
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

The Evolution of the CMD Computing Environment:
A Case Study in Rapid Growth

Lloyd Cha, Chris Motta, Syed Babar, and Mukul Agarwa, Advanced Micro Devices, Inc.
Jack Ma and Waseem Shaikh, Taos Mountain, Inc.

Istvan Marko, Volt Services Group

The Evolution of the CMD
Computing Environment: A Case

Study in Rapid Growth
Lloyd Cha, Chris Motta, Syed Babar, and Mukul Agarwal – Advanced Micro Devices, Inc.

Jack Ma and Waseem Shaikh – Taos Mountain, Inc.
Istvan Marko – Volt Services Group

ABSTRACT

Rapid growth of a computing environment presents a recurring theme of running out of
resources. Meeting the challenges of building and maintaining such a system requires adapting
to the ever changing needs brought on by rampant expansion. This paper discusses the evolution
of our computer network from its origins in the startup company NexGen, Inc. to the current
AMD California Microprocessor Division (CMD) network that we support today. We provide
highlights of some of the problems we have encountered along the way, some of which were
solved efficiently and others that provided lessons to be learned.

The reengineering of computer networks and system environments have been the subject
of numerous papers including [Harrison92, Evard94b, Limoncelli97]. Like the others, we
discuss topics related to modernization of our systems and the implementation of new
technologies. However, our focus here is on the problems caused by rapid growth. With
increasing requirements for more compute power and the availability of less expensive and
more powerful computers, we believe that other environments are poised for rapid growth such
as ours. We hope that lessons learned from our experience will better prepare other system
administrators in similar situations.

Introduction

The California Microprocessor Division of AMD
was formed from the merger of the Battery Powered
Processors group of AMD and the newly acquired
NexGen, Inc. at the end of 1995. The NexGen com-
puting environment circa early 1995 was based pri-
marily on Solbourne workstations and Thicknet
(10base5) cabling. Over the past three years we have
grown and modernized our network into our current
network of nearly 1000 nodes. We have added over
three terabytes of disk space and added over 500
UNIX compute servers. Our network has been through
two major revolutions, incorporating technologies
such as 10base5, 10baseT, ATM, CDDI, FDDI,
100baseT, and Fast EtherChannel at various points
along the way. Our passwd file has grown from 433
entries at the beginning of 1996 to over 700 entries
today. That number may be small by standards set by
today’s internet service providers (ISPs); however, the
resource requirements of a typical user in our environ-
ment are far greater.

The account that follows is roughly in chrono-
logical order. We provide the reader with extended
discussions on topics related to the growing pains of
our compute environment.

Out of Money

Startup companies frequently have severe spend-
ing limitations, and NexGen prior to the merger with
AMD was no exception. Spending authorization was
handled by upper management, which had little inter-
est or experience in dealing with large scale UNIX
system environments. The early systems administra-
tion team had little contact with upper management,
and was hard pressed to get approval to spend money
for changes to the environment or downtime to make
much needed adjustments to the network or systems.

Rectifying this situation required gathering copi-
ous amounts of information on systems issues, coming
up with solutions for the problems discovered, and
quantifying the loss and potential loss of revenue or
schedule delays to the business as a whole. To do this
analysis properly, we recruited finance and engineer-
ing management into the project, and accompanied
middle managers to budget meetings to answer ques-
tions and to reinforce the business case for system
improvements. The increased contact between the sys-
tems administration team and upper management led
to a perception of the team as business aware, and
developed a trust relationship that eased future project
approval.

However, the available capital was still in short
supply. Verification of x86-based microprocessors
involves many many cycles of simulation to ensure

1998 LISA XII – December 6-11, 1998 – Boston, MA 271

The Evolution of the CMD Computing Environment . . . Cha, et al.

complete functionality and compatibility. The NexGen
engineers were hungry for as many CPU cycles as we
could provide. Our solution was to build up a farm of
machines based on NexGen’s own Nx586 CPU run-
ning Linux. The CPUs were obtainable with very low
overhead and the peripheral hardware required was
inexpensive. Demonstrating a commercial large-scale
Linux installation also provided public relations bene-
fits.

The Linux solution turned out to be short-lived.
With the introduction of the UltraSparc processor, Sun
was able to tilt the price-performance ratio back in
their favor. In addition, the Sparc based processors
were able to run almost all of our preferred CAD
applications, while the Linux based machines were
capable of running only a limited number of simula-
tion programs. Fortunately, the merger of AMD and
NexGen brought an immediate influx of cash which
was used to purchase new machines rapidly in large
quantities.

Recent developments in the microprocessor mar-
ket, including the contributions of our own division,
are swinging the price/performance pendulum back in
the other direction. Our sister division in Austin, TX
currently runs a compute farm based on AMD-K6
CPUs running Solaris x86 [AMD97]. Whether our
compute farm of x86 computers was an idea ahead of
its time is a subject still open to debate and is beyond
the scope of this paper.

Out of Control

The early NexGen computing environment suf-
fered from inexperienced system administration and a
lack of centralized control. There were a dozen differ-
ent NIS domains, partially because of an intention to
separate groups of users, but also as a result of a mis-
understanding of how NIS works. Since most users
ended up having to have access to almost all of the
domains, a conglomeration of scripts was used to
manually synchronize the various NIS domains from
one master domain. One of our first tasks was to
merge all the domains into one.

During this period, NexGen also lacked a depart-
ment responsible for deployment of CAD applications
software. Such tasks were left to the whims of the
individual design groups. Design engineers were
forced to sacrifice valuable time installing vendor soft-
ware to varying degrees of success. Applications were
often installed in user home directories. Poorly writ-
ten .cshrc files circulated among different design
groups, the use of incorrect versions of tools was epi-
demic, and the presence of multiple copies of identical
software was fairly common.

The implementation of standard ‘‘setup scripts’’
for CAD applications was key to improving this situa-
tion. We devised a scheme in which a single setup
script would be used for each vendor’s tool suite. The
setup script would handle any path and environment

variable configuration needed. While crude, these
scripts achieved our immediate goal of having central-
ized control over application use.

The users’ .cshrc files source the setup scripts for
the desired tools. An example of such a script is given
in Figure1a. A snippet of a user’s .cshrc using this
script is given in Figure1b. /usr/local/bin/get_arch is a
short script which returns the operating system being
used – sunos, solaris, hp9, hp10, or linux in our exam-
ple. The optional amdpostpath and amdprepath vari-
ables are used to eliminate excessive path rehashes
when multiple setup files are used. If these variables
are set, the user’s .cshrc is expected to use them to
build the appropriate path variable after all the desired
setup scripts have been sourced. If amdpostpath and
amdprepath are not set, the setup scripts will append
or prepend directly to the path variable.

Some general guidelines governed the use and
creation of our setup scripts:

• path and environment variables that are not
vendor specific will be appended to and never
overwritten.

• no assumptions should be made with regard to
the order in which the setup scripts are used by
users.

• the sourcing of multiple setup scripts belonging
to one vendor (e.g., setup_cadvendor_1.0 and
setup_cadvendor_1.1) is not supported. Some
checks are put in to prevent such misuse.

• the setup scripts are named by vendor and ver-
sion number (e.g., setup_cadvendor_1.0). A
symbolic link will be provided to the default
version (setup_cadvendor → setup_cadven-
dor_1.0).

We could now ensure that obsolete and duplicate
installations could be eliminated without leaving users
in limbo. More importantly, it facilitated moves and
changes to the application trees without requiring
users to alter their own login files. The setup scripts
allowed centralized setups for vendor tools while still
allowing users freedom to customize their individual
login environments. Once users had been converted to
the setup script paradigm, we eliminated redundant
installation of tools and performed proper reinstalla-
tion of haphazardly installed software.

There are several known limitations of our
method. We currently only support csh based shells.
There was very little demand in our user community
for anything other than csh or tcsh, so we haven’t been
motivated to spend much effort in supporting other
shells. Changes to setup scripts or tool versions are
only reflected when the user’s .cshrc file is executed.
The login process is also relatively slow even with
amdpostpath and amdprepath variables set. We have
received a few complaints about this, but none
demanding enough to make improvements to it a pri-
ority. In most cases, our users were so relieved to have
a simple and relatively foolproof tool setup environ-

272 1998 LISA XII – December 6-11, 1998 – Boston, MA

Cha, et al. The Evolution of the CMD Computing Environment . . .

$Id: k6system.figures,v 1.4 1998/09/28 21:02:00 lccha Exp $
setup_cadvendor_1.0 -
A setup file for cadvendor

Check for conflicts:
if ($?SETUP_CADVENDOR) then
if ($?prompt) then
echo "WARNING: setup_cadvendor_1.0 conflicts with"
echo "setup_cadvendor_$SETUP_CADVENDOR already sourced in this shell"

endif
endif

Find architecture of platform
if (-x /usr/local/bin/get_arch) then

set ARCH_FOR_SETUP = ‘/usr/local/bin/get_arch‘
else

set ARCH_FOR_SETUP = "unknown"
endif

switch ($ARCH_FOR_SETUP)
case ’sunos’:

if ($?amdpostpath) then
set amdpostpath = ($amdpostpath /tools/cadvendor/1.0/bin)

else
set path = ($path /tools/cadvendor/1.0/bin)

endif
breaksw

case ’solaris’:
if ($?amdpostpath) then

set amdpostpath = ($amdpostpath /tools/cadvendor/1.0/bin)
else

set path = ($path /tools/cadvendor/1.0/bin)
endif
breaksw

case ’hpux9’:
case ’hpux10’:

if ($?amdpostpath) then
set amdpostpath = ($amdpostpath /tools/cadvendor/1.0/bin)

else
set path = ($path /tools/cadvendor/1.0/bin)

endif
breaksw

case ’linux’:
exit
breaksw

default:
exit
breaksw

endsw

Setup version variable
setenv SETUP_CADVENDOR 1.0

Setup license files
if ($?LM_LICENSE_FILE) then

if ("$LM_LICENSE_FILE" !˜ *"1700@key"*) then
setenv LM_LICENSE_FILE \

${LM_LICENSE_FILE}:1700@keya,1700@keyb,1700@keyc
endif

else
setenv LM_LICENSE_FILE 1700@keya,1700@keyb,1700@keyc

endif

Figure 1a: Sample setup file for fictitious cadvendor (software version 1.0).

1998 LISA XII – December 6-11, 1998 – Boston, MA 273

The Evolution of the CMD Computing Environment . . . Cha, et al.

ment that they were willing to overlook these short-
comings.

We had also considered using wrapper scripts
written in C-shell or Perl. In practice, we found that
they take more effort to maintain when new versions
of software are installed. Many of our CAD packages
consist of numerous binaries which would all require
individual wrappers or a link to a common wrapper.
The composition of executables in the package can
change frequently from version to version, forcing the
system administrator installing the software to care-
fully inspect each release to ensure that all necessary
wrappers are in place.

set amdpostpath
set amdprepath
foreach vendor (cadvendor mentor cadence avanti)

if (-e /usr/local/setup/setup_$vendor) then
source /usr/local/setup/setup_$vendor

else
if ($?prompt) then

echo "WARNING: setup_$vendor does not exist ... skipping"
endif

endif
end
set path=($amdprepath $path $amdpostpath)

Figure 1b: Snippet of code from user’s .cshrc .

Some alternative methods have been presented in
[Rath94], [Evard94a], and [Furlani91]. We may look
at implementing some of the ideas presented in those
papers in the future. However, feedback from our
users has indicated that our method is currently ade-
quate and therefore improvements have not been a
high priority.

Out of Disk Space

Prior to 1995, NexGen’s data was distributed on
a variety of Sun, Solbourne, and HP700 servers which
were all cross mounted via NFS hard mounts to each
other. This type of design results in a network with
multiple points of failure, each of which can affect
performance and availability of the entire network. In
addition, backup of many small servers tends to be
cumbersome, requiring backups running over the net-
work or the installation of numerous local tape drives.

Early 1995 marked the arrival of NexGen’s first
large centralized fileserver, an Auspex NS5000.
Bristling with a dozen network interfaces, it was able
to provide reliable file service to all machines on the
network without requiring any network router hops.
Data from the various ‘‘servers’’ was migrated to the
central fileserver and network reliability improved
accordingly.

We made some decisions in the implementation
of this first Auspex that we would later regret. We
opted to use automount ‘‘direct’’ maps rather than

indirect maps based on field reports from other Aus-
pex customers that a large quantity of indirect map
entries could cause overloads on the Auspex host pro-
cessor. This denied us the flexibility and scalability
that indirect maps would have given us. We limited
the partition size to 5GB per partition due to limita-
tions of the backup technology we were using at the
time, Exabyte 8500 8mm tape drives driven by shell
scripts using dump. Each partition contained a mixture
of project data, user home directories, applications,
and temporary data.

The mixture of different types of directories on
shared partitions combined with the relatively small
size of the partitions was a nightmare to administer.
Large amounts of scratch data often filled up partitions
causing critical design data to be lost or corrupted.
Large vendor application installations had to be awk-
wardly distributed among several disks.

The merger with AMD in 1996 brought a second
Auspex server to our network. This gave us an imme-
diate opportunity to revise our disk usage strategy
based on our previous experience. We opted to dedi-
cate individual partitions base on their use. We desig-
nated four general categories of disk use:

• Applications
• User home directories
• Project directories
• Critical project directories.

Partitions were individually sized based on
needs. Critical project directories were allocated a suf-
ficient amount of free buffer space to minimize disk
full situations. At the opposite extreme, application
directories were permitted to operate with very little
free space in order to minimize waste. Access to these
directories was provided by indirect maps. As of this
writing we have scaled this plan to eight fileservers,
each serving roughly 500 gigabytes of disk.

To monitor disk usage and to give advance warn-
ings of partitions getting full, we wrote a disk monitor-
ing script in Perl to be run hourly by cron. We started
by using a simple script that would parse the output of
the df command and generate e-mail when any disk

274 1998 LISA XII – December 6-11, 1998 – Boston, MA

Cha, et al. The Evolution of the CMD Computing Environment . . .

fell below a given threshold. This script did not keep
any historical data and therefore was not able to detect
the difference between a partition that was rapidly
nearing capacity from a partition that had inched
across the forbidden threshold. As a result, this script
generated too many nuisance e-mails which rendered
the important warnings useless.

To solve these problems, we wrote highly con-
figurable Perl script with the following features:

• Rules based notification – rules are expressed
in Perl syntax and are based on a comprehen-
sive set of conditions tracked by the script.

• Comprehensive set of conditions – rules for
notification can be based on any combination
of the following conditions:

• amount of free disk available
• percentage of free disk available
• time of day
• time of last notification
• various calendar data (month, day, year,

day of week)
• change in free disk available since last

notification
• change in free disk available since last

run of script
• History database – disk usage information and

a record of previous notification sent is kept.
This allows the frequency of warning messages
to be tuned to how quickly the disk is filling up.

Out of CPU

As product schedules became tighter and tighter,
our need for faster turnaround times on our simulation
and verification runs became even more critical. The
brute force solution of purchasing more computers
was a key part of our solution to this problem. But this
alone would not allow us to reach our goal. We needed
a way of using the available CPUs more efficiently.
We elected to use Platform Computing’s LSF (Load
Sharing Facility) product to help us reach our goal of
having every available CPU in use at all times.

Our model was based on having the most power-
ful servers located in the computer room. We deployed
less powerful (i.e., less expensive) workstations or x-
terminals on user desktops and encouraged users to
submit all jobs, including interactive ones, to the
server farm. Keeping the powerful machines off peo-
ple’s desktops helped prevent large jobs from causing
performance problems for interactive users and
reduced problems caused by ‘‘possessive’’ users that
would complain about any background jobs running
on their machines.

Our simulation jobs were typically CPU bound
with minimal disk and memory requirements. Achiev-
ing maximum CPU utilization was therefore the key
objective. We deployed LSF on nearly every available
machine in the division as well as many machines
‘‘borrowed’’ from outside our division in order to

maximize the number of CPUs available. Every addi-
tional CPU we were able to utilize contributed to an
improved time to market for the products being devel-
oped by our division.

LSF allows job scheduling based on several fac-
tors, including available memory, load average, and
the number of LSF jobs already running on the
machine. Server room machines were configured to
run one job per CPU at all times. Desktop machines
are configured to run batch jobs when the load average
and the idle time fall within specific parameters. The
actual thresholds used were tuned based on user feed-
back. This allowed us to get maximal use out of idle
desktop CPUs while keeping the console users happy.

Further details of our configuration beyond the
scope of the paper can be found in [Platform97].

Out of Space

Computers require space. Lots of computers
require lots of space. Setting up workstations lined up
on tables and ordinary utility shelves will work for
smaller installations, but for large installations there is
no substitute for well-constructed racks. For flexibil-
ity, we opted for an ‘‘open-shelf ’’ type of rack. We
used these racks to stack servers up to limits allowed
by local fire codes.

Our primary goals were high density, easy acces-
sibility, and reasonable cost. Since appearance was
only a minor consideration, and access to our server
room is well-controlled, we were uninterested in
enclosed cabinet style racks with doors and locks.
Instead, we opted for basic 23’’ wide racks with 11’’
deep ventilated shelves bolted to them front and back
for an effective depth of 22’’. This arrangement
proved to be highly versatile, accommodating PCs,
Sun Sparc machines from the Sparc20s through the
UltraServer2 machines, and HP 735s and J-class
servers. With most of the ‘‘pizza-box’’ style chassis,
we were able to stack up to 14 machines on 7 foot
high racks. Ladder racks across the top and bolts in the
floor provided stability in the event of earthquakes.

Out of Power

In August 1996, during a critical part of CMD’s
product development schedule, we began to notice a
high number of memory failures from our compute
server ranch. This led us to suspect some sort of envi-
ronmental problem. We first suspected that the
machines were not being adequately cooled and venti-
lated. After determining that this was not the cause of
our maladies, we then focused on possible fluctuations
in the power supply. Bingo! Our facilities department
discovered that the transformer outside of our building
was operating at about double the rated capacity.

The news from our utility company was not
good. We could either take eight hours of downtime to
get the transformer replaced immediately at the util-
ity’s expense, or risk blowing the transformer and

1998 LISA XII – December 6-11, 1998 – Boston, MA 275

The Evolution of the CMD Computing Environment . . . Cha, et al.

taking several days downtime to have it replaced at
our expense. We opted to plan an orderly Saturday
downtime to get the transformer replaced. In the
meantime, to lessen the chance of a catastrophic trans-
former failure, we shutdown any equipment that was
not absolutely necessary, including unused monitors,
obsolete yet functional computer systems, and hallway
lights. After about a week of working in a very dark
building, we spent an entire weekend powering
machines down and back up.

Moral of this story: check your power require-
ments carefully with your facilities department before
it’s too late. We had to pay the price with a hastily
planned shutdown at a critical point in the project, but
at least we were lucky enough to have not blown the
transformer unexpectedly. A related requirement is to
ensure that the cooling capacity of your air-condition-
ing system is sufficient to maintain server room tem-
perature even on the hottest summer days.

Figure 2a: Early network topology.

Out of Network Bandwidth

Reaching capacity limits of our network was a
persistent problem throughout our growth experience.
Fortunately, as our network grew, better and faster net-
work technology also became available. Our early net-
work of bridges, hubs, and routers with shared

segments and multiport collision domains gave way to
a completely switched network composed primarily of
Xylan Omniswitches by early 1996. In subsequent
years, we were able to migrate our backbone from
FDDI to ATM OC-3 technology, and our end stations
from 10baseT to CDDI and 100baseT interfaces.

The early network topology (circa 1995) is
shown in Figure 2a. Our first major upgrade was to
eliminate the hubs of shared ethernet segments and
replace them with ethernet switches, creating dual-port
collision domains (i.e., one machine per shared ether-
net). The resulting switch based network of Figure 2b
served us well for approximately three years. It suf-
fered somewhat from the irregular growth that charac-
terized that period of our expansion. We were several
times required to add hundreds of machines to our net-
work with no downtime permitted, which left little
leeway for major topological changes. As a result, the
loads across the various subnets were poorly balanced.

As the network evolved the main bottlenecks that
limited our scalability were the numerous routers and
the fileserver interfaces. Our new design attempted to
eliminate as many of the router bottlenecks as possi-
ble. In order to do this, we attempted to flatten the
network as much as possible. We had considered com-
pletely flattening the network into a single subnet, but

276 1998 LISA XII – December 6-11, 1998 – Boston, MA

Cha, et al. The Evolution of the CMD Computing Environment . . .

we were not able to come up with a suitable topology
that had sufficient bandwidth at the core of the net-
work without using unproven technology.

Providing enough throughput to the fileservers
would also prove to be a limiting factor in a com-
pletely flat network. We opted to use Cisco’s Fast
EtherChannel technology [Cisco97, Cisco98, Aus-
pex98] to combine several full-duplex 100bT links
into a single logical pipe or ‘‘channel.’’ Currently a
maximum of four links can be combined into one
channel, which limits each logical interface to the file-
server to 800Mbps. In order to provide the desired
throughput to each fileserver, we calculated a mini-
mum requirement of three 800Mbps channels per file-
server. This implied a minimum of three subnets to
avoid having the added complexity of managing a
server having multiple interfaces on any one subnet.

Figure 2b: Switch based network (1996).

The final design as implemented is shown in Fig-
ure 2c. The access (bottom) layer of switches provides
connections to all of the client compute and desktop
machines. The distribution (middle) layer consists of
four Cisco Catalyst 5500 switches, each with a route-
switch module to provide fast routing between sub-
nets. These switches are responsible for traffic
between the various access layer switches and all the
routing between the subnets of our local network. Two
Catalyst 5500 switches with router cards make up the
core (top) layer, which tie together the various distri-
bution layer switches. In addition, the core layer pro-
vides access to the routers that handle our external

network traffic. All interswitch links use Fast Ether-
Channel, and every switch is connected to at least two
devices in the layer above it for redundancy.

Our analysis indicated that roughly 85 percent of
our network traffic was NFS related. NFS traffic is
also particularly sensitive to latency, so special accom-
modations had to be made in the topology for the NFS
fileservers. In our design, the fileservers were con-
nected via 800Mbps Fast EtherChannel to the various
distribution layer switches to minimize the number of
switch hops required by the end stations. Each file-
server had an interface on each of the three subnets,
ensuring that every NFS client workstation had access
to a fileserver interface without needing a router hop.

Out of Time, Part I

Size does matter [Godzilla98]. Perhaps the most
valuable resource in any computing environment is the
system administrator’s time. Large scale computing
environments highlight the need for automation. As
we added more and more machines to our environ-
ment, it became obvious that many of the methods
currently in place were no longer acceptable. Manual
procedures had to be scripted or automated in some
way. Semi-automated procedures needed to be fully-
automated.

The sporadic growth of our network and the con-
stant flurry of moves, adds and changes within our
network resulted in a chaotic state of network wiring.
The task of tracing a machine to its network port often

1998 LISA XII – December 6-11, 1998 – Boston, MA 277

The Evolution of the CMD Computing Environment . . . Cha, et al.

required two people to trace through the rat’s nest of
cables. A week’s worth of cleaning up and untangling
cables was often undone in less than an hour by an
emergency machine relocation or cubicle swap. To
solve this problem we developed a package of scripts
that collected MAC address information from the arp
tables of our network switches and correlated those
addresses with the information from our ethers table to
accurately report where machines were connected in
the network.

Figure 2c: Current network.

We realized early into our bulk purchases of
workstations that we would benefit greatly by keeping
machine configurations as consistent as possible. The
idea was to reduce the ‘‘entropy’’ as described in
[Evard97] thereby minimizing debug time. We had
loaded our first twenty workstations by cloning hard
drives using a simple script that performed a dd from
one disk to another. Once the disk copy completed, a
post-install script was run to take care of the machine
specific configuration.

While this technique is one of the fastest meth-
ods of loading the operating systems software, it was
also expensive in administrator time. Pulling the hard-
ware off the rack, swapping in the master disk drive,
starting the cloning process, and then reinstalling the
system would take a minimum of 15 minutes even in
best case scenarios. Updating all the machines with
this method would theoretically require several man-

days and would probably require several weeks in
practice.

We now employ a variety of network loading
methods, Jumpstart [Sun98] for Solaris products, net-
dist [HP94] and Ignite-UX [HP98] for HP-UX 9.X
and 10.X respectively, and Kickstart for Linux. The
basic theory in each of these is similar:

1. Perform a diskless boot using bootpd or similar
protocol. A miniature version of the operating
system is loaded via tftp into the swap partition

2. Load the operating system onto the local disk
3. Run a customization script to load patches and

handle local configuration information.

With these methods, administrator time is now
reduced to assuming control of the machine and
rebooting with the designated command to force a
boot from the install server rather than the local disk.
The machine then takes care of the rest. Typical time
to load the operating system has increased to a few
hours, mostly dependent on the amount of operating
system patches involved. The penalty in load time is
far outweighed by the benefit of savings in administra-
tor time.

Out of Time, Part II

Our original server room configuration had key-
boards attached to every machine and a terminal that
was wheeled around on a cart to attach to the console

278 1998 LISA XII – December 6-11, 1998 – Boston, MA

Cha, et al. The Evolution of the CMD Computing Environment . . .

port of any machine that required attention. This was
both messy and inefficient.

We were able to solve this problem by using ter-
minal servers with ‘‘reverse telnet’’ capability. This
feature allows one to telnet from a remote host to any
of the terminal server’s serial ports on the terminal
server. Connecting the terminal server’s serial ports to
the serial console ports of the compute servers enables
one to telnet directly to the console of the machine.

The default configuration of terminal servers
provides access to the network from the server’s serial
ports. In our case, we used the terminal servers in the
opposite direction, to provide access to the serial ports
from the network. Consequently, many changes to the
default settings of the terminal servers were required
to achieve the desired functionality. We list below the
most significant changes we made to our Xyplex ter-
minal servers. Other manufacturers probably have
similar options:

• port access mode: We set the port access mode
to ‘‘remote’’ to allow connections to be initi-
ated from the network side. This setting also
instructs the terminal server not to output any
data to the serial port other than the data being
passed from the network port.

• default session mode/telnet binary session
mode: These should both be set as passall,
which directs the terminal server to pass the
data from the network port to the serial port
without attempting to process the data.

• telnet echo mode: This mode should be set to
‘‘character ’’ to prevent the terminal server from
buffering the data flow.

Our current setup uses twenty 40-port terminal
servers. In order to manage the terminal servers and
ensure consistent configuration we opted to boot the
terminal servers from a single network boot server.
This allows us to perform updates to the terminal
server configurations by simply loading a new image
file on the boot server and rebooting each of the termi-
nal servers. In addition, each terminal has a local flash
card that can be used for booting in the event that the
boot server is unavailable.

We developed a package of shell and Expect
scripts to map connections between the compute
server console ports and the terminal server serial
ports. Without these scripts, we would have been
forced to rely on manually generated documentation.
Given the frequency of server moves and changes in
our environment, this documentation would have soon
become outdated and useless without automatic
updates.

Our Sun servers automatically use the serial port
if a keyboard is not detected upon bootup. If a Sun
machine receives a ‘‘break’’ signal on its serial con-
sole port, it halts execution and drops into ROM moni-
tor mode. Unfortunately, power cycling of a terminal
server attached to a Sun console port is often

perceived by the host as a ‘‘break’’ signal. [Cisco98b]
suggests working around this problem by preventing
the Sun computers from halting when receiving a
‘‘break.’’

However, this would also prevent us from halting
the unresponsive machine remotely by intentionally
sending a ‘‘break’’ signal. Since our terminal servers
are protected by the same UPS system that protects
our compute servers, we decided that the benefit of
being able to remotely debug machines was worth the
risk of leaving the servers susceptible to a global
‘‘halt’’ due to a power glitch.

We also ran into problems with garbage charac-
ters appearing when older telnet clients, such as those
provided with SunOS 4.1.X and HP-UX 9.X, were
used. We suspect that those binaries were not able to
cope with some option that the Xyplex was attempting
to negotiate. Compiling new telnet binaries on these
machines helped eliminate some, but not all of the
problems. This only affected a minority of our
machines that were still running older operating sys-
tems, so we opted to ignore the problem and require
that telnet connections to the consoles via the terminal
server be launched from our Solaris based machines.

The Future

We are still in a state where improvements to our
computing environments are bounded by a lack of
time or manpower rather than a lack of ideas. We rec-
ognize that some of our solutions presented here,
while adequate for our immediate needs, still leave
room for improvement. Some of the projects we are
currently working on are listed below:

• Canonical hostlist project: We have several
databases that require hostname information,
including the corporate DNS file, our local NIS
hosts file, our local netgroup file, and various
location databases. Each of these lists is cur-
rently independently maintained. Adding a host
to the networks requires manually updating
each of these.
We are in the process of implementing a new
methodology. A single file will contain a mini-
mum amount of data which is manually entered
by the system administrator. All the rest of the
information will be generated by scripts which
will collect MAC addresses, network port con-
nections, console port collections, and other
data to build a master database of all host infor-
mation. This database will be used to build
DNS and NIS host tables, netgroup files, lists
for update scripts, LSF configuration files, and
documentation. The principle is to keep data
entry to an absolute minimum and to have only
a single source for the manually inputed data.
By facilitating automated updates of the various
data files, we avoid inconsistency problems.

• Cluster monitor: We currently monitor our
systems by using scripts which process raw

1998 LISA XII – December 6-11, 1998 – Boston, MA 279

The Evolution of the CMD Computing Environment . . . Cha, et al.

data produced by syslog, LSF, and HP Open-
View. LSF gives us a good overall analysis of
the total throughput of our cluster. The syslog
reports the hardware problems, and HP Open-
View supports a variety of monitoring options.
Our objective is to develop a system that will
give us more detailed reporting and debugging
information when there are problems. In addi-
tion, we are developing methods to allow the
cluster to automatically isolate problems and
perform automated fixes without human inter-
vention.

• Documentation: We sometimes forget that
computing environments are setup for the bene-
fit of our users rather than for the entertainment
of the system administrators. Documentation is
an essential ingredient for ensuring that a com-
puting environment can be efficiently used and
is essential to prevent system administrators
from being bogged down by an endless barrage
of frequently asked questions. We will be mak-
ing a major effort to improve our on-line docu-
mentation currently maintained on our internal
web site.

Final Thoughts

We hope our experiences will be valuable in
helping others plan ahead for growth in their comput-
ing installations. We have learned that it is important
to solve small problems on a small scale before they
expand to large problems on a large scale. Careful
planning and a vision of the future is necessary to
design systems that will scale easily without major
renovations.

Availability

Please contact the authors at <lisa98@
cmdmail.amd.com> regarding availability of scripts
referenced in this paper.

Author Information

Lloyd Cha is a MTS CAD Design Engineer at
Advanced Micro Devices in Sunnyvale, California.
Prior to joining AMD, he was employed by Rockwell
International in Newport Beach, California. He holds a
BSEE from the California Institute of Technology and
a MSEE from UCLA. He can be contacted by USPS
mail at AMD, M/S 361, PO Box 3453, Sunnyvale, CA
94088 or by electronic mail at <lloyd.cha@amd.com>
or <lloyd.cha@pobox.com>.

Chris Motta is the manager of the CMD Systems
and Network Administration department. He holds a
BSME from the University of California at Berkeley.
He has held a variety of systems administration posi-
tions including UNIX and networking consulting.
Electronic mail address is <Chris.Motta@amd.com>,
and USPS mail address is M/S 366, PO Box 3453,
Sunnyvale, CA 94088.

Syed Babar received his master’s degree in com-
puter engineering from Wayne State University in
Detroit, Michigan. He works at Advanced Micro
Devices in Sunnyvale, California as a Senior CAD
Systems Engineer. He can be contacted via e-mail at
<Syed.Babar@amd.com> or <Syed_Babar@hotmail.
com>.

Mukul Agarwal received his MSCS from Santa
Clara University. He joined NexGen, Inc. in Milpitas,
California as a CAD Engineer in 1993. He switched
to systems and network administration in 1995 and
has been a System/Network Administrator ever since.
Reach him via e-mail at <mukul.agarwal@amd.com>.

Jack Ma holds a BSCS from Tsinghua University
and a MSCS from Computer Systems Engineering
Institute. He was a UNIX software developer at Sun
Microsystems before joining Taos Mountain at 1995,
where he now works as a networking/UNIX system
consultant. He can be reached electronically at
<ylma@netcom.com>.

Waseem Shaikh holds a master’s degree in com-
puter engineering from the University of Southern
California and received his bachelor’s degree in elec-
trical engineering from University of Engineering and
Technology in Lahore, Pakistan. He was a Sys-
tem/Network Engineer at Steven Spielberg’s Holo-
caust Shoah Foundation, a System Consultant at Stan-
ford Research Institute, and is now working as a Sys-
tem/Network Consultant with Taos Mountain. He can
be reached at <shaikh@netcom.com>.

Istvan Marko is a self-educated Computer Spe-
cialist currently working as a System Administrator
employed through Volt Services Group. He can be
contacted via e-mail at <imarko@pacificnet.net>.

References

[AMD97] Unpublished internal e-mail correspon-
dence, AMD Austin, TX, 1997.

[Auspex98] ‘‘Auspex Support For Cisco Fast Ether-
Channel,’’ Auspex Technical Report #21, Docu-
ment 300-TC049, March 1998.

[Cisco97] Cisco Systems, Inc. ‘‘Fast EtherChannel,’’
Cisco Systems Whitepaper, 1997.

[Cisco98] Cisco Systems, Inc. ‘‘Understanding and
Designing Networks Using Fast EtherChannel,’’
Cisco Systems Application Note, 1998.

[Evard94a] Remy Evard, ‘‘Soft: A Software Environ-
ment Abstraction Mechanism,’’ LISA VIII Pro-
ceedings, San Diego, CA, September 1994.

[Evard94b] Remy Evard, ‘‘Tenwen: The Re-engineer-
ing Of A Computing Environment,’’ LISA VIII
Proceedings, San Diego, CA, September 1994.

[Evard97] Remy Evard, ‘‘An Analysis of UNIX Sys-
tem Configuration,’’ LISA XI Proceedings, San
Diego, CA, October 1997.

280 1998 LISA XII – December 6-11, 1998 – Boston, MA

Cha, et al. The Evolution of the CMD Computing Environment . . .

[Furlani91] John L Furlani, ‘‘Modules: Providing a
Flexible User Environment,’’ LISA V Proceed-
ings, San Diego, CA, September 1991.

[Godzilla98] ‘‘Godzilla,’’ Columbia TriStar Pictures,
1998.

[Harrison92] Harrison, Helen E, ‘‘So Many Worksta-
tions, So Little Time,’’ LISA VI Proceedings,
Long Beach, October 1992.

[HP94] Hewlett-Packard Support Services, ‘‘Cold
Network Installs – Configuring/Troubleshooting
Guide,’’ Engineering Notes – Document
CWA941020000, December 12, 1994.

[HP98] Hewlett-Packard Company, ‘‘Ignite-UX
Startup Guide for System Administrators,’’ 1998.

[Limoncelli97] Tom Limoncelli, Tom Reingold, Ravi
Narayan, and Ralph Loura, ‘‘Creating a Network
for Lucent Bell Labs Research South,’’ LISA XI
Proceedings, San Diego, CA, October 1997.

[Platform97] Platform Computing, ‘‘AMD’s K6
Microprocessor Design Experience with LSF,’’
LSF News, Platform Computing, August 1997.
http://www.platform.com/content/industry_solutions/
success_stories/eda_solutions/eda_stories/AMD.htm .

[Rath94] Christopher Rath, ‘‘The BNR Standard
Login (A Login Configuration Manager),’’ LISA
VIII Proceedings, San Diego, CA, September
1994.

[Sun98] Sun Microsystems, Inc. ‘‘SPARC: Installing
Solaris Software,’’ 1998.

1998 LISA XII – December 6-11, 1998 – Boston, MA 281

282 1998 LISA XII – December 6-11, 1998 – Boston, MA

