
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Anatomy of an Athena Workstation

Thomas Bushnell, BSG
Karl Ramm, MIT Information Systems



Anatomy of an Athena Workstation
Thomas Bushnell, BSG and Karl Ramm – MIT Information Systems

ABSTRACT

This paper presents work by many developers of the Athena Computing Environment, done
over many years. We aim to show how the various components of the Athena system interact
with reference to an individual workstation and its particular needs. We describe Hesiod,
Kerberos, the locker system, electronic mail, and the software release process for workstation
software, and show how they all interrelate to provide high-reliability computing in a very large
network with fairly low staffing demands on programmers and systems administrators.

Overview

The Athena system is an integrated campus net-
work of Unix workstations for academic computing at
MIT, comprising thousands of workstations and hun-
dreds of servers. We manage Athena with a fairly rea-
sonably sized central staff. Workstations are located in
public clusters managed by the central staff, in private
clusters maintained by various academic departments,
in faculty or staff offices, in public hallways and lob-
bies, in dormitories, in libraries, and laboratories.
Most of these computers are available to any member
of the MIT community (it is in this sense that we use
the term ‘‘public’’ in this paper – MIT does not pro-
vide any computing facilities for the general public).

tb:*:7722:101:Thomas Bushnell BSG,,E40-342d,31368,6230654:/mit/tb:/bin/athena/tcsh

Example 1: Sample Hesiod password file entry.

An Athena workstation is a typical Unix work-
station which can provide a platform for users to run
their applications: sending and receiving email, run-
ning courseware, text editing and formatting tasks, and
so forth. Much that an Athena workstation does is
done locally as on any other Unix computer. Much is
provided by contacting servers over the network.
Servers do not trust the integrity of the workstation or
its software which thus enables users to run their own
Athena workstations, and us to publish to the entire
Athena community the root password for public work-
stations.

In this environment, Athena handles most secu-
rity issues by the strategy of serial reuse: a given user
logs in, and has full and total control over the worksta-
tion. Then she logs out, the workstation cleans itself
up in preparation for another user, and then waits until
another user logs in and has total control. We do not
attempt to fully address simultaneous-use problems,
except in special cases.

Because Athena workstations are located in such
a diverse array of places, and because there are so
many of them, they are managed in a way to require
almost no intervention from the cluster maintenance
staff. A workstation requires a certain ineradicable
amount of hardware support. Beyond that, it requires

typing a few lines into a PROM monitor and perhaps
inserting a floppy to install a workstation, and from
then on it will not only install itself, but also automati-
cally update itself for years as the Athena system
develops and changes, all without needing any manual
intervention.

The purpose of this paper is to describe some of
the key Athena services that hold this arrangement
together, from the standpoint of an Athena workstation
and its maintenance. Many important Athena features,
such as the Zephyr messaging service or the extensive
courseware developed at MIT, are not described here.

Hesiod

Key to the operation of the Athena environment
is the Hesiod directory service [Hesiod]. Hesiod pro-
vides directories for many different things, such as
filesystems, users, printers, and post office servers.
Hesiod lookup is done through the Domain Name Sys-
tem, by requesting TXT records. Originally we used
the separate class HS, but now we store the records in
the IN class. In this way, large databases need not be
replicated across many machines, which significantly
reduces administrative overhead and risk.

For example, each user in the Athena environ-
ment has a password file entry stored in Hesiod, as
shown in Example 1. (Note that the actual password is
not stored in Hesiod; user authentication is provided
by the Kerberos system, as described below.)

Each of the tables managed by Hesiod has a
name; the one above is the ‘passwd’ table. Each user
also has a post office box assigned on one of many
possible POP servers; the ‘pobox’ table in Hesiod is
used to determine on which post office server a given
user ’s mail should be found. For example, the ‘pobox’
entry for one of us is:

POP PO8.MIT.EDU tb
Programs which need to read the database use library
functions which issue properly formatted DNS
requests to the normal DNS servers, which respond

1998 LISA XII – December 6-11, 1998 – Boston, MA 175



Anatomy of an Athena Workstation Bushnell and Ramm

with the requested entry. The libraries then dissect the
DNS reply and return the desired entry.

One disadvantage of this mechanism is that
many user programs must be modified to issue Hesiod
library calls at the proper places. For example, any
program that fetches mail from the mail spool must
have code added to request the identity of the post
office server from Hesiod. In some cases this problem
can be ameliorated: the Athena login process, for
example, fetches the password file entry for the user at
login and temporarily stores it in the password file on
the local workstation, so that other programs can sim-
ply call getpwnam and have it work.

Very similar functionality is provided by the NIS
service designed by Sun Microsystems. However,
Hesiod is different in several important respects. First,
and perhaps most importantly, it uses the very well-
tested DNS infrastructure, including caching, and does
not depend on the broadcast characteristics of net-
works as NIS does. NIS is generally used to handle
information which needs to be secure, but in the
Athena environment, Hesiod is never used for such
information and other services are responsible for
security.

NIS databases can be completely downloaded;
this ability is fundamental to the operation of NIS.
However, Hesiod never depends on this functionality,
and BIND makes possible various kinds of discrimina-
tion on what kinds of zone transfers should be permit-
ted. (Because of privacy considerations, we do not
permit arbitrary downloading of the Hesiod tables.)
Hesiod can be easily extended to support new
database types with little effort, but NIS maps are
basically limited to the default set.

The current implementation of Hesiod limits
responses to 1K bytes, but nothing in the actual proto-
col has such a limitation. One serious disadvantage,
however, is that Hesiod cannot be updated dynami-
cally. NIS also has problems in this area. As a conse-
quence, MIT generates the Hesiod databases once a
day, and updates them overnight.

Hesiod will automatically be able to benefit from
DNSsec and once a standard for dynamic DNS
updates is approved (one is on the IETF standardiza-
tion track now), Hesiod will be able to easily take
advantage of it.

Despite some of these disadvantages, we have
found Hesiod to function better than NIS could in such
a large environment. Hesiod is never used for informa-
tion that needs security. The reliability and scalability
of DNS cannot be beat, and we have had no signifi-
cant problems with limitations on record lengths or the
delay in updating DNS databases.

Kerberos

Kerberos [Kerberos] is the system in Athena
which manages authentication. It provides a global

space of identification names and a secure facility for
mutual authentication using those names. Athena
servers and workstations then use the Kerberos system
to make authorization decisions.

A Kerberos name is composed of two parts, a
name and a realm. The name is composed of multiple
separate strings, but no interpretation is imposed by
Kerberos itself on the contents and relation of those
strings to each other. (In the older version 4 of Ker-
beros there were exactly two strings in the name, one
called the ‘‘principal’’ and one called the ‘‘instance.’’)
A realm identifies indirectly the servers and authoriza-
tion scope of the name. Each system using Kerberos
must maintain a table mapping realm names to the
associated Kerberos servers.

Kerberos servers function by creating entities
known as ‘‘tickets.’’ A ticket is an encrypted data
block specifying a Kerberos name, a time stamp, an
expiration stamp, the Kerberos name of a service, and
a secret key. By presenting the ticket to the named ser-
vice, the service can be assured that the presenter has
the claimed identity. Such services might be POP
servers, file servers, telnet servers, and so forth. The
ticket is encrypted using a key known only to the
server, and the key contained in the ticket is also
known by the client. In order to use a ticket success-
fully a client must also know the secret key, and so
sniffing the ticket in transmission does not help an
attack. A secret key together with its associated ticket
is known as a ‘‘credential.’’

One important service is the Kerberos server
itself. Tickets for the Kerberos server are called
‘‘ticket granting tickets.’’ Possession of tickets for a
file server allows you to use the fileserver, and posses-
sion of tickets for a post office server lets you retrieve
mail (in both cases, of course, subject to further autho-
rization on the server). Possession of a ticket granting
ticket, however, lets you obtain tickets for any other
service you desire. Users obtain ticket granting tickets
when they log in, upon proving to the Kerberos server
that they possess a correct password. From that point,
the ticket granting ticket is used as necessary to obtain
service tickets for the various servers the user needs.

These credentials (tickets and associated client
keys) are conventionally stored in a file in /tmp. They
are not stored in user home directories because it is
important for the integrity of the system that they not
be transmitted by a sniffable remote file protocol. The
ticket file is kept protected using the normal Unix
facilities; thus someone who has broken into the work-
station might steal the tickets. (We generally avoid
such problems by the serial reuse model described
above.) Because tickets have a built-in expiration
time, the window of risk is fairly well-known. When
users log out, a special program called kdestroy is
used to delete the ticket file, by writing null bytes to
the file containing the tickets before unlinking it, thus
guaranteeing its true destruction.

176 1998 LISA XII – December 6-11, 1998 – Boston, MA



Bushnell and Ramm Anatomy of an Athena Workstation

Because all Athena services are authorized based
upon possession of proper Kerberos tickets, no service
depends on the integrity of the user’s workstation.
Accordingly, the root password for public worksta-
tions is advertised to the entire Athena user commu-
nity. Because many of the facilities of Unix are avail-
able only to the superuser, this greatly improves the
utility of the Athena system, as well as improving its
security. It should be noted that we are open to the
thread of a malicious user modifying workstation soft-
ware to capture passwords; we believe that this risk is
inherent with having unsupervised hardware and we
would not actually improve security by trying to hide
the root password.

Shared workstations do exist, however, the most
important being the public dialup machines. These
have a secret root password, and are very carefully
maintained and managed. Because the Athena model
is based on serial reuse, these simultaneously shared
machines must be given special attention. Some facili-
ties are not provided on them, and Kerberos tickets on
them are theoretically more vulnerable.

AFS /afs/athena.mit.edu/user/t/b/tb w /mit/tb
NFS /u1/bitbucket JASON.MIT.EDU w /mit/bitbucket

Example 2: Sample Hesiod locker entries.

Lockers

In a substantial distributed computing environ-
ment, it can be problematic to have all the filesystems
on the campus mounted on every workstation. Many
remote filesystem techniques behave poorly when
servers are unavailable, and many operating systems
cannot handle a large number of filesystem mounts at
a single time.

Accordingly, file space in the Athena environ-
ment is separated into ‘‘lockers’’ [ATPD], each of
which appears as a distinct filesystem to users, but is
not mounted all the time on each workstation. Each
locker has a name, and the ‘attach’ command will look
up the name and mount the filesystem in the /mit
directory. (In special cases lockers may be mounted
elsewhere.)

Each user home directory is a locker. A locker
might also hold one or more third-party software
packages, or anything else. Student organizations
(even informal or transient ones) can generally get
lockers created with little trouble, and manage and
maintain them.

All file storage in the Athena environment is
handled through the locker mechanism. Users mount
lockers with the ‘attach’ command, and these lockers
are generally unmounted when the user logs out.

Lockers which contain programs intending to be
run are generally mounted by the ‘add’ command,
which runs attach, and then adds the appropriate sub-
dirs of the locker to the user’s command execution

path. This frees users from needing to understand the
ways that path search happens or the manner in which
lockers organize the various binaries that have been
compiled for the various supported architectures.

Lockers do not all use the same remote filesys-
tem mechanism, making them more flexible than
using NFS or AFS alone. Each locker can use
whichever filesystem is most convenient, and users in
general need not consider the difference.

Locker names are stored in a Hesiod table named
‘filsys’. Some sample Hesiod records for lockers are
shown in Example 2. These specify the filesystem
protocol type, where the locker is to be found, how to
mount it (writable in these examples) and where it will
be mounted on the local workstation.

Each locker of course is associated with some
things not covered in the scope of this paper, such as
disk allocation issues on servers, backup policies, and
the like. All these are hidden behind the locker
abstraction, and generally need not be noticed by users
at all.

Email

Electronic mail on Athena follows the now fairly
standard pattern of central mail servers accessed via
POP (or some other mail-specific protocol such as
IMAP). Rather than a single large POP server, Athena
has several POP servers and a Hesiod table (called
‘pobox’) is used to identify the correct POP server for
a given user.

Athena workstations do not normally run send-
mail daemons, but do run sendmail on demand to han-
dle outgoing user mail. All outgoing mail is forwarded
to a local mailhub, where it is immediately delivered
or queued. In this way we avoid maintaining queued
mail on the clients as much as possible. Sometimes
mailhubs are too loaded to accept mail or are even
down, in which case mail does end up being queued
on the local workstations, so workstations have a peri-
odic cron job to deliver any queued mail.

Reactivation

Each workstation periodically runs a script called
‘reactivate’ when no one is logged into it, which runs
various housekeeping functions. The goal of the reac-
tivation procedure is to improve the hands-off main-
tainability of workstations, relying on them to keep
themselves in a sensible state as much as possible.

Much of what reactivate does is ordinary cleanup
duties. Any stale server state, for NFS, or AFS, or the
Zephyr notification system is deleted or synchronized
as necessary. Stray processes are killed and attached

1998 LISA XII – December 6-11, 1998 – Boston, MA 177



Anatomy of an Athena Workstation Bushnell and Ramm

lockers are detached. Special lockers that are always
to be in place, called the ‘‘system packs’’ are reat-
tached to make sure the correct ones are mounted in
the correct locations. On public workstations, the pass-
word file is reset to the default and many local files
are checked to make sure they match the prototype
files for public workstations.

One very important function provided by the
reactivate script is to check whether a software update
is necessary for this workstation and to schedule it.

System Packs

Originally, Athena maintained its own operating
system, a variant form of BSD 4.3. This was stored in
a special locker known as the ‘‘system pack’’ and
mounted on /srvd. Over time, this broke down, for two
central reasons: first, maintaining an operating system
is a complex and time consuming task, and as new
hardware came and went it became attractive to use
the vendor operating system rather than porting our
own. Second, various third party software became
attractive to various members of the MIT community.
Much of this software is distributed only in binary
form for the various vendor operating systems; using
an Athena-specific operating system would complicate
greatly the use of such software.

We therefore now use the standard vendor oper-
ating systems, and what used to be the srvd pack is
now split into two parts. One is the os pack, mounted
on /os, and the other is the srvd pack, on /srvd. The os
pack contains an essentially unmodified copy of the
vendor operating system. (We do need to make some
modifications. Currently the packs are stored on AFS,
which can’t do hard links properly, so those must gen-
erally be turned into symlinks. Also, some security
and permission fixes must be made in the os pack.)

The srvd pack contains all the Athena-specific
software that we build ourselves. Some of it contains
programs often found in other vendor operating sys-
tems, but for which we need to have a single standard
version, or because we have added special local modi-
fications. Alss the srvd contains Athena-specific pro-
grams, such as Hesiod- and Kerberos-capable versions
of mail-reading software.

Workstations’ local disks contain some software
locally, but much is accessed through symlinks into
the /srvd or /os packs. The decision about which goes
where is made separately from the organization of the
packs themselves, which contain the complete system,
including those parts normally found on the worksta-
tions’ disks themselves.

Workstations determine which system packs to
attach via Hesiod. At any given time, for any given
architecture, we will usually have packs for two minor
versions of the current major version; one in testing
and one that is deployed widely. We also keep old ver-
sions online for a reasonable approximation of forever
(the oldest kept online right now is from 1989).

A third system pack has recently come into use
on some platforms, the /install pack. This locker con-
tains the raw OS install contents, for example, the inst
packages for Irix or the tar files for NetBSD. This
locker is not used except as a resource during the
update or install procedure.

Release Cycle

Most software in the Athena computing environ-
ment is available through lockers. Each locker may be
maintained and released differently, and no coordina-
tion is inherently necessary. However, much software
is either located directly on each workstation, or is so
central to the environment, that it must be released in a
coordinated manner. For this software, we have a care-
ful release cycle mechanism in place [RelEng].

Full-blown releases take place once a year, but
smaller patch releases are made from time to time as
necessary. As the name suggests, patch releases are
generally intended to solve minor problems or security
concerns that have developed. Major changes (for
example, the upgrade from Kerberos IV to
Kerberos V) are reserved for the major release.

The software that is part of the release comprises
two main categories: the operating system, and
Athena-specific modifications. Operating system
updates take place only in the major releases, and
require a great deal of care and attention. We currently
support Solaris and Irix, and for each we have a desig-
nated engineer who has primary responsibility for that
operating system’s installation and functioning.

In addition, we have a release engineer who
monitors the work of the operating-system-specific
work and also manages the Athena-specific code.
Many developers are able to modify this code as nec-
essary, but having a single release engineer responsi-
ble for its overall function and for the coordination of
the actual release process enables more consistent
management of the release process.

A team meets weekly to discuss release issues
and changes to the release; this team includes not only
the release developers, but also members of the server
operations team, and user support people. The major
releases are carefully coordinated to academic sched-
ules, server needs, and administrative requirements,
and require extensive public documentation (posters,
web pages, and so forth) describing the new features
and changes associated with the release.

Update and Install

The process of updating a workstation begins
with the workstation itself. Once a new release is
available, the workstation’s reactivate script notices
via Hesiod that it should be running a new release, and
it picks a time to actually execute the update. Updates
do not occur immediately upon noticing that one is
available in order to avoid swamping fileservers and
networks, or the specter of all available workstations

178 1998 LISA XII – December 6-11, 1998 – Boston, MA



Bushnell and Ramm Anatomy of an Athena Workstation

being busy updating, and a user not being able to log
in. And of course, an update is taken only when the
workstation is otherwise idle.

An update begins by mounting the system packs
corresponding to the new release. If the new release
involves no operating system upgrade, then the proce-
dure will be fairly simple: new files as necessary are
copied from the new srvd, and the workstation is
rebooted. If an operating system upgrade is necessary,
the procedure will be much more complex, because
new shared libraries and kernels must be installed in a
careful manner. In either case, however, the procedure
is the same from the workstation’s standpoint. Upon
mounting the new system packs, a script in those
packs is run which takes over and manages the entire
update automatically.

A key goal of the Athena system is to provide
hands-off maintenance and the orderly update proce-
dure is a major part of that. Workstations update them-
selves without needing any manual intervention. In
major updates, a certain number of workstations fail
the update procedure for various reasons and do
require manual intervention, but this is a tiny percent-
age of those which upgrade themselves without a
hitch.

Installing a workstation is a similar procedure. A
few commands are typed to the PROM monitor. The
workstation is booted over the network and com-
pletely automated scripts handle everything else to
install the workstation. In this way a large cluster of
new workstations can be installed with very little typ-
ing necessary.

The creation of the update and install scripts
often requires some subtlety. But nothing is seriously
complex beyond understanding, and the entire process
is the only one feasible for an environment this large.
We have workstations scattered across campus, not
only in general clusters, and the labor of having to
attend to each one individually in an update (even if
only to type a few commands) would be exceedingly
tiresome.

Customized Workstations and Servers

The typical Athena workstation lives in a pub-
licly accessible cluster and manages itself as described
above. Such workstations should not be customized –
to do so would defeat the uniformity expected of each
workstation by Athena users. Accordingly, the peri-
odic reactivate process attempts to notice customiza-
tion, and if it detects it, then the customization is
reversed by recopying the modified files.

However, for many Athena computers this would
not be appropriate. Such are considered ‘‘private’’
workstations and may be customized at will by their
owners. A private workstation might live on a user’s
desk, be part of a specialized departmental cluster, be
a server of some sort, or in some other fashion need
special treatment. Sometimes a private workstation

has no customizations beyond limiting who may log in
to the computer.

Private workstations of course must have the
customization-prevention measures disabled. Also,
while a normal public Athena workstation can be cen-
trally administered and needs no direct intervention to
keep it running, a private workstation, if customized,
will generally require more attention.

Automated customizations are made possible
through a tool known as ‘mkserv’. Perhaps the most
frequent customization on a private workstation is
‘mkserv remote’ which enables remote login access to
the workstation via telnet, rlogin, or ssh.

Athena servers are also set up with the mkserv
customization mechanism. (In fact, this is reason for
the program’s name.) An NFS server can be easily set
up with ‘mkserv nfs’, a Hesiod server with ‘mkserv
hesiod’ and so forth. With a hundred servers or so in
the Athena environment having this ease of manage-
ment becomes crucial.

The software which makes up these automated
customizations is considered part of the Athena
release. Generally the programs and data files the ser-
vice needs are copied onto the local disk. The release
update process also updates any customizations made
through mkserv, which enables the great majority of
customized workstations to benefit from the hands-off
management style available for public cluster worksta-
tions.

Conclusion

Upgrading to a new version of the vendor operat-
ing system takes a fair amount of time. Because our
release cycle is fairly rigid, significant delay might
occur between the release of the operating system and
our ability to get it into each workstation. Some of this
time is imposed because of the complexity of creating
the update and install procedure for the new release,
but also some of it is inherent in our academic setting:
we must not make major changes to workstation soft-
ware while an academic term is in progress.

Our security model gains much clarity and
agility by assuming serial reuse. Several problems still
inhere. First, dialup servers are used by many users at
once, and must be carefully managed. We have no
general way to deal with such machines, and they
require specialized support of various kinds. Second,
we have no way to easily handle long-running interac-
tive jobs. And finally, users cannot be fully confident
that the software on a given workstation has not been
compromised in some security-related way.

All told, however, the Athena system has borne
the years very well. We manage a very large heteroge-
neous network with a fairly small staff of program-
mers and developers. It is hard to imagine how we
could do so without the tools described in this paper,
or their equivalents.

1998 LISA XII – December 6-11, 1998 – Boston, MA 179



Anatomy of an Athena Workstation Bushnell and Ramm

Author Information

Thomas Bushnell, BSG works for MIT Informa-
tion Systems as a systems programmer in the Athena
team. Previously he worked for over seven years as a
programmer and software architect for the Free Soft-
ware Foundation, writing the GNU Hurd and helping
with several other projects. He studies philosophy,
classics, and many other things, and can be reached
via email at tb@mit.edu .

Karl Ramm is a systems programmer for MIT
Information Systems, where he helps keep Athena
from falling over. He can be reached via U.S. Mail at
Room E40-342C, Massachusetts Institute of Technol-
ogy; 1 Amherst St.; Cambridge MA 02139, while he
can be reached electronically at kcr@mit.edu. He has
written five different mail reading programs and has
never written a windowing system.

References

[Kerberos] Steiner, Neuman, Schiller, ‘‘Kerberos: An
Authentication Service for Open Network Sys-
tems,’’ USENIX Technical Conference, Dallas,
Texas, Winter 1988. <ftp://athena-dist.mit.edu/
pub/ATHENA/usenix/kerberos.PS>

[Hesiod] Dyer, Stephen P., ‘‘The Hesiod Name
Server,’’ USENIX Technical Conference, Dallas,
Texas, Winter 1988. <ftp://athena-dist.mit.edu/
pub/ATHENA/usenix/hesiod.PS>

[ATPB] Lerman and Saltzer, ‘‘Section B: Technical
Objectives and Requirements,’’ Project Athena
Technical Plan, M.I.T. Project Athena, Cam-
bridge, Massachusetts, July 23, 1987.

[ATPC] Balkovich, Parmaless, and Saltzer, ‘‘Section
C: Project Athena’s Model of Computation,’’
Project Athena Technical Plan, M.I.T. Project
Athena, Cambridge, Massachusetts, September
16, 1985.

[ATPD] Saltzer, J. H., ‘‘Section D: Evolution to the
Athena Workstation Model: An Overview of the
Development Plan’’, Project Athena Technical
Plan, M.I.T. Project Athena, Cambridge, Mas-
sachusetts, March 6, 1986.

[RelEng] Davis, Don, ‘‘Project Athena’s Release
Engineering Tricks,’’ M.I.T. Project Athena,
Cambridge, Massachusetts. <ftp://athena-dist.mit.
edu/pub/ATHENA/usenix/rlseng.PS>

[Track] Nachbar, Daniel, ‘‘When Network File Sys-
tems Aren’t Enough: Automatic File Distribution
Revisited.,’’ USENIX Technical Conference,
Summer, 1986.

180 1998 LISA XII – December 6-11, 1998 – Boston, MA


