged from
eight years of work at Carnegie Mellon University and
the University of Pittsburgh. Between those two insti-
tutions, over 1,000 hosts are being managed by the
precursors of SAFARI. The number of people who
have significantly contributed to this work, directly
and indirectly, is simply too great to enumerate here.

Author Information

Bill Fithen is a Senior Member of the Technical
Staff at the Software Engineering Institute, currently
working in the Networked Survivable Systems pro-
gram which operates the CERT Coordination Center.
Bill is the principal architect for several development
projects, including SAFARI. Bill previously worked
as the Manager of the University Data Network at the
University of Pittsburgh. Bill earned a BS in Applied
Physics and a MS in Computer Science, both from
Louisiana Tech University. = Reach him at
<wlf@cert.org>.

Steve Kalinowski is a Member of the Technical
Staff at the Software Engineering Institute, currently
working in the Networked Survivable Systems pro-
gram which operates the CERT Coordination Center.
Steve is the leader of the team providing computing
infrastructure services within the program. Steve pre-
viously worked on distributed computing environ-
ments as the UNIX Services Coordinator at the Uni-
versity of Pittsburgh, on the Electra electronics trou-
bleshooting product at Applied Diagnostics, and on
computer-integrated manufacturing systems at Cim-
flex Teknowledge, all in Pittsburgh, Pennsylvania,
USA. Steve earned a BS in Computer Science from
the University of Pittsburgh. Reach him at
<ski@cert.org>.

Jeff Carpenter is a Member of the Technical Staff
at the Software Engineering Institute, currently work-
ing in the Networked Survivable Systems program
which operates the CERT Coordination Center. Jeff
spends most of his time leading a team that provides
technical assistance to Internet sites that have com-
puter security issues or have experienced a security
compromise. Before joining CERT, Jeff was a systems
analyst at the University of Pittsburgh working in the
computer center designing the university’s distributed
UNIX environment. Jeff earned a BS in Computer
Science from the University of Pittsburgh. Reach him
at <jjc@cert.org>.

Jed Pickel is a Member of the Technical Staff at
the Software Engineering Institute, currently working
in the Networked Survivable Systems program which
operates the CERT Coordination Center. Jed is a mem-
ber of the team that provides technical assistance to

1998 LISA XII — December 6-11, 1998 — Boston, MA

Infrastructure: A Prerequisite for Effective Security

Internet sites that have experienced a security compro-
mise and is also a member of the team that coordinates
responses, including CERT Advisories, to vulnerabil-
ity reports. Jed earned a BS in Electrical Engineering
from the University of California, San Diego. Reach
him at <jpickel@cert.org>.

References

[1] Sun Microsystems, Inc. 1997. Application Pack-
aging Developer’s Guide [online]. http://docs.
sun.com/ab2/coll.45.4/PACKINSTALL/
@ADb2TocView .

[2] UNIX Systems Laboratories, Inc. 1990. UNIX
system V release 4 Programmer’s Guide: System
Services and Application Packaging Tools.
Englewood Cliffs, NJ: UNIX Press, Prentice-
Hall.

[3] Bailey, Edward. 1997. Maximum RPM [online].
http://www.rpm.org/maximum-rpm.ps.gz .

[4] IBM. 1998. AIX version 4.3 general program-
ming concept: packaging software for installa-
tion] [online]. http://www.rs6000.ibm.com/doc
link/en_US/a_doc_lib/aixprggd/genprogc/
pkging sw4 install.htm.

[5] Colyer, W. and Wong, W. 1992. Depot: A Tool
For Managing Software environments [online].
http://andrew2.andrew.cmu.edu/depot/depot-
lisaVI-paper.html.

[6] Fithen, B. 1995. The Image/Collection Environ-
ment For Distributed Multi-platform Software
Development and System Configuration Man-
agement: A Tool for Managing Software Envi-
ronments [online]. http://www.pitt.edu/HOME
/Org/CIS-SN/SDR/public/ICE/index.html .

[7] Mui, L. and Pearce, E. 1993. Volume 8 — X Win-
dow System Administrator’s Guide. Cambridge,
MA: O’Reilly & Associates, pp. 196-197.

[8] Transarc Corporation. 1998. The AFS file System
in Distributed Computing Environments [online].
http://www.transarc.com/dfs/public/www/htdocs/
.hosts/external/Product/EFS/AFS/afsoverview.html .

[9] Seagate Software. 1998. WinINSTALL [online].
http://www.seagatesoftware.com/wininstall .

[10] Garfinkel, S. 1994. PGP: Pretty Good Privacy.
Cambridge, MA: O’Reilly & Associates.

[11] Rivest, R. 1992. RFC 1321: The MD5 Message-
digest Algorithm [online]. http://info.internet.
isi.edu/in-notes/rfc/files/rfc1321.txt.

[12] Tichy, W. F. 1985. RCS: A System for Version
Control. Software Practice and Experience. vol.
15, no. 7, pp. 637-654.

[13] Silverberg, 1. 1992. Source File Management
With SCCS. Prentice-Hall ECS Professional.

[14] Wall, L., et al. 1997. ftp://prep.ai.mit.edu/pub/
gnu/patch-2.5 tar.gz.

[15] Johnson, M. K. 1997. Linux Information Sheet:
Introduction to linux [online]. http://sunsite.unc.
eduw/LDP/HOWTO/INFO-SHEET-1.html .

25

Infrastructure: A Prerequisite for Effective Security

[16] Colyer, W. and Wong, W. 1992. Depot: A Tool
for Managing Sofiware Environments [online].
http://andrew?2.andrew.cmu.edu/depot/depot-
lisaVI-paper.html#HDR6 .

[17] Internet Engineering Task Force & Braden, R.,
ed. 1989. RFC 1123: Requirements for Internet
Hosts — Application and Support [online]. http:

//info.internet.isi.edu/in-notes/rfc/files/rfc1123.txt .

[18] Josey, A., ed., 1997. Go Solo 2: The Authorized
Guide to Version 2 of the Single UNIX Specifica-
tion. Englewood Clifs, NJ: UNIX Press, Pren-
tice-Hall, p. 525.

[19] Free Software Foundation. 1996. ftp://prep.ai.
mit.edu/pub/gnu/autoconf-2.12 tar.gz.

[20] Lewine, D. 1991. POSIX Programmer’s Guide.
Cambridge, MA: O’Reilly and Associates. pp.
262-263.

[21] Defert, P., et al. 1990. ““Automated Management
of an Heterogeneous Distributed Production
Environment.” Proceedings of LISA.

[22] Manheimer, K., et al. 1990. “The Depot: A
Framework for Sharing Software Installation
Across Organizational and UNIX Platform
Boundaries.” Proceedings of LISA.

26

Fithen, et al.

1998 LISA XII — December 6-11, 1998 — Boston, MA

