
Gatekeeper: Monitoring Auto-Start
Extensibility Points (ASEPs) for

Spyware Management
Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron Johnson – Microsoft Research

Ming-Wei Wu, Yennun Huang, and Sy-Yen Kuo – National Taiwan University

ABSTRACT

Spyware is a rapidly spreading problem for PC users causing significant impact on system
stability and privacy concerns. It attaches to extensibility points in the system to ensure the spyware
will be instantiated when the system starts. Users may willingly install free versions of software
containing spyware as an alternative to paying for it. Traditional anti-virus techniques are less
effective in this scenario because they lack the context to decide if the spyware should be removed.

In this paper, we introduce Auto-Start Extensibility Points (ASEPs) as the key concept for
modeling the spyware problem. By monitoring and grouping ‘‘hooking’’ operations made to the
ASEPs, our Gatekeeper solution complements the traditional signature-based approach and
provides a comprehensive framework for spyware management. We present ASEP hooking
statistics for 120 real-world spyware programs. We also describe several techniques for
discovering new ASEPs to further enhance the effectiveness of our solution.

Introduction

Spyware is a generic term referring to a class of
software programs that track and report computer users’
behavior for marketing or illegal purposes. In addition,
spyware may actively push advertisements to the user
by popping up windows, and change the Web browser
start page, search page, and bookmark settings. Spyware
often silently communicates with servers over the Inter-
net to report collected user information, and may also
receive commands to install additional software on the
user ’s machine. Users infected with spyware commonly
experience severely degraded reliability and perfor-
mance such as increased boot time, sluggish feel, and
frequent application crashes. Reliability data shows that
spyware programs account for fifty percent of the
overall crash reports [FTC04]. Saroiu, et al. [SGL04]
point out security problems caused by vulnerabilities
in spyware programs. A recent study based on scan-
ning more than one million machines show the alarm-
ing prevalence of spyware: an average of four to five
spyware programs (excluding Web browser cookies)
were running on each computer [E04A, E04B].

Current anti-spyware solutions [AA, SB] are pri-
marily based on the signature approach used by anti-
virus software: each spyware installation is investi-
gated to determine its file and Registry signatures for
use by scanner software to detect spyware instances.
This approach has several problems.

First, many spyware programs may be consid-
ered ‘‘legitimate’’ in the following sense: their compa-
nies sponsor popular freeware to leverage their instal-
lation base; since users agree to an End User Licens-
ing Agreement (EULA) when they install freeware,

removing the bundled spyware may violate this agree-
ment. In many cases, the freeware ensures the spyware
is running on the user’s system by refusing to run if its
bundled spyware is removed.

Second, the effectiveness relies on completeness
of the signature database for known spyware. Beyond
the difficulty of manually locating and cataloging new
spyware, this approach is further complicated because
spyware are full-fledged applications that are gener-
ally much more powerful than the average virus [C04],
and can actively take measures to avoid detection and
removal. Companies creating spyware generate rev-
enue based on the prevalence of their applications and
therefore have a financial incentive to create technolo-
gies that make it hard to detect and remove their soft-
ware. They have the need and the resources to invest
in developing sophisticated morphing behavior.

Third, some spyware installations may contain
common library files that non-spyware applications
use. If care is not taken to remove these files from the
spyware signatures, scanners using these signatures
may break non-spyware applications.

Finally, popular spyware removal programs are
commonly invoked on-demand or periodically, long
after the spyware installation. This allows the spyware
to collect private information and makes it difficult to
determine when the spyware was installed and where
it came from. A monitoring service that catches spy-
ware at installation time is essential for reducing expo-
sure and avoiding re-infection.

To complement the signature-based approach, we
introduce the concept of Auto-Start Extensibility Points
(ASEPs) as the key to spyware management. Our work

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 33

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

is based on the observation that, in order to monitor
users’ behavior on an ongoing basis and to maximize
the time window for monitoring, an overwhelming
majority of spyware programs infect systems in such a
way that they are automatically started upon reboot and
the launch of most commonly used applications. We use
the term ASEPs to refer to the subset of OS and applica-
tion extensibility points that can be ‘‘hooked’’ to enable
auto-starting of programs without explicit user invoca-
tion. An ASEP may accept one or more ASEP hooks,
each of which is associated with an auto-start program.

Software
Auto-

Update

Code
Vulnerabilities

Persistent

State

Figure 1: Outer, Middle, and Inner Gates: (1) Outer Gates are the entrance points for program files from the Inter-
net to get on user machines. User Consent includes explicit consent to install, for example, a freeware program,
and implicit consent to allow spyware programs bundled with the freeware to get installed as well. Incorrect Se-
curity Settings include the ‘‘Low’’ setting for Internet Zone security, incorrect entries in the Trusted Sites list,
and incorrect entries in the Trusted Publishers list, which would allow drive-by downloads; (2) Middle Gates
are the ASEPs that allow programs to survive reboots and maximize their chance of running all the time. BHO
stands for Browser Helper Object. LSP stands for Layered Service Provider; and (3) Inner Gates control the in-
stantiation of program files into active running program instances. They include CreateProcess, LoadLibrary,
and other program execution mechanisms, and can be used to block any potentially harmful programs if they
are not properly signed or on the known-good list.

We distinguish two types of ASEP hooking: (1) as
a standalone application that is automatically run by
registering as an OS auto-start extension such as a Win-
dows NT service or a Unix daemon; or (2) as an exten-
sion to an existing application that is either automatically
run (such as Wi n L o g o n . e x e with its Notify extensions) or
popular and commonly run by users (such as the Internet
Explorer browser with its Toolbar extensions).

Figure 1 depicts a Windows-based systems with
three layers of gates. The Outer Gates are the entrance

points for program files from the Internet to get on
user machines. The Middle Gates are the ASEPs that
allow programs to hook a system to essentially
become ‘‘part of the system’’ from a user’s point of
view. The Inner Gates control the instantiation of pro-
gram files. Our solution, named Gatekeeper, identifies
and monitors the Middle Gates and exposes all ASEP
hooks to allow effective management of spyware.

Problem Formulation and Decomposition

Figure 2 illustrates the ‘‘life cycle’’ of the spy-
ware management process and provides a problem
decomposition that enables us to systematically reason
about this complex problem. Note that our current
solution does not address the issues of malicious soft-
ware such as RootKits [P03]; we will briefly discuss
malicious behavior in the Discussions section.

In Step (1), given a spyware-infected machine,
since we do not have sufficient context information for
already-installed spyware programs, we rely on the sig-
nature-based scanning and removal tool (such as Ad-

34 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wa n g , et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

Aw a r e and SpyBot-S&D) to remove existing spyware.
After Step (1), the Gatekeeper infrastructure is put in
place to provide a spyware management framework.

Known-* Signatures & Descriptions Database

Step (2)Step (1)

Install
Freeware

Infected Cleaned-up

ASEP Discovery
Through Trace Analysis

ASEP Discovery
Through Troubleshooting

Bundle
Tracing

Behavior Monitoring
For Credit Report

Generation

Bundle Management
& Removal

Signature-Based
Scanning

& Removal

ASEP-based
Auditing,
Alerting,

& Blocking

Figure 2: The Spyware Management ‘‘Life Cycle’’ and Problem Decomposition: see descriptions in the Problem
Formulation and Decomposition section.

In Step (2), we continuously monitor all ASEPs
by recording, alerting, and blocking potentially unde-
sirable ASEP hooking operations. It is essential that
the signature database includes user-friendly descrip-
tions of known-good [G03, NSRL, PP] and known-
bad ASEP hooks to enable presentation of actionable
information to the user.

If the user decides to install a freeware applica-
tion after assessing the risks of bundled spyware pro-
grams as specified in the EULA, bundle tracing in
Step (3) captures all components installed by the free-
ware and display them in Gatekeeper as a group with a
user-friendly name enabling the user to manage and
remove them as a unit.

In Step (4), we monitor the performance and relia-
bility of the system since the bundle installation and as-
sociate any problems with the responsible compo-
nent(s). These ‘‘credit reports’’ provide the user with a
‘‘ p r i c e tag’’ for the freeware functionality, enabling the
user to make value/cost judgments about the freeware.

Finally, our solution’s eff e c t i v e n e s s is directly
related to completeness of the ASEP list. In Step (5), we
discover new ASEPs of OS and popular frequently-run
software by either analyzing indirection patterns in file
and Registry traces or troubleshooting infected machines.
In this paper, we will cover (2), (3), and (5) in the next
three sections.

ASEP Management

ASEP Categorization

On Windows platforms, most of the ASEPs
reside in the Registry. Only a few of them reside in the
file system. We have found it useful to classify ASEPs
into the following categories:

1) ASEPs that start new processes: for example,
the HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\Run Registry key and the
%USERPROFILE%\Start Menu\Programs\
Startup file folder are well-known ASEPs for
auto-starting additional processes.

2) ASEPs that hook system processes: for exam-
ple, HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Winlogon\Notify allows a DLL
to be loaded into WinLogon.exe.

3) ASEPs that load drivers: for example, HKLM\
System\CurrentControlSet\Control\Class\
{4D36E96B-E325-11CE-BFC1-08002BE10318}\
UpperFilters allows loading of a keylogger
driver; HKLM\System\CurrentControlSet\
Services allows loading of general drivers.

4) ASEPs that hook multiple processes: for
example, Winsock allows a Layered Service
Provider (LSP) DLL or a Name Space Provider
(NSP) DLL to be loaded into every process that
uses Winsock sockets; HKLM\SOFTWARE\
Microsoft\Windows NT\CurrentVersion\Windows\
AppInit_Dlls allows a DLL to be loaded into
every process that links with User32.dll.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 35

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

5) Application-specific ASEPs: for example,
HKLM\SOFTWARE\Microsoft\Internet Explorer\
Toolbar allows a toolbar to be loaded into the
IE browser; HKCR\PROTOCOLS\Name-Space
Handler and HKCR\PROTOCOLS\Filter allow
other kinds of DLLs to be loaded by IE;
HKLM\SOFTWARE\Microsoft\Internet Explorer\
Search\SearchAssistant and CustomizeSearch
take URLs as input and control which search
pages will be loaded.

Figure 3: Distribution of spyware ASEP hooks: 120 spyware programs with 334 hooks to 34 ASEPs; ASEPs are
sorted by popularity.

ASEP Hooking Statistics
Figure 3 shows the number of spyware hooks to

each of the 34 ASEPs hooked by at least one of the
120 spyware programs in our Spyware Zoo. Browser
Helper Objects (BHOs), HKLM ‘‘Run’’ key, and IE
‘‘Toolbar ’’ are the three most popular ASEPs. Figure 4
shows that most of the individual spyware programs
hook only three or less ASEPs, but some hook as
many as 13 or 17. When spyware and freeware pro-
grams are bundled together in a single installation, it is
not uncommon to see that a single bundle hooks 10 or
more ASEPs, which would usually cause significant
performance degradation. (Note that a freeware pro-
gram may not have any ASEP hook if it is to be manu-
ally launched by the user as needed, but spyware pro-
grams always have ASEP hooks.)

ASEP Monitoring and Alerting
ASEP monitoring watches all known ASEPs for

any of the following three types of changes: (1) adding
a new ASEP hook; (2) modifying an existing ASEP
hook; and (3) modifying the executable file pointed to
by an existing ASEP hook.

Each of the above changes generates a new event
log entry that contains the ASEP pathname, the ASEP
hook name, the executable file pathname or URL, and
the timestamp of the hooking operation. Optionally, a
notification can be displayed to the user or forwarded to
an enterprise management system for processing. Notifi-
cations for ASEP programs signed by trusted publishers
can be optionally suppressed to reduce false positives.

Figure 5 shows a screenshot of a user notifica-
tion alert. During the installation of a freeware screen-
saver, the user is notified of five new ASEP hooks.
The ‘‘Screen Saver’’ hook alert is obviously expected.
Searching the Signatures and Descriptions Database
with the information from the other four alerts (by
clicking on the alerts) reveals that they belong to
‘‘eXact Search Bar’’ and ‘‘Bargain Buddy.’’ Based on
the information provided for these two pieces of soft-
ware and the benefit provided by the screensaver, the
user can then make informed decision about whether
to keep this bundle.

36 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wang, et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

Bundle Management

The term ‘bundle’ represents a set of applications
and extensions added to a user’s system as part of a
single installation process. If a component of a bundle
installs additional applications or components at a
later time, these are also added to the installer’s bun-
dle. A bundle is intended to match an end user’s ideal
management unit for installing, disabling, and remov-
ing software on their system.

Figure 4: Number of ASEP hooks used by each spyware.

Bundle Tracing
Although multiple ASEP alerts appearing during

a single installation typically indicate that the ASEPs
belong to the same bundle, this time-based grouping is
not robust against concurrent installations. For exam-
ple, Figure 6 illustrates two concurrent installations of
the DivX bundle (with two ASEP hooks) and the
Desktop Destroyer (DD) bundle (with five ASEP
hooks). Time-based grouping would incorrectly group
all seven ASEP hooks in a single bundle.

Gatekeeper uses a bundle tracing technique built
on top of the always-on Strider Registry and file trac-
ing [WVD+03, DRD+04]. ASEP hooks created by
processes belonging to the same process tree are
assigned to the same bundle. If any Add/Remove Pro-
grams (ARP) entries are created by any process in the
tree, the concatenation of their ARP Display Names is
used to label the bundle. Referring to Figure 6, the
upper process tree defines the DivX bundle with two
ARP names, and the lower tree defines the DD bundle
with three ARP names.

Any spyware that does not provide an ARP entry
for removal will show up as a bundle with no name.
For example, the ClientMan software creates one
ASEP hook silently at installation time with no

accompanying ARP entry. Since installations without
ARP entries are uncommon, this installation will be
flagged as potentially unwanted.

We have observed that some spyware may ini-
tially install partially, and delay the full installation
until a later time to make it more difficult for the users
to identify which Web site is actually responsible for
installing the software. For example, after the partial
installation with one ASEP hook, ClientMan would
non-deterministically select a later time after several
reboots to finish its installation with seven additional
ASEP hooks.

Gatekeeper bundle tracing captures such devious
behavior as follows. First, it performs URL tracing to
link each Web-based bundle installation with its
source URL. Although IE browser history already
records the URL and timestamp for every Web site
visited, it is a global history for all instances of IE and
is garbage collected after a few weeks. We have
implemented a Browser Helper Object to record the
process ID of the IE instance that navigated to each
URL so that the URL trace can be correlated with the
ASEP hooking trace. Second, to handle latent installa-
tions, bundle tracing keeps track of all the files created
by each bundle. If any of the files are later instantiated
to create more ASEP hooks, these additional hooks are
added to the original bundle.

Extensibility Point Add/Remove Programs (EP-
ARP)
Figure 7 shows Gatekeeper displaying bundle

information through a new ‘‘Manage Auto-Start Pro-
grams’’ button in the Control Panel ARP interface
(called it EP-ARP). It scans all ASEPs and displays all
current hooks by bundles. Users can also choose to

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 37

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

sort the ASEP hooks by the timestamps obtained from
the event log in order to highlight newly installed
ASEP programs. This is particularly useful when a
user invokes EP-ARP immediately after she observes a
problem to identify the potential problematic program.

The EP-ARP display also provides three options
for bundle removal/disabling. For example, the bundle
name clearly shows that ‘‘eXact Search Bar’’ and
‘‘Bargain Buddy’’ have been installed as part of the
DD bundle. If the user wants to remove DD, she can
click the ‘‘Disable Bundle’’ button and reboot the
machine. This removes all five ASEP hooks, stopping
the three bundled programs from automatically start-
ing, despite their files remaining on the machine.

Figure 5: ASEP Hooking Alerts: One freeware screensaver (the bottom alert) bundling two other programs, each
hooking two ASEPs (the other four alerts).

Alternatively, the user can look for the three
ARP names in the regular ARP page and invoke their
respective removal programs there. Since it is not
uncommon for spyware to provide unreliable ARP
removal programs, the user can double-check EP-ARP
to make sure that none of the ASEP hooks gets left
over after ARP removals. Gatekeeper also integrates

with System Restore [SR01], as shown at the bottom
of Figure 7. If both removal options fail, the user can
click on the ‘‘Restore’’ button to roll back machine
configuration to a System Restore checkpoint taken
before the bundles were installed.

ASEP Discovery

In addition to well-known ASEPs and docu-
mented ASEPs, we discover new ASEPs through
another two channels. The first channel involves trou-
bleshooting machines with actual infections that can-
not be cleaned up by Gatekeeper because of spyware
using unknown ASEPs. We provide two tools for this
purpose: the Strider Troubleshooter [WVD+03] and
the automatic AskStrider scanner [WRV+04]. The sec-
ond channel involves analyzing Registry and file
traces collected from any machine to discover new
ASEPs that can potentially be hooked by future spy-
ware. Once new ASEPs are discovered, they are added
to the Gatekeeper list to increase its coverage. The
same ASEP discovery procedure can also be used by

38 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wang, et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

system administrators to discover ASEPs in third-
party or in-house applications that do not come with a
list of specified ASEPs.

DesktopDestroyer.exe Exact.exe

Rundll32.exe

DivxPro511Adaware.exe

“DivX Pro Codec
Adware”

Gain_Trickler.exe

Bundle Name = “DivX Pro Codec Adware | Divx Player”

ARP
“DivX
Player”

Gain_trickler_3202.exe Pdpsetup4006.exe

Bargains
Explorer Run hook

GStartup
Explorer Startup Folder

Figure 6: DivX and Desktop Destroyer Bundle Tracing: solid arrows represent creations of child processes; dashed
arrows represent creations of ARP entries; dotted arrows represent creations of ASEP hooks. Each process tree
defines the scope of the bundle, named by concatenation of ARP friendly names.

ASEP Discovery Through AskStrider

The AskStrider scanner is an enhanced Windows
Task Manager. In addition to displaying the list of run-
ning processes, AskStrider displays the list of modules
loaded by each process and the list of drivers loaded
by the system. More importantly, AskStrider gathers
context information from the local machine to help
users analyze this large amount of information to iden-
tify the most interesting pieces. Such context informa-
tion includes the System Restore file change log,
meta-data for patch installations, and driver-device
associations [WRV+04].

Figure 8 shows two sample screenshots of
AskStrider. The upper pane displays the list of pro-
cesses sorted by the approximate last-update timestamps

of their files, according to System Restore. Files that
were updated within the past week are highlighted.
The lower pane displays the list of modules loaded by
the selected process in the upper pane, with the same
time-sorting and highlighting. Additionally, if a file
came from a patch, the patch ID is displayed as an
indication that the file is much less likely to have
come from a spyware installation.

Also illustrated in Figure 8 is an example of how
AskStrider was used to discover a new ASEP. Figure 8
(a) shows that, after the installation of SpeedBit, a new
process DAP.exe was started and the browser process
iexplore.exe was loading four newly updated DLL files
from the same installation. After we disabled all new
ASEP hooks from Gatekeeper EP-ARP and rebooted
the machine, iexplore.exe was still loading two new
DLLs as shown in Figure 8 (b). Searching the Registry
using the filename DAPIE.dll revealed that SpeedBit

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 39

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

was hooking an additional ASEP under HKCR\
PROTOCOLS\Name-Space Handler, which has since
been added to the ASEP list monitored by Gatekeeper.

Figure 7: Extensibility Point-Add/Remove Programs (EP-ARP): the ‘‘DivX Pro Codec Adware | DivX Player’’
bundle includes two ASEP hooks GMT.exe and CMESys.exe that came from Gator. The ‘‘Desktop Destroyer
FREE | eXact Search Bar | Bargain Buddy’’ bundle includes five ASEP hooks. Clicking on the ‘‘Restore’’ but-
ton at the bottom can roll back the system and remove the two bundles.

ASEP Discovery Through Strider Troubleshooter

The strength of AskStrider is that the scanning is
completely automatic and typically takes less than a
minute to run. The weakness is that it only captures
running processes and loaded modules at the time of
its scan. If a spyware program gets instantiated
through an unknown ASEP and exits before
AskStrider is invoked, AskStrider may not be able to
capture any information revealing the unknown ASEP.

The Strider Troubleshooter [WVD+03] can capture
such behavior in an ‘‘auto-start trace’’ that records
every single file and Registry read/write during the

auto-start process. This tool asks the user of an
infected machine to select a System Restore checkpoint
(of files and Registry) that was taken before the infec-
tion. By comparing that checkpointed state with the cur-
rent infected state, the tool calculates a diff set that con-
tains all changes made by the spyware installation. Then
it intersects the diff set with the auto-start trace to pro-
duce a report that contains all ASEP hooks made by the
spyware installation and accessed during auto-start.

For example, in the case of Praize Desktop,
HKCU\Control Panel\Desktop\Wallpaper was a previ-
ously unknown ASEP that allows running an HTML
file as a desktop picture. It did not show up in
AskStrider, but it showed up in the Strider Trou-
bleshooter report as a newly discovered ASEP.

40 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wang, et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

(a) After Installing SpeedBit: a new process DAP.exe and four new DLLs are highlighted.

(b) After Disabling All New ASEP Hooks from Gatekeeper and Rebooting the Machine: two new DLLs are still
loaded through a previously unknown ASEP.

Figure 8: AskStrider for ASEP discovery.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 41

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

ASEP Discovery Through Strider Trace Analysis

By definition, ASEP programs must (1) appear
in the ‘‘auto-start trace’’ that covers the execution win-
dow from the start of the booting process to the point
when the machine ‘‘finishes all initializations and is
ready to interact with the user’’; and (2) get instanti-
ated through an extensibility point lookup, instead of
having their instantiation hard-wired into other pro-
grams that are auto-started.

New ASEPs can therefore be discovered by ana-
lyzing the auto-start trace from any machine to iden-
tify the following indirection pattern: an executable
filename is returned as part of a file or Registry query
operation, followed by an instantiation of that exe-
cutable file.

In an experiment, we collected auto-start traces
from five Windows XP machines for analysis. By
looking for the indirection pattern, we were able to
validate some of the known ASEPs in our list and dis-
cover 17 new ASEPs (including five ASEPs for a
third-party, auto-start anti-virus program). There are
three distinctive classes of patterns:

1) ASEPs that accommodate multiple hooks: for
example, HKLM\SOFTWARE\Microsoft\InetStp\
Extensions allows for multiple administrative
extensions for the IIS server; HKLM\SOFTWARE\
Microsoft\Cryptography\Defaults\Provider allows
for multiple providers; HKLM\SOFTWARE\
Microsoft\Windows NT\Current Version\Winl-
ogon\Userinit allows for multiple initialization
programs specified in a comma-separated
string.

2) ASEPs with a single hook: for example, the
ASEP HKCR\Network\SharingHandler appears
to allow only one handler.

3) ASEPs that require multiple indirections for
lookup: for example, every hook to the ASEP
HKLM\SOFTWARE\Microsoft\Windows\Current
Version\ShellServiceObjectDelayLoad contains
a Class ID that is used in an additional Registry
lookup to retrieve the executable filename from
HKCR\CLSID\<Class ID>\InProcServer32.

We have observed a couple of interesting cases
where our analysis may produce ‘‘false-positive’’
ASEPs in the sense that it is arguable whether they
should be included in our list for monitoring. First,
some DLL files do not export any functions and are
only used as resource files to provide data; so they
may not be considered ASEPs. But they are still
potential ASEPs if a DllMain routine can be added to
cause code execution.

Another case is organization-specific ASEPs. For
example, all the machines in the same organization
may run an auto-start program deployed by its IT
department that exposes its own ASEPs. Obviously,
such ASEPs should not be added to the global list; but
the system administrators in the organization may

want to add them to their local list if they are con-
cerned about these ASEPs being hooked.

Discussions

Although Gatekeeper is proven to be effective
against today’s spyware, there are many different ways
in which spyware can evolve to evade detection. In
this section, we discuss such limitations and potential
future work to address them.

Limitations of ASEPs

In general, the following problem is intractable:
given the static persistent-state image stored on
a hard drive, determine what code will be exe-
cuted when a machine is booted into the OS
image stored on that drive.

Ideally, we need to trace all executions by actually
booting into that OS and recoding all processes, mod-
ules, drivers, and code segments that are loaded or
injected.

We introduced the concept of ASEPs in the con-
text of spyware management as an approximation to
the non-existing solution to the above problem. This
approximation has at least five limitations:

1) Definition of ‘‘popular and commonly run
programs’’: beyond OS programs, we have
included only the Web browser for ASEP con-
sideration. Many commercial or freeware appli-
cations may have a sufficiently large install
base and running frequency that make them
attractive spyware targets.

2) Cascading ASEP programs: any ASEP pro-
grams can provide their own custom ASEPs for
other programs to hook. So, in theory, there can
be chains of an infinite number of ASEPs that
allow cascading auto-starts of ASEP programs.
It is also possible for an ASEP program to
serve as a custom task scheduler that allows
spyware programs to be launched after any def-
inition of the ‘‘auto-start phase.’’

3) Non-ASEP auto-start programs: The ASEP-
based approach does not capture programs that
auto-start through non-extensibility mecha-
nisms. Although we have not seen many spy-
ware programs infecting system files directly
today, that approach may be popular among
Trojans [I04] and may become popular among
spyware programs once Gatekeeper exposes all
ASEP hooks. We need to rely on additional sig-
nature or file-hashing mechanisms to protect sys-
tem files. If a malicious spyware program uses
code injection and thread hijacking to evade
detection, ASEP monitoring should still be useful
in capturing the first instantiated spyware pro-
gram. In theory, it may also be possible for a pro-
gram to hide inside an input file and get instanti-
ated when the file is read by an auto-start pro-
gram by exploiting code vulnerabilities.

42 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wang, et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

4) ASEP hijacking: Gatekeeper assumes that the
underlying operating system has not been com-
promised, so the list of ASEPs on a spyware-
infected machine is the same as that on a clean
machine. It is possible that a malicious spyware
program can ‘‘hijack’’ the ASEPs by replacing
system files; essentially, the machine can be
considered to be running a different operating
system in such cases. For example, a Web post-
ing [CAR04] describes a way to modify the
binary file of explorer.exe to create arbitrary
ASEPs. In our current work, we consider such
malicious programs targets of anti-virus pro-
grams, not Gatekeeper. In our future work, we
plan to rely on digital signatures and file hashes
to verify that the underlying operating system is
not compromised.

5) ASEP hook hiding: Another way for malicious
software to defeat ASEP-based scanning is to
intercept all file and Registry query operations
and remove the software’s own ASEP hooks
from the query results before they are returned
to Gatekeeper. Many RootKits are known to
provide such capability [P03]. There have been
recent reports that an open-source RootKit is
being used to hide spyware programs from anti-
spyware tools [HD]. We plan to augment Gate-
keeper with an external scanning mechanism,
which is required to combat such malicious
programs that essentially take over the entire
machine once they get started [WVR+04].

Finally, the operating system can be configured
to auto-start programs based on generated system
events resulting from the insertion of removable media
like CDs, hot-pluggable hardware like USB key rings,
etc. However, as long as they require explicit user
actions to connect the media to the machine and are
not automatically started upon reboot, they are not
considered ASEPs in this paper.

Bundle Management Challenges
Our bundle tracing technique assumes that the

spyware installation programs that we monitor do not
try to intentionally confuse or maliciously attack Gate-
keeper. One can imagine that a deceptive spyware
could hijack ARP and ASEP hook entries of other
good software so that they are incorrectly included in
the bad bundle. A malicious spyware running with
administrator privileges could even disable the bundle
tracer or modify the recorded bundle information.

There are two additional challenges that do not
involve malicious behavior. First, since our bundle
tracer does not track inter-process communications, any
bundle installation that involves communications
between multiple process trees may appear as multiple,
separate bundles. Second, if two toolbars from two dif-
ferent bundles are loaded into the browser at the same
time and one of them expands the bundle by hooking an
additional ASEP, process tree-based tracking will not

provide sufficiently fine-grain information to determine
which bundle the new ASEP hook should belong to.

Limitations of AskStrider
AskStrider extracts the last-update timestamps of

files from the System Restore file change log and is
therefore subject to its limitations. First, System Restore
only monitors files with certain filename extensions
[SRM]; spyware programs with extensions outside the
monitored set will not be captured by AskStrider ’s high-
lighting of recent changes because their updates will not
be captured in the file change log.

Second, System Restore excludes certain tempo-
rary folders from monitoring. As a result, file updates
inside those folders will not be captured in the change
log. Third, a malicious spyware program may delete
or corrupt the file change log or hide its processes and
modules from the AskStrider scan.

Finally, a main feature of AskStrider is that it
highlights recent changes to aid troubleshooting. We
have found that such filtering mechanisms are essen-
tial for reducing the complexity in many systems man-
agement problems. An obvious limitation of this
approach is that it will not work well if a user invokes
AskStrider long after a spyware installation.

Other Web Browsers and Non-Windows Platforms

In this section, we study the ASEPs and spy-
ware-related issues in other Web browsers and operat-
ing systems.

Other Web Browsers
As shown in the Outer Gates in Figure 1, code

vulnerabilities can be used as an infection vector for
spyware through ‘‘drive-by downloads.’’ The problem
is not unique to the IE browser; other browsers also
have known vulnerabilities, such as Mozilla [KVM]
and Netscape [HN00]. Exploits of vulnerabilities in
the Mozilla and Firefox Web browsers have been
widely publicized in news articles [M04, MO04, BZ].
Also, Secunia Advisories [SEC] often describe vulner-
abilities that affect the Opera and Mozilla Web
browsers.

Other browsers also expose extension mecha-
nisms similar to Windows ActiveX as another infec-
tion vector for spyware through plug-in installations
with explicit or implicit user consent. Those affecting
Mozilla have used a .xpi file which is essentially a .zip
file containing a JavaScript installer and the
files/directories to install [CNPM]. An example of this
is the Flingstone XPI extension at http://www2.fling-
stone.com/cab/sbc_netscape.xpi which contains
install.js and sbc_netscape.exe. When installed through
Mozilla Firefox, Flingstone adds several ASEP hooks to
the BHO and HKLM Run key. This infects the Win-
dows OS in addition to IE although it does not appear
to infect Firefox itself [DSM04]. The bundle includes
the well-known software bridge.dll [FB04]. We also
found a Flingstone-clone ist_netscape.xpi containing

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 43

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

install.js and istinstall_netscape.exe and exhibiting
essentially the same behavior.

Just like IE, other Web browsers expose ASEPs
that can potentially be hooked by spyware. For example,
Mozilla Firefox has a file system-based ASEP at C:\Pro-
gram Files\Mozilla Firefox\plugins; all plug-in DLL
files placed in that directory are automatically loaded by
Mozilla. It also scans a Registry-based ASEP at
HKLM\SOFTWARE\MozillaPlugins to locate plug-ins
that register with the browser through PLIDs [PLUG].

The homepage and search page related ASEPs of
non-IE browsers are generally stored in application
specific preference files rather than the Registry. For
example, there are two user preference files in the pro-
file directory of Netscape/Mozilla: prefs.js that con-
tains automatically generated default preferences, and
user.js which contains options that override settings in
prefs.js. Spyware can hijack the home page and the
default search page of these browsers by altering the
value of user_pref(‘‘browser.startup.homepage,’’
‘‘ < h o m e page>’’) and user_pref(‘‘browser.search.
defaultengine,’’ ‘‘<search page>’’) in prefs.js [NCPI].
For example, the Lop.com software has been known
to hijack Netscape/Mozilla home page [LOP]. In gen-
eral there appears to be less spyware targeting non-IE
browsers, presumably because their smaller install
base is less attractive to spyware developers.

In some cases, the search and download func-
tionalities of the browser software itself may raise
similar privacy concerns. It was reported [NNB02]
that, while data on searches conducted from IE’s
search pane was sent directly to the designated search
site and was not intercepted by Microsoft, searches
performed by using Netscape Navigator’s Search but-
ton were intercepted by Netscape and tagged with
information that can potentially identify individual
machines. The term ‘‘File Download Spyware’’
[FDS00] refers to those file downloaders that by
default track user’s entire file download history tagged
with a unique ID, the machine’s IP address, or even
the user’s personal email address.
Non-Windows Platforms

ASEPs on UNIX operating systems such as
Linux, AIX, and Solaris can be roughly classified into
four categories:

1) The inittab and rc files: The file /etc/inittab
instructs the init process what to do when the
system is up and initializing. It typically asks
init to allow user logons (gettys) and start all
the processes in the directories specified by the
/etc/rc.d/rc file and other rc files such as
/etc/rc.d/rc.local, which is a common place for
the root user to customize the system, including
loading additional daemons.

2) The crontab tool: The cron daemon is started
from either the rc or the rc.local file, and pro-
vides task scheduling service to run other pro-
cesses at a specific time or periodically. Every

minute, cron searches /var/spool/cron for entries
that match users in the /etc/passwd file and also
searches /etc/crontab for system entries (note that
any modification to this file requires root privi-
leges.) It then executes any commands that are
scheduled to run.

3) Configuration profiles for user environment
(such as .bash for bash shell, .xinitrc or .Xde-
faults for X environment, and other profiles in
/etc/) are potential ASEPs. Users are typically
unaware of what is loaded when they log on, or
start an X window session. A simple script file
that contains the command
script -fq /tmp/.syslog

can be used to hook an ASEP to record the ter-
minal activities of the whole system or a spe-
cific user account, depending on the ASEP
location. The recording is usually stored in a
hidden file (i.e., a filename that begins with a
‘‘.’’) under the global-writable /tmp directory

4) Loadable Kernel Modules (LKMs) are units
of object code that can be dynamically loaded
into the kernel to provide new functionalities.
By default most LKM object files are placed in
the directory /lib/modules. However, some cus-
tomized LKM files can reside anywhere on the
system [LKMP]. The programs insmod and
rmmod are responsible for inserting and remov-
ing LKMs, respectively.

Our preliminary investigation shows that spy-
ware is not a substantial threat to the current
Unix/Linux world. Perhaps this is because Unix/Linux
has a much smaller install base than Windows in the
consumer desktop market, which makes it less attrac-
tive to spyware writers. Another reason might be that
most Unix/Linux users do not run as administrators;
many, if not most, of the spyware programs require
administrator privileges to install and run. Finally,
Unix/Linux users who do run as administrators are
advanced users who are unlikely to fall into the trap of
installing spyware.

Related Work

Earlier versions of commercial anti-spyware pro-
grams focused on the signature-based, on-demand
scanning approach. The latest Ad-Aware Ad-Watch
real-time monitor [AP] and Spybot-S&D TeaTimer
[ST] provide real-time monitoring similar to Gate-
keeper ASEP monitoring. But they do not seem to
include centralized auditing and bundle tracing, and
the context information that they provide to the users
is limited, making them less effective as a manage-
ment solution as compared to Gatekeeper. On the
other hand, they put more emphasis on blocking and
protection. The Autoruns tool [AR04] and the Win-
dows XP SP2 IE Add-on Manager both cover only a
subset of ASEPs known to be hooked by spyware.

44 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

Wang, et al. Gatekeeper: Monitoring Auto-Start Extensibility Points . . .

An alternative approach to combating spyware
programs is to cut off their communications with remote
servers so that collected personal information will not be
sent out. One way to achieve this is to use the Hosts file
to map all blacklisted host names to the local loopback
address [BUP]. This approach essentially applies
known-bad signatures to the host names and similarly
lacks the context information for proper spyware man-
agement. Moreover, it addresses only the privacy issue,
not the reliability and performance issues.

Saroiu, et al. [SGL04] presented a measurement
study of four widespread spyware programs in a uni-
versity environment by analyzing a week-long trace of
network activity. Their results showed that the spy-
ware problem is of large scope. They also described a
specific vulnerability in actual spyware programs to
demonstrate that the potential for spyware to introduce
substantial security problems is real.

Summary

In this paper, we have modeled the spyware man-
agement problem as an ASEP tracking and bundling
problem. We have described the Gatekeeper solution
that provides visibility into important system changes
and answers the following critical questions for every
potential spyware program:

1) ‘‘Where did it come from?’’ Our URL source
tracing identifies the Web site from which the
program was downloaded; bundle tracing iden-
tifies the freeware that bundled the spyware.

2) ‘‘ W h e n was it installed, where was it installed,
and what was installed?’’ Our ASEP monitor-
ing detects and records the installation events,
and context lookup determines which file is
installed where.

3) ‘‘How does it get instantiated?’’ The ASEP to
which the program is hooking determines how
it will get auto-started.

4) ‘‘How do I disable/remove it?’’ Our extended
Add/Remove Programs user interface exposes
each ASEP hook and allows simple disabling;
alternatively, the ARP entries that are bundled
with the ASEP hooks can be used for removal.

With these capabilities, the Gatekeeper tool in its
current form is useful for technical users and system
administrators to gain back control of their machines
and to effectively manage spyware. But there remains
one critical piece to the puzzle to make the tool useful
and make the presentation actionable by average
users:

5) ‘‘What does it do?’’ This will require detailed
experiments and analysis of the program and
matching the program’s behavior against a list
of objective criteria. It will then allow the user
to make an informed decision about whether to
remove the program, based on the trade-off
between the benefit and the potential pri-
vacy/security/reliability/performance concerns
of all the bundled programs.

Author Information

Yi-Min Wang manages the Systems Management
Research Group and leads the Strider project at
Microsoft Research, Redmond. He received his Ph.D.
in Electrical and Computer Engineering from Univer-
sity of Illinois at Urbana-Champaign in 1993, worked
at AT&T Bell Labs from 1993 to 1997, and joined
Microsoft in 1998. His research interests include sys-
tems and security management, fault tolerance, home
networking, and distributed systems.

Roussi Roussev is currently a Ph.D. student at
Florida Institute of Technology. He was an intern at
Microsoft Research in 2003 and 2004. His research
interests include security, systems management and
software verification.

Chad Verbowski has been a Development Lead at
Microsoft for the past six years working on multiple
Wi n d o w s OS components and Systems Management
software. Previously Chad worked for several years
building and deploying management systems in real
world environments. He is currently with Microsoft
Research. Chad can be reached at chadv@microsoft.com .

Aaron Johnson has contracted with the Systems
Management Research Group at Microsoft Research.
He received a Bachelors degree in Computer Informa-
tion Systems in 1990 from DeVry Institute of Technol-
ogy in Phoenix. He has nine years of experience trou-
bleshooting Windows hardware and software problems.

Ming-Wei Wu is a software engineer at Institute for
Information Industry and the chair of TWING (TaiWan
Internet Next Generation) at Taiwan Network Informa-
tion Center. He received his MS degree from National
Chiao Tung University in 2003 and has been a Ph.D.
candidate in Electrical Engineering at National Taiwan
University since 2004. His research interests include net-
work security, P2P networking and fault tolerance.

Yennun Huang received his MS and Ph.D.
degrees from University of Maryland. He worked for
AT&T/Lucent Bell Labs for 12 years and was the
Department Head of the AT&T Dependable Comput-
ing Research Department before he joined a startup as
VP of Engineering in 2001. His research interests
include dependable distributed computing, mobile in-
frastructure and applications, and middleware.

Sy-Yen Kuo has been with National Taiwan Uni-
versity since 1991 and was Head of Department of
Electrical Engineering from 2001 to 2004. He
received his Ph.D. in Computer Science from the Uni-
versity of Illinois at Urbana-Champaign in 1987, was
a faculty member in the Department of Electrical and
Computer Engineering at the University of Arizona
from 1988 to 1991, and was the Chairman of the
Department of Computer Science and Information
Engineering, National Dong Hwa University, Taiwan
from 1995 to 1998. His current research interests
include software reliability engineering, mobile com-
puting, and dependable systems and networks.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 45

Gatekeeper: Monitoring Auto-Start Extensibility Points . . . Wang, et al.

References

[AA] Ad-Aware, http://www.lavasoft.de/ms/index.htm .
[AP] Ad-Aware Plus, http://www.lavasoftusa.com/

software/adawareplus/ .
[AR04] Autoruns, http://www.sysinternals.com/ntw2k/

freeware/autoruns.shtml .
[BUP] Blocking Unwanted Parasites with a Hosts

File, http://www.mvps.org/winhelp2002/hosts.htm .
[BZ] Bugzilla Bug 249004, http://bugzilla.mozilla.org/

show_bug.cgi?id=249004 .
[C04] Spyware Cures May Cause More Harm Than

Good, http://news.com.com/2100-1032-5153485.
html , Feb, 2004.

[CAR04] ‘‘Create New Autorun by Patching Explore.
exe,’’ The Online Rootkit Magazine, http://www.
rootkit.com/newsread.php?newsid=118 , 2004.

[CNPM] Creating New Packages for Mozilla, http://
www.mozilla.org/docs/xul/xulnotes/xulnote_
packages.html .

[DRD+04] Dunagan, John, Roussi Roussev, Brad
Daniels, Aaron Johson, Chad Verbowski, and Yi-
Min Wang, ‘‘Towards a Self-Managing Software
Patching Process Using Black-Box Persistent-
State Manifests,’’ in Proc. Int. Conf. Autonomic
Computing, May, 2004.

[DSM04] ‘‘Discussion of sbc_netscape.xpi from
MozillaZine,’’ http://forums.mozillazine.org/
viewtopic.php?t=66531 .

[E04A] ‘‘EarthLink Finds Rampant Spyware, Tro-
jans,’’ InfoWorld, http://www.infoworld.com/
article/04/04/15/HNearthspyware_1.html , April
15, 2004.

[E04B] ‘‘FTC to Look Closer at Spyware,’’ Washing-
ton Post, http://www.washingtonpost.com/wp-dyn/
articles/A22514-2004Apr18.html, April 19, 2004.

[FB04] Flingstone Bridge, http://www.kephyr.com/
spywarescanner/library/flingstonebridge/index.phtml .

[FDS00] The Anatomy of File Download Spyware,
http://grc.com/downloaders.htm .

[FTC04] ‘‘Monitoring Software on Your PC: Spyware,
Adware, and Other Software,’’ Workshop Tran-
script, Federal Trade Commission, http://www.
ftc.gov/bcp/workshops/spyware/transcript.pdf .

[G03] Garfinkel, Simson L., A Web Service for File
Fingerprints: The Goods, the Bads, and the
Unknowns, http://www.simson.net/clips/2003.15_
972.FinalPaper.pdf .

[HD] ‘‘Nasty New Parasite,’’ SpywareInfo Newsletter,
June 18, http://www.spywareinfo.com/newsletter/
archives/0604/8.php .

[HN00] ‘‘Hacker finds hole in Netscape,’’ Wi red, http://
www.wired.com/news/technology/0,1282,38087,
00.html .

[I04] Institution 2004 Remote Admin Tool, http://www.
evileyesoftware.com/ees/content.php?content.43 .

[LKMP] The Linux Kernel Module Programming
Guide, http://tldp.org/LDP/lkmpg/ .

[KVM] Known Vulnerabilities in Mozilla, http://
www.mozilla.org/projects/security/known-
vulnerabilities.html .

[LOP] Lop.com (‘‘Live Online Portal’’) Parasite,
http://www.doxdesk.com/parasite/lop.html .

[M04] ‘‘Mozilla Flaw Lets Links Run Arbitrary Pro-
grams,’’ eWeek, http://www.eweek.com/article2/
0,1759,1621451,00.asp , July 8, 2004.

[MO04] ‘‘Mozilla to squash security bugs,’’ CNET
News.com, http://news.com.com/Mozilla+to+
squash+security+bugs/2100-1002_3-5286138.html ,
July 27, 2004.

[NCPI] Netscape Communicator Preferences Index,
http://developer.netscape.com/docs/manuals/
communicator/preferences/ .

[NNB02] Netscape Navigator Browser Snoops on Web
Searches, http://www.computeruser.com/news/02/
03/08/news5.html .

[NSRL] National Software Reference Library (NSRL)
Project Web Site, http://www.nsrl.nist.gov/ .

[P03] Poulsen, Kevin, ‘‘Windows Root Kits a Stealthy
Threat,’’ SecurityFocus, http://www.securityfocus.
com/news/2879, Mar 5, 2003.

[PLUG] PluginDoc for Mozilla, http://plugindoc.mozdev.
org/notes.html#scan-acroread .

[PP] Pest Patrol, http://research.pestpatrol.com .
[SB] Spybot-S&D, http://www.safer-networking.org/

microsoft.en.html .
[SEC] Secunia Advisories, http://secunia.com/advisories/ .
[SGL04] Saroiu, S., S. D. Gribble, and H. M. Levy,

‘‘Measurement and Analysis of Spyware Infec-
tions in a University Environment,’’ Proc. of the
First USENIX/ACM Symp. on Networked Sys-
tems Design and Implementation (NSDI), 2004.

[SR01] Wi n d o w s XP System Restore, http://msdn.
microsoft.com/library/default.asp?url=/library/en-
us/dnwxp/html/windowsxpsystemrestore.asp .

[SRM] System Restore Monitored File Extensions, http://
msdn.microsoft.com/library/default.asp?url=/
library/en-us/sr/sr/monitored_file_extensions.asp .

[ST] Spybot-S&D TeaTimer , http://www.safer-
networking.org/en/faq/33.html .

[WRV+04] Wang, Yi-Min, Roussi Roussev, Chad
Ve r b o w s k i , Aaron Johnson, and David Ladd,
‘‘ A s k S t r i d e r : What Has Changed on My Machine
Lately?,’’ Microsoft Research Technical Report
MSR-TR-2004-03, Jan, 2004.

[WVD+03] Wang, Yi-Min, Chad Verbowski, John
Dunagan, Yu Chen, Helen J. Wang, Chun Yuan,
and Zheng Zhang, ‘‘STRIDER: A Black-box,
State-based Approach to Change and Configura-
tion Management and Support,’’ Proc. Usenix
Large Installation Systems Administration (LISA)
Conference, pp. 159-171, October 2003.

[WVR+04] Wang, Yi-Min, Binh Vo, Roussi Roussev,
Chad Verbowski, and Aaron Johnson, ‘‘Strider
GhostBuster: Why It’s A Bad Idea For Stealth
Software To Hide Files,’’ Microsoft Research
Technical Report MSR-TR-2004-71, July 2004.

46 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA

