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ABSTRACT 
Method inlining is one of the optimizations that have a 
significant impact on both system performance and total 
compilation overhead in a dynamic compilation system. 
This paper describes an empirical study of online-
profile-directed method inlining for obtaining both per-
formance benefits and compilation time reductions in 
our dynamic compilation system. We rely solely on the 
profile information in deciding which methods should 
be inlined along which call paths, without employing the 
existing static heuristics, except that methods with ex-
tremely small bodies are always inlined. The call site 
distribution and invocation frequency are collected us-
ing dynamically generated instrumentation code, and are 
given to the recompilation controller for analyzing and 
organizing the inlining requests. The experimental re-
sults show that the strategy of relying on the profile in-
formation in method inlining decision is quite effective 
for reducing compilation overhead and/or for improving 
the performance. It can also provide flexibility for inlin-
ing decisions based on the type of profile, such as spiky 
or flat profiles. The results show that the strategy can be 
the basis of automatic optimization selection for a future 
efficient dynamic compilation framework. 

1. INTRODUCTION 
Dynamic compilation systems need to reconcile the con-
flicting requirements between fast compilation speed 
and fast execution performance. We would like the sys-
tem to generate highly efficient code for good perform-
ance, but the system needs to be lightweight enough to 
avoid any startup delays or intermittent execution pauses 
that may occur due to the runtime overhead of the dy-
namic compilation. 

The high performance implementation of Java Virtual 
Machines (JVM) is moving toward exploitation of adap-
tive compilation optimizations on the basis of online 
runtime profile information [1][9][20][23]. Typically 
these systems have multiple execution modes. They be-
gin the program execution using the interpreter or base-
line compiler as the first execution mode. When the 
program’s frequently executed methods or critical hot 
spots are detected, they use the optimizing compiler for 

those selected methods to run in the next execution 
mode, obtaining better performance. Some systems em-
ploy several different optimization levels to select from 
based on the invocation frequency or relative impor-
tance of the target methods. 

In these systems, the set of optimizations provided for 
each optimization level is predetermined. Basically 
those optimizations considered to be lightweight, such 
as those with linear order to the size of the target code, 
are applied in the earlier optimization levels, and those 
with higher costs in compilation time or greater code 
size expansion are delayed to the later optimization lev-
els. However, the classification of optimizations into 
several different levels has been either intuitive work or 
just based on the measurements of compilation cost and 
performance benefit on a typical execution scenario ana-
lyzed offline [2]. Consequently, the optimizations ap-
plied are not necessarily effective for the actual target 
methods compiled with the given optimization level. 
That is, some optimizations may not be able to contrib-
ute to any useful transformation for performance im-
provement, but can result in a waste of compilation re-
sources. 

The problem here is that we equally apply the same set 
of optimizations for those methods selected to compile 
at that optimization level, regardless of the type and 
characteristics of each method. Ideally it is desirable to 
dynamically assemble a set of suitable optimizations de-
pending on the characteristics of the target methods so 
that we can apply only those optimizations known to be 
effective for the method. It would be better for the total 
cost and benefit management, if we could not only se-
lectively apply optimizations on performance critical 
methods, but also selectively assemble the optimizations 
that are effective for those methods. 

Method inlining, a well-known and very important tech-
nique in optimizing compilers, expands the target pro-
cedure body at the method invocation call sites, and it 
defines the scope of the compilation boundary. Toward 
the big picture of the efficient compilation framework, 
method inlining can naturally be the first target for a dy-
namic compilation strategy by exploiting the profile in-
formation collected at runtime, since it is one of the op-



timizations that have a significant impact on both per-
formance and compilation overhead.  

In this paper, we describe an empirical study of an 
online-profile-directed method inlining strategy in our 
dynamic compilation system. We rely solely on the pro-
file information for deciding which methods should be 
inlined along which call paths. Though many static heu-
ristics exist, the only one we use is to always inline very 
small methods. The ultimate goal of our research is to 
explore the opportunities for dynamic automatic optimi-
zation selections, and the first step is to evaluate the po-
tential benefits and limitations of this approach for 
method inlining. 

The following are the contributions of this paper: 

��Online collection of call site information: We pre-
sent a mechanism for dynamic instrumentation, 
which collects the call sites distribution and invoca-
tion frequency for hot methods in order to help make 
decisions on method inlining during recompilation. 
This is quite different from the existing approach of 
constructing a dynamic call graph through sampling 
during the entire period of program execution. 

��Detailed evaluation of profile-directed method 
inlining policies: We present detailed evaluation re-
sults of the benefits and limitations regarding both 
performance and compilation overhead for several 
inlining policies: two variations of profile-directed 
method inlining, existing static inlining heuristics, 
and a hybrid of both. We also evaluated inlining 
based on offline-collected profile information to 
know the upper bound of the potential of the profile-
directed method inlining. 

The rest of this paper is organized as follows. The next 
section is an overview of our dynamic compilation sys-
tem, and describes the existing inlining policy and po-
tential impacts on both performance and compilation 
time. Section 3 describes our design and implementation 

of online-profile-directed method inlining using the in-
strumentation-based information about call site. Section 
4 presents the experimental results on both performance 
and compilation overhead by comparing several inlining 
policies. Section 5 discusses the results and possible fu-
ture research towards automatic optimization selection. 
Section 6 summarizes the related work, and finally Sec-
tion 7 presents our conclusions. 

2. BACKGROUND 
The overall system architecture of our dynamic optimi-
zation framework is described in detail in [23]. In this 
section, we briefly describe the system characteristics 
and features that are closely related to this study, and 
then we describe the existing static-heuristics-based 
inlining policy and its impact on both compilation time 
and performance. 

2.1 System Overview 
Figure 1 depicts the overall architecture of our system. 
This is a multi-level compilation system, with a mixed 
mode interpreter (MMI) and three compilation levels 
(level-0 to level-2). Initially all methods are interpreted 
by the MMI. A counter for accumulating both method 
invocation frequencies and loop iterations is provided 
for each method and initialized with a threshold value. 
The counter is decremented whenever the method is in-
voked or loops within the method are iterated. When the 
counter reaches zero, the method is considered as fre-
quently invoked or computation intensive, and the first 
compilation is triggered.  

The dynamic compiler has a variety of optimization ca-
pabilities. The level-0 compilation employs only a very 
limited set of optimizations for minimizing the compila-
tion overhead. For example, it considers method inlining 
only for extremely small target methods as described in 
Section 2.2. It disables most of the dataflow optimiza-
tions except for very basic copy and constant propaga-

Figure 1. System architecture of our dynamic compilation system. 
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tion. The level-1 compilation enhances level-0 by em-
ploying additional optimizations, including more ag-
gressive full-fledged method inlining, a wider set of 
dataflow optimizations, and an additional pass for code 
generation. The level-2 compilation is augmented with 
all of the remaining optimizations available in our sys-
tem, such as escape analysis and stack object allocation, 
code scheduling, and DAG-based optimizations1. 

The level-0 compilation is invoked from the MMI and is 
executed as an application thread, while level-1 and 
level-2 compilations are performed by a separate compi-
lation thread in the background. The upgrade recompila-
tion from level-0 compiled code to higher-level opti-
mized code is triggered on the basis of the hotness level 
of the compiled method as detected by a timer-based 
sampling profiler [24]. Depending on the relative hot-
ness level, the method can be promoted from level-0 
compiled code to either level-1 or directly to level-2 op-
timized code. This decision is made based on different 
thresholds on the hotness level for each level-1 and 
level-2 method promotion. 

The sampling profiler periodically monitors the program 
counters of application threads, and keeps track of 
methods in threads that are using the most CPU time by 
incrementing a hotness count associated with each 
method. The profiler keeps the current hot methods in a 
linked list, sorted by the hotness count, and then groups 
them together and gives to the recompilation controller 
at every fixed interval for upgrade recompilation. The 
sampling profiler operates continuously during the en-
tire period of program execution to adapt effectively to 
the changes of the program’s behavior.  

There is another profiler, an instrumenting profiler, used 
when detailed information needs to be collected from 
the target method. The instrumenting profiler, when in-
voked, dynamically generates code for collecting speci-
fied data from the target method, and installs it into the 
compiled code by rewriting the entry instruction of the 
target. After collecting a predetermined amount of data, 
the generated instrumentation code automatically unin-
stalls itself from the target code in order to minimize the 
performance impact. Thus the compiler can take advan-
tage of the online profile information dynamically col-
lected at runtime for the level-1 and level-2 compila-
tions. This instrumentation mechanism is used for 
collecting call site distributions and execution 
frequencies to guide method inlining in this study. 

This dynamic instrumentation mechanism allows the in-
tensive monitoring of the runtime application behavior 
for a certain interval of the program’s execution. By 
combining this technique with the sampling profiler, we 
can benefit from two nice properties of online profiling: 

low overhead and reliable profiling results. It is low 
overhead because we can limit the targets of the instru-
mentation to only those hot methods we are interested in 
for recompilation. It is reliable because we can obtain 
representative profiles for real applications by delaying 
the instrumentation installation until the program hot re-
gions are discovered.  

2.2 Static Heuristics Based Inlining 
Our dynamic compiler is able to inline any methods re-
gardless of the context of the call sites and the types of 
caller or callee methods. For example, there is no re-
striction in inlining synchronized methods or methods 
with try-catch blocks, nor against inlining methods into 
call sites within a synchronized method or a synchro-
nized block. Thus the inlining decision can be made 
purely from the cost-benefit estimate for the method be-
ing compiled.  

There is a class of methods in Java that simply result in 
a single instruction of code when compiled, such as the 
one just returning an object field value. Other methods 
may turn out to be very small number of instructions for 
their procedure body after compilation. We call these 
tiny methods. Our implementation identifies them based 
on the estimated compiled code size2. 

Tiny method: This is a method whose estimated com-
piled code is equal or less than the corresponding call 
site code sequence (argument setting, volatile registers 
saving, and the call itself). That is, the entire body of the 
method is expected to fit into the space required for the 
method invocation. 

Since invocation and frame allocation costs outweigh 
the execution costs of the method bodies for these 
methods, and since inlining them is considered com-
pletely beneficial without causing any harmful effects in 
either compilation time or code size expansion, they are 
always inlined at all compilation levels. Otherwise we 
employ static heuristics to perform method inlining in an 
aggressive way while keeping the code expansion within 
a reasonable size. 

The inliner first builds a possibly large tree of inlined 
scopes with allowable sizes and depths using optimistic 
assumptions, and then looks at the total cost by checking 
each individual decision to come up with a pruned final 
tree. When looking at the total cost, the inliner manages 
two separate budgets proportional to the original size of 
the method: one for tiny methods (and profile-directed 
methods, if any), and the other for any type of method. 
It tries to greedily incorporate as many methods as pos-
sible in the given tree using the static heuristics until the 
predetermined budget is used up. Currently the static 
heuristics consist of the following rules. 



��If the total number of local variables and stack vari-
ables for the method being compiled (both caller and 
callees) exceeds a threshold, reject the method for 
inlining. 

��If the total estimated size of the compiled code for 
the methods being compiled (both caller and callees) 
exceeds a threshold, reject the method for inlining.  

��If the estimated size of the compiled code for the 
target method being inlined (callee only) exceeds a 
threshold, reject the method for inlining. This is to 
prevent wasting the total inlining budget due to a 
single excessively large method. 

��If the call site is within a basic block which has not 
yet been executed at the time of the compilation, 
then it is considered a cold block of the method and 
the inlining is not performed. On the other hand, if 
the call site is within a loop, it is considered a hot 
block, and the inlining is tried for deeper nest of call 
chains than for outside a loop. 

The devirtualization of dynamically dispatched call sites 
is done at all compilation levels based on the class hier-
archy analysis (CHA) and type flow analysis, and it pro-
duces either guarded code (via class tests or method 
tests) or unguarded code (via code patching on invalida-
tion) [15]. Preexistence analysis is also performed to 
safely remove guard code and back-up paths without re-
quiring on-stack replacement [11]. The resulting de-
virtualized call sites then may or may not be inlined ac-
cording to the static rules described above. 

Only tiny methods are inlined in level-0 compilation. In 
level-1 and level-2 compilation, the broader range of 
methods within the conditions of the above static heuris-
tics are considered for inlining. There is no difference 

between level-1 and level-2 compilation in terms of the 
scope and aggressiveness of inlining. 

As a result of method inlining, a data structure called an 
inlined method frame (IMF) is produced for each call 
site to provide information about the inlining context for 
the runtime system, which needs to know the exact call 
stack and call context prior to inlining. For example, the 
security manager requires the correct depth of the cur-
rent call-chain on the stack, or a runtime exception is 
raised. The exception handler also requires the inlining 
context of call sites in order to keep track of the han-
dlers for catching exceptions from the current context. 

Figure 2 shows the compilation overhead for three dif-
ferent policies of method inlining when running two in-
dustry standard benchmarks. Static-inline indicates us-
ing the existing static heuristics for inlining in level-1 
and level-2 compilation, tiny-only means inlining only 
tiny methods in level-1 and level-2 as well as level-0 
compilation, and no-inline performs no method inlining 
at any level of compilation regardless of the size of the 
target methods. Note that devirtualization is still enabled 
for all three cases. The data was collected based on the 
system configuration described in Section 2.1 and using 
the methodology described in Section 4.1. 

Each bar gives a breakdown of where in the optimiza-
tion phase time is spent for compilation. Flow-graph in-
dicates the time for basic block generation, inlining 
analysis to determine the scope of the compilation 
boundary, and flow graph construction for the expanded 
inlined code. Dataflow-opt is the time for a variety of 
dataflow-based optimizations, such as constant and copy 
propagation, redundant null-pointer and array-bound 
check elimination. DAG-opt is for DAG-based loop op-
timization and pre-pass code scheduling. Code-gen in-
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cludes the time for register assignment, code generation, 
and code scheduling. Others denotes memory manage-
ment cost and any other code transformations, including 
live analysis and peephole optimizations, each costing 
less than 5% of the total compilation time. Figure 3 
shows the performance differences between the same set 
of three inlining policies. 

As we can see in these figures, method inlining has sig-
nificant impact on both compilation time and perform-
ance. With the static-inline policy, the time spent for 
inlining analysis and flow graph construction itself is not 
a big part of the total overhead, but optimizations in 
later phases, dataflow optimizations in particular, cause 
a major increase of the compilation time due to the 
largely expanded code that has to be traversed. The 
code size expansion and the work memory usage also 
have similar increases with this inlining policy, although 
the data is not shown here due to space limitations. 

The tiny-only inlining policy, on the other hand, has 
very little impact on compilation time, as expected, 
while it produces significant performance improvements 
over the no-inline case. For some benchmarks, it pro-
vides a majority of the performance gain that can be ob-
tained using the static-inline policy. On average, it con-
tributes a little over half of the performance improve-
ment compared to the static-inline policy. From these 
figures, our current policy of always inlining tiny meth-
ods is clearly justified. 

3. PROFILE-DIRECTED INLINING 
Method inlining can significantly impact both costs and 
benefits of compilation as shown in the previous section. 
We would like to apply this expensive but effective op-
timization selectively, rather than statically, based on 
dynamic program execution behavior, only for program 
points that are expected to provide the performance 
benefits. We basically remove any existing static heuris-
tics for method inlining as described above, except for 
always inlining tiny and small sized methods, and totally 
depend on the online profile data. Section 3.1 describes 
how the profile data can be collected for extracting po-
tential candidates for method inlining, and Section 3.2 
provides the procedure for identifying exact call paths to 
make inlining requests before recompilation. Section 3.3 
describes the problem of handling small methods, and 
Section 3.4 discusses how to make inlining decisions 
more appropriate for flat profile applications. 

3.1 Collection of Call Site Information 
As described in the previous section, we exploit the dy-
namic instrumentation mechanism for collecting infor-
mation on the call site distribution and execution fre-
quency at runtime. The instrumentation is basically ap-

plied for all hot methods that are detected by the sam-
pling profiler and which are candidates for promoting to 
the next level of optimization. Since the instrumentation 
code in this case is to find the most beneficial candi-
dates among the call sites where the current target 
method can be inlined, we need to ensure whether the 
current target is appropriate for inlining, or otherwise 
performing instrumentation is just overhead. Thus those 
methods that are apparently not inlinable into other 
methods (due to excessively large size, for example) are 
excluded as targets for instrumentation. Methods al-
ready compiled with the highest level of optimization 
are also excluded, since they are methods already con-
sidered for inlining but not inlined in the previous round 
of compilation. 

As shown in Figure 4, the code generated by the instru-
menting profiler is dynamically installed in the target 
code by replacing the entry code (after copying it into 
the instrumentation code region) with an unconditional 
jump instruction to direct control to the instrumentation 
code. At its first entry, the instrumentation code stores 
the current time stamp. It then examines the return ad-
dress stored on the top of the current stack, and records 
it in a form of table with values and their corresponding 
frequencies. Because of the overhead, only the single-
level history in the call stack is recorded. The maximum 
number of entries in the table is fixed. When the prede-
termined number of samples has been collected, the 
code again checks the current time and records how 
long it took to collect those samples by subtracting the 
start time. The code then uninstalls itself from the target 
code by restoring the original code at the entry point3.  

Thus two kinds of information can be collected for each 
method during an interval in the program’s execution: 
the distribution of callers and the frequency of invoca-
tions. The time recorded for sample collection indicates 
call frequency for the method for that fixed number of 
instrumentation samples. Since the hotness-count pro-
vided by the sampling profiler can largely depend on the 
size of the target method (it is easier for larger methods 
to get more sampling ticks), small but very frequently 
called methods may not receive the attention they de-
serve. In that sense, the fine-grained frequency informa-
tion can be useful in identifying hot call edges critical 
for inlining, and in compensating for the rather coarse-
grained hotness count of the sampling profiler. 

The instrumentation is successively applied to a group 
of recompilation target methods provided by the sam-
pling profiler at every fixed sampling interval. After in-
stallation, the recompilation controller periodically 
monitors the completion of profile collections on all of 
these methods, and if completed, it proceeds to the inlin-



ing analysis step described in the next section. This is 
implemented by setting a maximum wait count for the 
recompilation controller to give up the thread execution. 
If necessary, it stops profiling for methods that are in-
voked very infrequently and which will never reach the 
predetermined number of samples by directly manipulat-
ing the current profile count for those methods. 

3.2 Profile-Based Inlining Decision 
The recompilation candidates grouped together and 
given to the recompilation controller are then examined 
to identify the hot call paths appropriate for inlining 
among them. Upon completion of collecting the call site 
information, the decision on requesting method inlining 
proceeds with the following steps. 

1. Examination of the call site distribution profile: 
For each of the instrumented methods, the profiling 
result is examined in the first step. If there are just 
one or a few dominant call sites found in the profile 
information and the execution frequency is not too 
low, these are considered important candidates for 
inlining and thus a connection is created between the 
caller and the callee for each hot call edge. The edge 
is associated with a distribution ratio based on the 
count given to the corresponding call site address in 
the profile4. At the end of this step, a partial call 
graph is constructed, where nodes indicate recom-
pilation candidate methods, each of which has a hot-
ness count, and edges show dominant call connec-
tions from caller to callee, each assigned a distribu-
tion ratio (see Figure 5).   

2. Identifying exact call paths appropriate for inlin-
ing: In the next step, we identify the exact call paths 
for inlining requests by traversing the connection be-

tween multiple methods. We begin with a method 
having no outgoing edge, and traverse the connec-
tions up to the top of the call chain. In the traversal 
of the connections, the following two operations 
need to be done: 
Call site address conversion: Since the raw data of 
the profile information indicates a set of compiled 
code addresses where the invocation was made to 
the current target method, it does not specify the ex-
act call sites in the original form of the method bod-
ies. The compiled code address is therefore con-
verted to the offset of the corresponding bytecode 
instructions using the table generated at compile 
time. 
Hotness count adjustment: This is to correct the rela-
tive hotness level by assuming that inlining for the 
connected methods is performed. A portion of the 
hotness count of the callee (including values from its 
children) is distributed to each of its callers accord-
ing to the ratio for each incoming edge. When divid-
ing hotness counts from children into their multiple 
callers, the distribution ratio cannot be known pre-
cisely, because the profile information is not avail-
able for multiple-level histories of the call paths. 
Therefore, we use a constant ratios assumption [21] 
to approximate the actual ratio. That is, we assume 
the ratio is the same as the one recorded in the pro-
file. 

3. Request for method inlining: Finally, inlining re-
quests are made for the hot call paths identified 
above. These requests are stored in a persistent data-
base so that inlining decisions can be preserved for 
future recompilation to incorporate the previous 
inlining requests. This is important, as described in 
both the Self-93 [14] and Jalapeño [1] systems, to 
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avoid a performance perturbation resulting from os-
cillating between two compiled versions of a method, 
each with a different set of inlining decisions.  

4. Recompilation request: After all the relationships 
between the hot methods in the given group are ex-
amined and appropriate inlining is requested, the list 
of hot methods is again traversed to issue the final 
recompilation requests. If a method in the list is re-
quested to be inlined into another method, and there 
is no other call site for this method found in the pro-
file information, then the method is removed from 
consideration for recompilation. Likewise, those 
methods whose hotness count is below a threshold 
value as a result of the hotness count adjustment are 
discarded. A method already compiled with the 
highest optimization level will be recompiled again 
only when a new inlining request has been made and 
its estimated impact is above a threshold value. 

Since we consider the inlining possibilities among hot 
methods appearing in the group of hot methods, and 
since this group comes from sampling during an interval 
in the program execution, the resulting inlining requests 
are expected to contribute for a performance boost. In 
Step 2, however, there may be a call path where a caller 
is not included in the current group of hot methods, and 
it is possible to request inlining for such a case as well, 
as shown by the dashed line circle in Figure 5. This can 
be considered to be more aggressive inlining, and is 
evaluated in Section 4 as a variation of our profile-
directed inlining. We do not trigger the recompilation 
for the caller in this case, since the method is not known 
to be worth upgrading to higher optimization at this time. 
We leave such a method for the future until it is be pro-
moted by the sampling mechanism, at which time the 
inlining requests previously made for this method will 
all be incorporated in the recompilation. 

3.3 Small Methods 
Inlining with the above mechanism is only possible 
when the target method is identified as hot for dynamic 
instrumentation. Although tiny methods are always 
inlined, there are still some chances that other methods 
with very small bodies will be missed for selection as 
recompilation candidates due to the sampling nature of 
the profiler, and in that case it is unable to consider the 
inlining possibilities for those methods. To remedy this 
problem, small methods are also inlined, in addition to 
tiny methods, in level-1 and level-2 compilation under 
profile-directed inlining. 

It is difficult to define small methods. In contrast with 
tiny methods, inlining them may cause some additional 
overhead for both compilation time and code size ex-

pansion. The timer interval of the sampling profile af-
fects which small methods may be overlooked as inlin-
ing candidates. Our goal here is to spot as many of these 
overlooked candidates as possible, but also to minimize 
additional compilation overhead that can result from 
statically inlining these methods. In our current imple-
mentation, small methods are defined such that the esti-
mated compiled code is less than the total invocation 
overhead occurred in both caller and callee (the method 
prologue and epilogue, in addition to the call site code 
sequence itself). 

3.4 Flat Profile Applications 
Benchmarks and applications can be roughly catego-
rized into two different sets, each having distinct charac-
teristics in their profiles: spiky or flat profiles. For the 
spiky profile applications, there are only a few very hot 
or scorchingly hot methods, and therefore fully optimiz-
ing those methods is sufficient to obtain the best possi-
ble performance. The remaining methods mostly have 
nothing to do with the total system performance. It is 
relatively easy for any type of profiling mechanism to 
detect those important methods, and thus this type of 
application is amenable in general for a dynamic opti-
mization system. 

On the other hand, the flat profile applications, such as 
jack and javac in SPECjvm98, are considered more dif-
ficult and challenging for the dynamic compilation sys-
tem to improve performance. For example, method 
inlining is less effective for these applications involving 
a large number of methods that are almost equally im-
portant. Consequently, method inlining based on static 
heuristics, applying the same strategies for any type of 
method, does not work well for this type of application, 
as we can see from the relative performance difference 
between tiny-only and static-inline in Figure 3. 

Profile-based inlining is expected to work more effec-
tively than the static heuristics by dynamically changing 
the inlining decisions depending on the type of applica-
tion. Since the cost/benefit trade-off line is considered to 
be higher for flat profile applications than for those with 
spiky profiles, due to the smaller impact on total per-
formance from inlining individual call sites, method 
inlining needs to be performed even more selectively. In 
our implementation, we detect a flat profile for a given 
group of hot methods based on the average hotness 
count and the differences between maximum and mini-
mum hotness counts among those hot methods not yet 
compiled with the highest optimization level. When 
making a inlining request, we require each edge of the 
call path to have either a single caller or a very high fre-
quency with a few dominant call sites. 



4. EXPERIMENTAL RESULTS 
This section presents some experimental results showing 
the effectiveness and advantages of the profile-directed 
method inlining in our dynamic compilation system. We 
outline our experimental methodology first, describe the 
variations of inlining policies used for the evaluation, 
and then present and discuss our measurement results.  

4.1 Benchmarking Methodology 
All the performance results presented in this section 
were obtained on an IBM IntelliStation M Pro 6849 
(Pentium4 2.0 GHz uni-processor with 512 MB mem-
ory), running Windows 2000 SP2, and using the JVM of 
the IBM Developer Kit for Windows, Java Technology 
Edition, version 1.3.1 prototype build. The benchmarks 
we chose for evaluating our system are SPECjvm98 and 
SPECjbb2000 [22]. SPECjvm98 was run in test mode 
with the default large input size, and in autorun mode 
with 10 executions for each test, with the initial and 
maximum heap size of 96 M. SPECjbb2000 was run in 
the fully compliant mode with 1 to 8 warehouses, with 
the initial and maximum heap size of 256 M. 

The following parameters were used in these measure-
ments. The threshold in the mixed mode interpreter to 
initiate level-0 compilation was set to 500. The timer in-
terval for the sampling profiler for detecting hot meth-
ods was 5 milliseconds. The list of hot methods was ex-
amined every 200 sampling ticks. The number of sam-
ples to be collected for an instrumentation-based call 
site profile was set to 1024, and the maximum number 
of data variations recorded was 8. Exception-directed 
optimization (EDO) [19] was disabled, because EDO 
drives its own inlining requests based on the exception 
path profiles and the mixed inlining requests would 
make the evaluation for our approach more difficult. 

Five inlining policies are compared as described below, 
one with the current static inlining heuristics, and the 
others using profile-directed inlining with different de-
grees of aggressiveness or combined with the static heu-
ristics. The baseline of the comparison is with the policy 
inlining tiny methods only. 

1. Static: This employs the existing static heuristics for 
method inlining in level-1 and level-2 compilation. 
No profile data on call site information is collected, 
and the recompilations are requested according to 
the relative hotness from the sampling profiler. 

2. Profile-1: This disables all the static heuristics for 
inlining except for tiny methods, which are always 
inlined, and small methods, which are inlined in 
level-1 and level-2 compilations. Inlining other than 
for these small methods is based solely on the profile 
information. The inlining requests are conservative 

in that all the methods called through the hot call 
path must appear in the group of hot methods. 

3. Profile-2: This is the same as Profile-1, but more 
aggressive inlining can be requested for callers that 
are not in the current group of hot methods. In such 
cases, the inlining is requested for the methods in the 
call path within the current group, as well as for the 
topmost method of the call chain outside of the 
group. 

4. Hybrid: This is the same as Profile-1, but also using 
the current static heuristics if the inlining budget is 
still not used up after accepting all of the profile-
based inlining requests. 

5. Offline: This is the same as Profile-1, but inlining 
decisions are made using the offline collected profile 
information. Section 4.5 gives details regarding how 
the offline profile information is collected and then 
used for measurement. 

When measuring the compilation overhead in Section 
4.3, we measure only level-1 and level-2 compilation 
statistics, since level-0 is common among all four cases. 
The compiler is instrumented with several hooks for 
each part of the optimization process to record the value 
of the processor’s time stamp counter. The priority of 
the compile thread (for level-1 and level-2) is set higher 
than normal application threads, so the difference be-
tween each value from the time stamp counter is guaran-
teed to provide time spent for performing the corre-
sponding optimization work, and also the difference in 
the value between the beginning and the end of the 
compilation should be the total compilation time. 

4.2 Instrumentation and Inlining Statistics 
Table 1 shows the compilation statistics when running 
the benchmarks with the profile-1 inlining policy. The 
second column of the table shows the total number of 
methods executed (without the effects of inlining). Na-
tive methods are not included. The next five columns 
show the number of compiled and instrumented methods 
for each of the optimization levels. No instrumentation 
is applied to level-2 compiled code, as mentioned in 
Section 3.1. The count is cumulative, so if a method is 
level-0 compiled and then promoted to level-1, then it is 
counted in both categories. The last five columns show 
the total number of inlining requests made through four 
steps described in Section 3.2. The number is per call 
site, so if two inline requests are issued for a method, 
inlining it into two different call sites within a method, 
then both are counted as inline requests. 

The number of instrumented methods is mostly 10% or 
less of the compiled methods in level-0 for spiky profile 
benchmarks (top five in the table) and about 15% to 



20% for flat profile benchmarks (bottom three). The 
number is about 30% or greater of the compiled meth-
ods in level-1. These figures are almost the same as the 
proportion of methods that are promoted from each 
level. 

The inlining decision seems to work very selectively for 
each benchmark. The total number of inlining requests 
relative to the number of compiled methods at level-1 
and level-2 is significantly smaller for flat profile 
benchmarks compared to spiky profile ones, reflecting 
the strict requirements for call paths to be requested for 
inlining in terms of the degree of bias in call site distri-
butions. 

4.3 Compilation Overhead 
Figures 6 to 8 show various data for compilation over-
head: the compilation time, compiled code size expan-
sion ratio over the bytecode size, and compilation time 
peak work memory usage. Smaller bars mean better 
scores in these figures. The compiled code size used for 
profile-based inlining policies (profile-1, profile-2, and 
hybrid) includes additional code space that is dynami-
cally allocated for instrumentation. The peak memory 
usage is the maximum amount of memory allocated for 
compiling methods. Since our memory management 
routine allocates and frees memory in 1 Mbyte blocks, 
this large granularity masks the minor differences in 
memory usage and this causes the result of Figure 8 to 
form clusters. 

Overall the profile-based inlining (both profile-1 and 
profile-2) shows significant advantages over the existing 
static-heuristics-based inlining in most of the bench-
marks. At worst, it does not exceed twice the baseline 
(the tiny-only inlining policy) in all three metrics of the 
compilation overhead. In the best case, it is almost equal 
to the level of tiny-only, apparently due to the minimum 

number of inlining requests made only for those call 
sites deemed beneficial for performance improvement. 
The code size expansion ratio is greatly reduced for 
some benchmarks, even taking the instrumentation code 
into account. On average, the compilation overhead (in 
all three metrics) is just about a 20% to 30% increase 
from the baseline, and almost a 40% reduction com-
pared to static-heuristics-based inlining. 

There are a few exceptions to these general observations. 
Compress shows degradation with profile-based inlin-
ing, and mtrt shows no significant improvement in all 
three indications of compilation overhead. As shown in 
Table 1, however, compress has a very few hot meth-
ods, resulting in relatively low level of compilation 
overhead regardless of the inlining policy. In the profile-
based inlining case, two inlining requests were actually 
made for the same method, Compressor/compress, 
but with different timings because of the group of hot 
methods supplied by the sampling profiler. Thus the 
method was compiled twice with full optimization, first 
with one inlining request and then with an additional re-
quest identified later. Because of the low level of compi-
lation overhead, this additional level-2 compilation was 
enough to cause a seemingly big difference in these ra-
tios. Mtrt suffers for almost the same reason. An addi-
tional inlining request was made to one of the hottest 
methods OctNode/Intersect, after the callee for the call 
edge had become hot, triggering the second level-2 
compilation, and this made the total compilation time 
increase significantly. 

As expected, the hybrid inlining policy generally shows 
a similar amount of overhead as the static heuristics, but 
it sometimes causes significantly higher overhead. The 
overhead for compress is high for the same reason de-
scribed above, but for the other benchmarks, the poor 
scores are due to the aggressiveness of the static heuris-

level-0 level-1 level-2 inline requests 
Benchmarks 

# methods 
executed compiled inst’d compiled inst’d compiled depth 1 depth 2 depth 3 depth>4 total 

227_mtrt 333 182 18 16 4 7 13 2 1 -- 16 
202_jess 611 311 34 18 11 12 9 6 3 3 21 
201_compress 204 118 5 1 0 3 3 -- -- -- 3 
209_db 199 99 6 2 1 3 6 -- -- -- 6 
222_mpegaudio 364 207 29 26 10 18 9 2 -- 2 13 
228_jack 440 363 52 43 15 15 18 4 1 1 24 
213_javac 958 823 117 128 24 22 16 3 1 -- 20 
SPECjbb2000 2663 554 130 129 33 32 18 3 2 2 25 

Table 1. Statistics of compiled and instrumented methods for each optimization level, and the number of inlining requests 
when running benchmarks with the profile-1 inlining policy. The depth columns represent the numbers of call chains for 
each call path that was requested to be inlined. 



tics applied after processing the profile-requested inlin-
ing. This inlining policy seems unattractive from the 
viewpoint of compilation overhead. 

4.4 Performance Comparison 
Figure 9 shows the performance improvement with the 
five inlining policies over the tiny-only inlining case. 
Taller bars show better performance. For each inlining 
policy, we took the best time from 10 executions of an 
autorun sequence for each test in SPECjvm98 and the 
best throughput from a series of successive executions 
from 1 to 8 warehouses for SPECjbb2000. These results 
show that the profile-based inlining, both profile-1 and 
profile-2, performs about as well as or better than the 
static-heuristics-based inlining for most of the bench-
marks. The use of profiling seems particularly effective 
for jess and compress. 

Based on the comparison of the actual inlining results 
between profile-based and static-heuristics-based inlin-

ing policies, it was found that for jess, many of the call 
paths that were identified as important by the profile-
based policies were also inlined with the static heuristics, 
but there were several critical call paths that were not 
inlined with the static heuristics, and this caused the per-
formance differences. One probable reason for this re-
sult is that the chance to inline performance critical call 
paths is decreased with the static heuristics because the 
limited inlining budget is wasted by greedily inlining 
methods based on static assumptions. For compress, 
the profile-based inlining policy made two critical inlin-
ing requests that the static heuristics declined to perform 
due to the excessive code size for inlining. 

The performance is slightly degraded with the profile-
based inlining for db. The fact that the hybrid inlining 
policy restores the performance shows that the current 
profile-based inlining is missing some opportunities for 
inlining performance-sensitive call sites in this bench-
mark. Since the degradation can be observed with the 

 

Figure 9. Performance comparison of five inlining poli-
cies over the tiny-only case. 

4.5    5.2 

Figure 7. Ratio of compiled code size expansion for five 
inlining policies over the tiny-only case. 

Figure 8. Ratio of compilation time peak memory us-
age for five inlining policies over the tiny-only case. 
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Figure 6. Ratio of compilation time for five inlining poli-
cies over the tiny-only case.
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offline-based-profiling as well, it is probably not due to 
the short interval in online instrumentation to find 
dominant call edges. Rather it seems that target methods 
that should have been inlined were overlooked by the 
sampling profiler as recompilation candidates. The 
problem may be resolved by expanding the small 
method criteria, however, this would go against the goal 
of our approach of basically relying only on profile in-
formation. We need to come up with an effective way to 
deal with this situation. 

The profile-2 inlining policy does not seem to produce 
any additional performance improvement over profile-1 
in these benchmarks, regardless of the more aggressive 
inlining requests. 

4.5 Accuracy of Inlining Decision 
Because our profile-directed method inlining is on the 
basis of the call site profiling information collected for a 
fixed short time interval, there may be a concern as to 
whether the profile information is accurate enough for 
driving inlining when compared to a complete profile. 
In this section we evaluate the accuracy of our profile-
based inlining decisions. 

We define the accuracy of the inlining decisions relative 
to the best possible performance improvement and the 
smallest possible compilation overhead. To obtain com-
plete profiling information during the entire period of 
program execution, we generated a hook to call a run-
time routine at the entry point of the compiled code for 
each method, taking the caller’s address and updating 
the profile table every time. The total invocation count 
was also recorded. The information was then written to 
disk at the end of the run. This provides the equivalent 
kinds of information to what is collected with our in-
strumenting profiler at runtime: call site distribution and 
execution frequency. In the next run, we used the com-
plete profile information as input to make the inlining 
decisions, without using the instrumentation mechanism. 
This should provide the upper bound in terms of both 
performance and compilation overhead improvement for 
the system with profile-directed method inlining. 

Figures 6 to 9 also show how the inlining based on off-
line collected profile information works relative to other 
inlining policies. Overall the offline-profile-based inlin-
ing finds more opportunities for inlining important call 
paths and hence is more aggressive compared to the 
online-profile-based inlining policies. Nevertheless, it 
shows lower compilation overhead than the profile-1 
inlining policy in most of the cases because of the 
reasons described below. 

Compress and mtrt no longer suffer from the problem 
of additional level-2 recompilation as we saw in Section 

4.3. The code size expansion is consistently improved 
since no instrumentation overhead is imposed. Also 
some methods can be promoted from level-0 directly to 
level-2 compilation, because the important call paths for 
inlining and their impacts are known from the beginning, 
and this can reduce the total compilation time and code 
size expansion. All of these are, however, limitations of 
online-based profiling and its feedback system, and 
therefore the difference in compilation overhead is con-
sidered reasonable. 

As for performance, the offline-profile based inlining 
shows slightly better numbers over profile-1 for some 
benchmarks, but the difference is not very significant on 
average. Despite the limited time interval for collecting 
profile information, our online profiling system seems to 
capture the majority of the performance sensitive call 
paths quite well, and hence the method inlining deci-
sions based on this profile information are regarded as 
effective from the performance point of view. 

5. DISCUSSION 
We have described the design and implementation of 
online-profile-directed method inlining in our dynamic 
compilation framework. We present some observations 
and discussions based on the results in this section. 

Overall the study shows the advantages of the pure pro-
file-based inlining policy (without adding in static heu-
ristics). It shows the potential for either significantly re-
ducing the compilation overhead (measured in time, 
work memory, and code size) or for improving perform-
ance, or both, compared to other inlining policies. In the 
dynamic compilation environment, we have to be very 
careful about performing any optimizations that can 
have significant impact on compilation overhead. The 
online profiling can provide useful information to guide 
inlining only for those call sites and call paths that can 
be expected to produce performance improvements. 

As described earlier, our ultimate goal is automatic op-
timization selections in the dynamic compilation system, 
and this study shows encouraging results as a first step, 
since inlining exerts the most influence on both per-
formance and compilation overhead. When inlining de-
cisions are profile-based and the compilation boundaries 
can be dynamically determined, then the next step will 
be to estimate the impact of each costly optimization 
based on the structure of a given method, using indica-
tions such as loop structure, characteristics of field and 
array accesses, and others, as suggested in [2]. 

The problem described in Section 4.3 is considered in-
herent to an online profiling and feedback system, since 
the information is partial, not complete, at any point in 
time, and we do not know when is the best time to drive 



recompilation with limited available information. When 
additional information that can contribute to the per-
formance is later available, we then have to decide 
whether it is better to trigger additional recompilations. 
Currently we drive recompilation considering the esti-
mated performance benefit of the additional inlining re-
quest based on the relative hotness counts of the caller 
and the callee, but also limit the maximum number of 
level-2 compilations for the same method in order to 
avoid code explosion. We need to explore better ways 
to manage this situation by, for example, introducing 
additional metrics of the impact of inlining on a particu-
lar call path. 

In this paper, we consider only the relative strengths and 
distributions of the call edges when driving inlining. 
However, the significant impact of method inlining is 
not only through the direct effect of eliminating call 
overhead, but also due to indirect effects of specializing 
an inlined method body into the calling context, with 
better utilization of dataflow information at the call sites. 
Since our instrumentation mechanism can collect pa-
rameter values as well as return addresses, it should be 
possible to estimate whether inlining a method will be 
beneficial in terms of the effect of these optimizations as 
well, based on the result of impact analysis [23]. We 
will try to exploit this information in the future for pur-
suing better inlining strategies. 

6. RELATED WORK 
There are several previous studies that evaluate method 
inlining using profile information, mostly collected off-
line, in both static and dynamic compilation systems. 
Overall, it was concluded that the use of profile infor-
mation for inlining is effective to improve program per-
formance under careful management of the increase of 
the static code size. 

Scheifler [21] shows that inlining optimization can be 
reduced to the well-known knapsack problem. He uses a 
greedy algorithm to minimize the estimated number of 
function calls subject to a size constraint. This relies on 
the runtime statistics of the program, collected with 
various sets of input data, to calculate the expected 
overhead of each invocation. The constant ratio assump-
tion is used to avoid the cost of a multi-level history in 
gathering statistics. Kaser and Ramakrishnan [16] pro-
pose a probabilistic model to estimate the effect of using 
profile data, with a one-level history based on the con-
stant ratio assumption. When evaluating inlinable calls 
remaining after optimization, they report good results 
with their technique compared to other compilers. 

Chang et al. [7] describe profile-guided procedure inlin-
ing with the IMPACT optimizing C compiler. They first 

construct a weighted call graph using the offline-
collected profile information on the number of invoca-
tions of each function and relative hotness counts of 
each call edge. A greedy algorithm is then applied bot-
tom-up in the call graph to maximize the number of re-
ductions of dynamic function calls while keeping the 
code size expansion within a fixed bound. Their result 
shows a significant performance improvement with a 
relatively low code expansion ratio. However they don’t 
report on how much of the effectiveness is contributed 
by the use of profile information. Dynamically dis-
patched calls (through function pointers in C programs) 
are not inlined in this study.  

Ayers et al. [5] describe the design and implementation 
of the inlining and cloning in the HP-UX optimizing 
compiler, and show the performance of the SPECint92 
and 95 benchmarks can be substantially improved with 
their technique. They use profile information collected 
offline to prioritize the inlining or cloning candidates of 
the call site to be considered. The use of profile infor-
mation is reported to be quite effective, however it is an 
intra-procedural profile of the basic block level execu-
tion frequency, not information on call edges for guiding 
inlining for a particular call path. 

Arnold et al. [4] present a comparative study of static 
and profile-based heuristics for inlining with several 
limits on code expansion. In considering three inlining 
heuristics, based on a static call graph, a call graph with 
node weights, and a dynamic call graph with edge 
weights, they regard the selection of inlining candidates 
as a knapsack problem, and employ a greedy heuristic 
based on the benefit/cost ratio as a meta-algorithm for 
approximating the NP-hard problem. Their experiment, 
done with offline based profiling and an ahead-of-time 
compilation framework, shows that a substantial (some-
times more than 50%) performance improvement can be 
obtained with the heuristics based on the dynamic call 
graph with edge weights over the static call graph, even 
with modest limits on code size expansion. This work 
became the basis for the feedback-directed method 
inlining in adaptive optimization implemented in the 
Jalapeño JVM (now called the Jikes Research Virtual 
Machine) [1]. This system periodically takes a statistical 
sample of the method calls and maintains an approxima-
tion to the dynamic call graph during the course of the 
entire program execution. The online-profile-directed 
method inlining is shown to contribute to significant 
performance improvement for some benchmarks. Ar-
nold [3] further continues to improve the effectiveness 
of the feedback-directed inlining by collecting execution 
frequencies of the control flow edges between basic 
blocks and letting this information be used for fine-
tuning the inlining decisions. 



Dean and Chambers [10] describe a system based on the 
SELF-91 compiler that uses the first compilation as a 
tentative experiment and records inlining decisions and 
the benefits of the resulting effect on optimizations in a 
database. The compiler can then take advantage of the 
recorded information for future inlining decisions by 
searching the database with the known information 
about the receiver and arguments. They do not exploit 
runtime profile information in their system, though the 
expected execution frequency of the call site is used for 
inlining decisions. 

The SELF-93 system [14] is an adaptive recompilation 
system using online profile information. It collects call-
site-specific profile information for receiver class distri-
butions (type feedback) in un-optimized runs, and then 
when the method is recompiled, makes use of this in-
formation to optimize dynamically-dispatched calls by 
predicting likely receiver types and inline calls for these 
types. It was demonstrated that the performance of many 
programs written in SELF can be substantially improved 
with this technique. Grove et al. [12] complement this 
result by studying the various characteristics of the pro-
files of receiver class distributions collected offline, 
such as the degree of bias, effectiveness of deeper 
granularity, the stability across input and programs. 
They report that the compiler can effectively use deeper 
granularity of profile context to predict more precisely 
the target of dynamically dispatched procedure calls.  

HotSpot [20] is a JVM product implementing an adap-
tive optimization system with an interpreter to allow a 
mixed execution environment. As in the SELF-93 sys-
tem, it also collects profiles of receiver type distribution 
online in the interpreted execution mode. The profile in-
formation, together with class hierarchy analysis, is used 
when optimizing the code for virtual and interface calls. 

There are several systems that use annotations to specify 
dynamic optimizations. Krintz and Calder [17] describe 
an annotation framework for reducing compilation 
overhead for Java programs. One of the proposed anno-
tations is method inlining on the basis of analysis of pro-
file information collected offline, which allows substan-
tial reduction of startup overhead. Mock et al. [18] pre-
sent Calpa, a system to automatically generate annota-
tions for the DyC dynamic compiler. It evaluates the off-
line-collected information regarding basic block execu-
tion frequencies and a value profile based on its own 
cost/benefit model, and determines runtime constants for 
specialization and dynamic compilation strategies.  

7. CONCLUSIONS 
We have described an empirical study of online-profile-
directed method inlining in our Java dynamic compila-

tion system. We removed the existing static heuristics of 
method inlining except when dealing with tiny and small 
size methods, and rely solely on the online profile in-
formation to drive the method inlining in level-1 and 
level-2 optimizations. We presented our design and im-
plementation showing how the information on call site 
distribution and execution frequency can be collected at 
runtime, and then showed how the hot call paths can be 
extracted to identify potential candidates for method 
inlining. We evaluated our approach using the industry 
standard benchmarks, and showed its potential to 
achieve better performance and/or smaller compilation 
overhead (measured in compilation time, peak memory 
usage, and code size expansion ratio) when compared to 
the static inlining heuristics. 

In the future, we will further study the effectiveness of 
profile-directed method inlining by examining the accu-
racy and efficiency of our inlining approach when com-
pared to other approaches such as dynamic call graph 
construction at sampling time [1]. 
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1 Note that each compilation level does not match the corre-
sponding level of optimization described in [23], although 
the number of optimization levels is the same. The elements 
within each level have been rearranged. The purpose of 
level-0 compilation is to allow transition from MMI to com-
piled code with a lower threshold value without causing ad-
ditional compilation overhead, and to provide the system 
with profile information for a broader range of methods. 

2 This estimate excludes the prologue and epilogue code. The 
compiled code size is estimated based on the sequence of 
bytecodes each of which is assigned an approximate number 
of instructions generated. 

3 The instrumentation code is just a small piece of code, less 
than 100 instruction bytes, and the corresponding table space 
is in practice less than another 100 bytes. This space is 
treated in the same way as the compiled code so that it can be 
reclaimed upon class unloading. 

4 Since tiny methods are always inlined in the compiled code 
and thus the call site found in the profile may actually be 
within an inlined tiny method, the runtime structure, IMF, is 
consulted to get the exact call path from the call edge. 


