USENIX Association

Proceedings of the
2" Java™ Virtual Machine
Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Stress-testing Control Structures for Dynamic Dispatch in Java

Olivier Zendra

INRIA Lorraine - LORIA / McGill
University

615 Rue du Jardin Botanique, BP 101
54602 Villers-Les-Nancy Cedex, France

http://www.loria.fr/~zendra

Olivier.Zendra@loria.fr

ABSTRACT

Dynamic dispatch, or late binding of function calls,
is a salient feature of object-oriented programming
languages like C++ and Java. It can be costly on
deeply pipelined processors, because dynamic calls
translate to hard-to-predict indirect branch instruc-
tions, which are prone to causing pipeline bubbles.
Several alternative implementation techniques have
been designed in the past in order to perform dy-
namic dispatch without relying on these expensive
branch instructions. Unfortunately it is difficult to
compare the performance of these competing tech-
niques, and the issue of which technique is best un-
der what conditions still has no clear answer. In
this study we aim to answer this question, by mea-
suring the performance of four alternative control
structures for dynamic dispatch on several execu-
tion environments, under a variety of precisely con-
trolled execution conditions. We stress test these
control structures using micro-benchmarks, empha-
sizing their strenghts and weaknesses, in order to
determine the precise execution circumstances un-
der which a particular technique performs best.

Keywords

Java, dynamic dispatch, control structure, optimiza-
tion, JVM, binary tree dispatch, virtual function call

1. INTRODUCTION

Object-oriented message dispatch is a language con-
cept that enables data (objects) to provide a func-
tionality (message) by relying on a type-specific im-
plementation, or method. At run time, the object
that receives a message, or virtual method call, re-
trieves the corresponding class-specific method and
invokes it. This late binding of dispatch targets al-
lows any object to play the role of the receiver ob-
ject, as long as the new object implements the ex-
pected interface (is substitutable & la Liskov [Lis88]).

Karel Driesen

McGill University
School of Computer Science - ACL Group
Montreal, Quebec, Canada H3A 2A7

http://www.cs.mcgill.ca/"karel

karel@cs.mcgill.ca

Such type-substitutability enables better code ab-
straction and higher code re-use, and is therefore
one of the main advantages of object-oriented lan-
guages.

As a consequence, dynamic dispatch occurs frequent-
ly in object-oriented programs. For instance, virtual
method invocations in Java [GJSB00] occur every 12
to 40 byte codes [DLM*00] in SPEC JVM98. Such
late-bound calls are typically expensive on modern
deeply pipelined processors, because they translate
to hard-to-predict indirect branch instructions that
are a cause for long pipeline bubbles [DHV95].

It is nonetheless exceedingly difficult to precisely
measure the time spent on dynamic dispatch itself
by real object-oriented programs. Indeed, virtual
function calls occur frequently, which makes it diffi-
cult to isolate dispatch time from the runtime of reg-
ular code. Furthermore, call frequency and amount
of runtime polymorphism strongly depend on cod-
ing style as well as runtime parameters. Finally, on
modern superscalar processors, call code sequences
can be co-scheduled with regular code, which further
blurs the picture. Dispatch overhead therefore de-
pends not only on the dispatch code sequence itself,
but also on the code surrounding the call and on
the processor ability to detect and take advantage
of instruction level parallelism.

An estimate of dispatch overhead, based on real pro-
grams and relying on super scalar processor simula-
tion, can be found in [DH96]. The authors measure
a median dispatch overhead of 5.2% in C++ pro-
grams and 13.7% in C++ programs with all member
functions declared virtual (as is the default in Java).
For one program, the overhead was as high as 47% of
the total execution time. While evidence from prac-
tice suggests that most Java programs exhibit little
polymorphism at run time, it is true that for some

programs the optimizations tested in this study can
make as much as a 50% difference in execution time,
as demonstrated by the micro-benchmarks. It thus
appears very sensitive to optimize dynamic dispatch,
in order to avoid incurring a significant performance
penalty when relying on the object-oriented design
style.

Alternative implementation techniques are available
to perform dispatch to multiple targets without us-
ing expensive branch instructions. Unfortunately,
comparing the performance of these competitive tech-
niques is hard, and the literature typically reports
measurements of few alternatives, on only one exe-
cution environment.

In this study, we propose and report on the results of

a proof-of-concept methodology to measure the per-

formance of several control structures for dynamic

dispatch on a variety of Java Virtual Machines and

hardware platforms. In this first-step study, we rely

on micro-kernel benchmarking to determine and mag-
nify the relative performance of control instructions

under a large number of wvarying execution condi-

tions.

The results show, among other things, that:

e Virtual method call performance is highly de-
pendent on the execution pattern at a particular
call site

e When the call site has a low (2-3 target types)
to medium (6-8 target types) degree of poly-
morphism, optimizations are possible that im-
prove performance across JVMs and hardware
platforms (that is, platform independent opti-
mization)

e Processor architecture shines through, especially
on high-performance JVMs: the performance
profile from different VMs executing on the same
hardware look similar, those from the same VM
executing on different hardware look different.

This paper is organized as follows. Section 2 reviews
dynamic dispatch implementations and related work
at software, run-time system and hardware level.
Section 3 presents our methodology and the experi-
mental setup. Section 4 presents some of our results
and discusses them. Finally, section 5 concludes and
points at future research directions.

2. BACKGROUND

2.1 Monomorphism vs. Polymorphism

Dynamic dispatch is expensive because the target
method depends on the run-time type of the re-
ceiver, which generally cannot be determined until
actual execution.

Many different optimization techniques have thus
been proposed, which can be seen as falling into two
broad categories:

Optimizing monomorphic calls Since dynamic
dispatch is expensive, the fastest way to do it
is to avoid it altogether.

Various kinds of program type analysis (such as
[DGC95, SLCM99, SHR*00]) enable the de-
virtualization of provably monomorphic calls
(calls with only one target type), replacing the
expensive late-bound call by by a direct, cheap-
er, early-bound call. This technique has the
added advantage of allowing inlining of target
methods, thus stripping away all of the call
overhead and enabling a more radical optimiza-
tion of the inlined code by classical methods.
Dynamic optimization (e.g [DDGT96, HU94])
such as employed by the SUN HotSpot™ Ser-
ver JVM allows method inlining at run time,
which permits further optimization of calls that
are monomorphic in only a particular run of the
program, even though multiple target types are
possible after compile time.

Optimizing polymorphic calls In spite of all
efforts, some calls cannot be resolved as mono-
morphic. Optimizing the remaining polymor-
phic ones (calls with more than one target type)
is crucial.

Program type analysis can also optimize these
polymorphic calls, especially when the number
of possible types is very low. For example, a
compiler can replace a late-bound call with two
possible target types by a conditional branch
and two static, direct, early-bound calls. At
run time, a cheap conditional branch and cheap
static call are executed instead of one expen-
sive late-bound call (strength reduction). Such
a strength reduction operation is usually a win
on current processors, since prediction of con-
ditional branches is easier than prediction of
indirect branches. Furthermore, the dominant
(most common) call direction can be inlined,
leading to similar optimization opportunities
as for monomorphic calls, with the guard of
a cheap conditional branch [AH96].

Dynamic optimization can also replace a call
that is dominated by one target type at run
time, enabling the same operation as above
with increased type precision.

These solutions to optimize dynamically dispatched
calls are amenable to two approaches: hardware and
software.

2.2 Hardware Solutions

Virtual method invocations in Java translate, in the
native machine code, into two dependent loads fol-
lowed by an indirect branch (or indirect jump). This
indirect branch is responsible for most of the call
overhead [Dri01]. Branches are expensive on mod-
ern, deeply pipelined processors because the next in-
struction cannot be fetched with certainty until the
branch is resolved, typically at a late stage in the
pipeline (e.g., after 10-20 cycles on a Pentium III).

Most processors try to avoid these pipeline bub-
bles by speculatively executing instructions of the
most likely execution path, as predicted by separate
branch prediction micro-architectures. For exam-
ple, a Branch Target Buffer (BTB) stores one target
for each indirect, multi-way branch and can predict
monomorphic branches with close to 100% accuracy,
which removes the branch misprediction overhead in
the processor.

Unfortunately, polymorphic calls are harder to pre-
dict. Sophisticated two-level indirect branch hard-
ware predictors [CHP98] can provide a similar ad-
vantage as a BTB for multi-target indirect branches
that are “regular” and whose target correlates with
the past history of executed branches.

Unfortunately, indirect branches are more difficult
to predict than conditional branches. A conditional
branch has only one target, encoded in the instruc-
tion itself as an offset, so a processor only needs
to predict whether the conditional branch is taken
or not (one bit). Indirect branches can have many
different targets and therefore require prediction of
the complete target address (32 or 64 bits). So-
phisticated predictors [DH98a, DH98b] can reach
high prediction rates, but generally require large
on-chip structures. Indirect branch predictors thus
tend to be more costly and in practice less accurate
than conditional branch predictors (Branch History
Buffers, BHTS), even in modern processors.

Therefore, replacing at the code level a rather unpre-
dictable indirect, multi-way branch by one or several
more predictable conditional branches followed by a
static call seems a likely optimization, helping the
processor. This strength reduction of control struc-
tures is exploited by several of the techniques in the
next section.

2.3 Software Solutions

Most JVMs include some way to de-virtualize method
invocations that are actually monomorphic, by re-
placing the costly polymorphic call sequence by a
direct jump. For example, various forms of whole

program analysis (e.g., [BS96, SHR100]) show that
most invocations in object-oriented languages are
monomorphic.

Some JVMs use a dynamic approach. For example,
HotSpot relies on a form of inline caching [DS84,
UP87]. The first time a virtual method invocation
is executed, it is replaced by a direct call preceded by
a type check. Subsequent executions with the same
target are thus direct, whereas executions with a dif-
ferent target fall back to a standard virtual function
call.

Actual run-time polymorphism can also be optimi-
zed in software, for example by using Binary Tree
Dispatch (BTD), as implemented in the SmallEiffel
compiler [ZCC97]. BTD replaces a sequence of pow-
erful dispatch instructions using an indirect branch
by a sequence of simpler instructions (conditional
branches and direct calls). When the sequence of
simple instructions remains small, it can be more
efficient than a call through a virtual function ta-
ble, and should perform particularly well on pro-
cessors with accurate conditional branch prediction
and large BHT. A BTD is a static version of what
is commonly known as a Polymorphic Inline Cache
[HCU91]. A PIC collects targets dynamically at run
time (it is a restricted form of self-modifying code),
effectively translating a lengthy method lookup pro-
cess into a sequential search through a small number
of targets. The if sequence control structure exer-
cised in our micro benchmark suite (see section 3.3)
is akin to the implementation of a PIC described in
[HCU91]. Asin the latter paper, we found that meg-
amorphic [DHV95] call sites (more than 10 possible
target types) are too large for a sequential if to be
cost-effective.

Chambers and Chen also proposed a hybrid imple-
mentation mechanism [CC99] for dynamic dispatch
that can choose between alternative implementations
of virtual calls based on various heuristics. The ex-
periments in our study complement their approach,
since we aim to more precisely define the gains and
cutoff points reachable with each technique on mul-
tiple platforms.

3. METHODOLOGY

3.1 Oveview

We started this work in order to find out whether
control structure strength reduction could be used to
optimize dynamic dispatch under specific execution
conditions and across different hardware platforms,
i.e. to find out whether platform independent opti-
mization is feasible.

In order to allow platform independent optimiza-
tion to be effective, two conditions must hold. First,
strength-reducing operations must be guided by plat-
form independent information; the analysis may in-
clude profile data if it is not platform-specific. Sec-
ond, the performance of control structures must be
consistent across platforms.

The first condition is fulfilled by various forms of
static program analysis and program-level profiling,
and many studies show that optimizable call sites
are common.

The second condition needs to be verified. Even
the reasonable assumption that direct static calls
are faster than monomorphic virtual ones may not
always hold in practice due to implementation fea-
tures, at the virtual machine level or at the processor
micro-architecture level. For instance, a Pentium III
stores the most recent target of indirect branches,
which can make monomorphic virtual calls as effi-
cient as static calls.

In the next section we discuss our experimental frame-
work to measure performance of control structures
across different JVM and hardware platforms.

3.2 Experimental Setup

Since we focus on polymorphic calls, a large vari-
ety of execution behaviors and control structures
has to be measured on several platforms. There-
fore, we design a comprehensive suite of Java micro
benchmarks as a proof-of-concept simulation of var-
ious implentations of dynamic dispatch in various
JVMs. This allows us to test the performance of
control structures under controlled execution con-
ditions, leveraging the wide availability of the Java
VM to measure on different execution environments.

All benchmarks use the same superstructure: along-
running loop that calls a static routine which per-
forms the measured dispatch. The receiver object
(actually, its type ID) is retrieved from a large array,
which is initialized from a file that stores a particular
execution pattern as a sequence of type IDs. This
initialization process ensures that compile-time pre-
diction of the type pattern is impossible. Different
files store a variety of type ID sequences, represent-
ing different patterns and degrees of polymorphism.

The experimental parameter space thus varies along
three dimensions:

Control structures How do different different con-
trol structures for dynamic dispatch perform?

Execution patterns This dimension has three re-
lated sub-dimensions. First, the static number

of possible receiver types at the dispatch site,
which influences the program code and can be
determined by program analysis before execu-
tion. Second, the dynamic number of receiver
types at the dispatch site, that is the range of
types occurring in a particular program run.
Third, the pattern of receiver type IDs, that is
the order and variability of receiver types at
run time.

Execution environments This dimension has two
related sub-dimensions: the virtual machine used
and the processor it is run on.

Each data point (timing) within this parameter space
is measured as follows. First, the benchmark is
run 5 times over a long (10 million) loop, which
gives a “long run average” running time. This av-
erage comprises only the loop part (not the initial-
ization). When executed on dynamically optimizing
JVMs such as HotSpot, this execution time com-
prises both the execution as “cold code” and the
execution as optimized once the optimizer has de-
termined the loop is a “hot” one. The JVM is thus
given ample opportunity to fully optimize control
structures. Then, the benchmark is re-run 5 times
over a very long (60 million) loop, which provides
a “very long run average”. The difference between
these two averages, “long” and “very long”, repre-
sents only “hot”, optimized loops, and gives us our
final result, after normalization to 10 million loops.

The three dimensions of the parameter space are
detailed in sections 3.3, 3.4 and 3.5.

3.3 Variouscontrol structures

We measure a variety of control structures for dy-
namic dispatch implementation. Although it is not
comprehensive, we believe it covers the main possi-
bilities available to optimizing compilers at the byte-
code and native code level.

Virtual calls At the Java source code level, a dis-
patch site is a simple method call: x.foo().
At the Java bytecode level, a special instruc-
tion, invokevirtual, is provided to implement
virtual calls. The dynamic dispatch instruc-
tion uses the message signature (argument to
the invokevirtual bytecode) and the dynamic
type of the receiver object (atop the stack) to
determine the actual target method. Gener-
ally, this translates at the hardware level into
a table-based indirect call [ES90]. This con-
stitutes the first implementation of dynamic
dispatch we tested, in our “Virtual” series of
micro-benchmarks.

It is however possible to use other control structures,
based on simpler bytecode instructions, such as type
equality tests followed by static calls. These control
structures can take at least three forms:

the more general function forName (String
className) in class Class, whereas the type
IDs are constants. This variant thus also seems
to be potentially slower. We did not include it
in our benchmarks.

If sequence First, a sequence of 2-way conditional ~ Binary Tree Such 2-way conditional tests can be

type checks can be used. For example, let’s as-
sume a polymorphic site x.foo () where global,
system-wide analysis detected that the receiver
could only have four possible concrete types at
runtime: T4, Tg, Tc and Tp. The correspond-
ing pseudo-code is shown in figure 1, where the
tests discriminate between all the known possi-
ble types and lead to the appropriate leaf static
call. This implementation of dynamic dispatch
is tested in our “IfSequence” series of micro-
benchmarks, where the type ID is an integer
stored in an extra field of every object.

xTypelID = x.typelD;

if (xTypeID == ID_FOR_TYPE_A) then
A.static_foo(x);

else if (xTypeID == ID_FOR_TYPE_B) then
B.static_foo(x);

else if (xTypeID == ID_FOR_TYPE_C) then
C.static_foo(x);

else if (xTypeID == ID_FOR_TYPE_D) then
D.static_foo(x);

endif

Figure 1: P-code for if-sequence dispatch

A variant of this would not test against a type
ID field added to the objects, but use a se-
ries of instanceofs expressions. This tech-
nique would avoid the need for the type ID
field, and the associated space and initializa-
tion overhead. Its performance compared to
the if sequence above would mostly be related
to the relative performances of the instanceof
and getfield bytecodes instructions. We did
not include this variant in our benchmarks.

Another variant consists in accessing the type
descriptor (Class object) of the receiver, using
the getClass () method, instead of the type ID
field. Since getClass() is a final native func-
tion of Object, with JVM support, it is likely
to be quite fast. This technique also avoids the
need for the type ID field and the associated
costs. However, the type test would have to be
done against CLASS FOR_TYPE A, CLASS FOR -
TYPE B, etc. instead of ID_FOR_TYPE_A, ID_FOR_-
TYPE B, etc. Retrieving each of these class de-
scriptors incurs a cost as well, using either a
static method for each class, or (in the context
of our proof-of-concept Java micro-benchmarks)

organized more efficiently, as a binary decision
tree [ZCC97]. Let’s assume the type IDs cor-
responding to the types T4, Ts, Tc and Tp,
are, respectively, 19, 12, 27 and 15. Then, the
pseudo-code generated for x.foo() looks like
the one in figure 2. We test this implementa-
tion of dynamic dispatch in our “BinaryTree”
series of micro-benchmarks.

xTypeID = x.typelD;
if (xTypeID <= 15) then

if (xTypeID <= 12) then
B.static_foo(x);
else
D.static_foo(x);
endif

else

if (xTypeID <= 19) then
A.static_foo(x);
else
C.static_foo(x);
endif

endif

Figure 2: P-code for binary tree dispatch

Note that a BTD using the getClass () variant
described above for if sequence would be slower
than the one we present, since the tests in the
dispatch tree would not be done with constants
anymore. We thus did not include this variant
in our benchmark suite.

Switch Finally, a multi-way conditional instruction

can be used, namely a Java dense switch, trans-
lated into a tableswitch bytecode instruction,
whose suggested implementation [LY99] by the
JVM is an indirection in a table. The corre-
sponding pseudo-code, tested in our “Switch”
series of micro-benchmarks, is shown in figure
3.

For the sake of simplicity, we only test dense
switches. Indeed techniques exist (global anal-
ysis, coloring,...) to have a compact allocation
of type IDs. In case of sparse type IDs, sparse
switches should be translated into a standard
lookupswitch [LY99] bytecode instruction, that
can be implemented by the JVM as a series of
ifs or a binary search, thus falling back to one of
the techniques we already present in this study.

xTypeID = x.typelD;
switch (xTypeID)
case ID_FOR_TYPE_A then
A.static_foo(x);
case ID_FOR_TYPE_B then
B.static_foo(x);
case ID_FOR_TYPE_C then
C.static_foo(x);
else ID_FOR_TYPE_D then
D.static_foo(x);
endswitch

Figure 3: P-code for tableswitch dispatch

The general idea behind strength reduction for dy-
namic dispatch is that simpler instructions, although
more numerous, should be more predictable and ex-
ecuted faster than complex instructions.

All these control structures, except the plain invoke-
virtual, have a size that is proportional to the num-
ber of tested types. When used to implement dy-
namic dispatch, without any fall-back technique, all
possible types have to be tested; this set of possible
types thus has to be determined by a global analysis.
This is accounted for in our benchmark suite, by cre-
ating, for each distinct dispatch technique, several
benchmarks differing only by the number of types
they can handle.

In the last three control structures, the leaf calls are
purely monomorphic. They are thus implemented as
Java static calls X.static_foo(x), with the original
receiver object being passed as the first argument
(instead of being the implicit this argument in the
virtual call). We thus gave a “StaticThisarg” suffix
to these benchmarks. We also benchmark leaves im-
plemented as monomorphic virtual calls which, as
we expected, turn out to be generally slower than
the static leaves. As a consequence, we do not de-
tail those results in this paper.

Note that the last three techniques may also be used
to serve as run-time adaptive caches catching the
most frequent or more recent types, preceding a more
general fall-back technique. In this case, they would
be akin to PICs, or more accurately, as different al-
ternative control structures which can be used to
implement various sizes of PICs.

Figure 4 shows a synthetic comparison of these four
control structures.

3.4 Varioustype patterns

The runtime behavior of the program is another cru-
cial factor in the performance of a given dynamic

dispatch site. In order to simulate varying behaviors
while keeping precise control, we timed our bench-
marks by generating various type ID patterns. Each
micro benchmark reads a particular pattern from file
at run time to initialize a 10K int array holding type
IDs, which is then iterated over a large number of
times.

For this study, we used synthetic patterns which rep-
resent extremes in program behavior. We plan to use
real applications or real application traces in future
work. We decided to design patterns comprising be-
tween one and 20 possible receiver types, in order to
cover a wide range of cases. In most real applica-
tions though, the degree of polymorphism remains
typically much smaller (3 to 5). The low degrees of
polymorphism in our tests thus have a lot of impor-
tance for most cases, while higher degrees tend to
show how a specific technique scales up. The follow-
ing four patterns are presented below and in figure
5: the constant pattern, the random pattern, the
cyclic pattern and the stepped pattern.

Constant This pattern is the simple 100% mono-
morphic case, where the receiver type is al-
ways the same and is thus perfectly predictable.
This is a very common case. Various tech-
niques detect such monomorphic dispatch sites
and get rid of them by replacing them with di-
rect calls (de-virtualization). However, these
techniques may not always be applied, do not
detect all monomorphic call sites and do not
handle call sites that are in principle polymor-
phic but never change targets within any single
run. It is thus worth testing the behavior of
dynamic dispatch techniques on this best-case
constant pattern. Since the value of the con-
stant type ID influences performance, we have
to test various IDs within the static range.

Random This pattern is the exact opposite of the
previous one: it can’t be predicted, features
high polymorphism (many receiver types) and
high variability (many changes during execu-
tion). As such, it represents a worst-case sce-
nario likely to be rare in object-oriented pro-
grams.

Cyclic The cyclic pattern features a regular varia-
tion of the type ID, each ID being the previ-
ous one incremented by 1 up to maxID and
back to 1, and so on. This pattern is thus
highly polymorphic and has a very high vari-
ability (the type changes at every call), like
the random pattern, but is still very regular.
Advanced micro-architecture such as two-level
branch predictors are capable of detecting some

| Structure | Pros

| Cons |

Virtual | Short code sequence.

Size independent of # of static types.

Translates to expensive indirect branch.
Generally slow.

If Sequence | Uses an inexpensive static call.

Fast for types at beginning of sequence.
Translates to conditional branches better
predicted by hardware than indirect ones.

Long code sequence.
Slow for types at end of sequence.
Size depends on # of static types.

Binary Tree | Uses an inexpensive static call.

Equally fast for all types (distance to leaf).
Translates to conditional branches better
predicted by hardware than indirect ones.

Long code sequence.
Speed depends on # of static types (log2).
Size depends on # of static types.

Switch | Uses an inexpensive static call.

Long code sequence.
Size depends on # of static types.
Unreliable speed: depends on JVM.

Figure 4: Comparison summary of various control structures

cyclic branch behavior and therefore should pre-
dict this pattern accurately, especially for small
cycles. As such, and even though it is probably
fairly uncommon in OO programs, this pattern
represents a kind of intermediate point between
constant and random.

Stepped This pattern is a regular variation of the
cyclic pattern, close to the constant pattern in
behavior. It features a variation of the type
ID from 1 to maxID, with increments of 1, but
with as few changes as possible within a sin-
gle run. It thus exhibits long, constant steps,
whereas the cyclic pattern has a step length of
1. The stepped pattern has the same degree of
polymorphism as the cyclic one (same number
of types), but much lower variability. It should
thus be highly predictable, even by simple pre-
dictors such as a Branch Target Buffer. This
stepped pattern is probably quite common in
object-oriented programs, for example when it-
erating over containers of objects, which often
contain instances of a single type.

3.5 Various execution environments

The execution environment is the last varying di-
mension in our study and consists of two parts: the
hardware platform and the virtual machine used to
execute the benchmarks. Running different virtual
machines is similar to testing a particular program
using different compilers. The addition of an ex-
tra execution layer, the JVM, makes execution more
complex and makes it significantly harder to inter-
pret performance results, but it provides platform-
independence and is thus essential to our approach.

The benchmark suite was run on three hardware
platforms:

O oT< -

ORP N WM O N ®© O

¢ Constant04 Vv Randomi0

11 - -
V- A -V DPRPE
- A DD -A-
- DRED>F V- A -
V A - N - - - A - DEFPP> A - A -
- BV VA V- - A -
- A - -V VVA - F>F>E V -V AV - A A%
OROOOOBOOOORTIBBRBIS OO OROOOOOOOOOROOVOOOOOOROTOOOOO
A V- PR -V A V- XV- -V -k V-

=
o
<
.
<
»
»

A Cyclicl0 > Steppedl10

Figure 5: Patterns dynamic behavior

SUN UltraSparc IIT This machine is based on one
750 MHz processor and 1 GB of RAM, with
SunOS 5.8.

Intel Pentium III This machine has dual 733 MHz
processors, with 512 MB of RAM, running Linux
Mandrake with kernel 2.2.19. Note that for our
benchmarks, dual processor capability should
have little if no impact.

Intel Celeron This lower-end machine comprises
one 466 MHz Celeron with 192 MB of RAM
and Linux Mandrake with kernel 2.2.17.

Of course, not all JVMs are available on all hard-
ware platforms. Furthermore, the fact that a JVM
is available under the same name on several differ-
ent OS and hardware platforms is no guarantee at all
they are indeed the same JVM: their back-ends for
instance must be different. The JVMs tested during
this study are generally in their 1.3.1 version. We
show the IBM JVM (known as “the Tokyo JIT”)
and the SUN HotSpot Server as examples of high-
performance JVMs and the SUN HotSpot Client,

which is the most widely available JVM, and runs
on many different hardware platforms.

The following result section shows the essence of the
large amount of data gathered.

4. RESULTSAND DISCUSSION

As explained in the previous section, we measure
the performance of different control structures in
a number of varying dimensions: hardware, JVM,
number of possible types (static) and type pattern
(dynamic). This leads to a vast parameter space, in
which we gather a very large number of data points
(more than 21,000).

For space constraints reasons, we cannot show all the
data and therefore we pick a representative sample:
the dual Pentium III and the UltraSparc III, two
hardware platforms described in section 3.5. The
Celeron provides results very similar to the Pentium
ITI, which is consistent with the fact both processors
share the same architectural core; we thus did not
include Celeron figures in this paper.

We also focus on a maximum number of possible
types (static) of 20, which allows testing both low
and high degrees of polymorphism, with patterns
featuring as low as 1 actual live type at runtime
(monomorphic) and as many as 20 (megamorphic
[AH96]). Overall, this maximum degree of polymor-
phism of 20 is representative of behaviors and data
we gathered at various sizes (we actually tested all
maximum sizes from 1 to 10, then 20, 30, 50 and
90). Shorter static type sizes, which are the most
common in real applications, typically lead to more
efficient if sequences and binary search trees.

Results are presented in figures 6 and 7, that show
two different JVMs on the same Pentium platform,
as well as in figures 8 and 9 that show the HotSpot
client JVM on two different hardware platforms.

On all these graphs, the same 5 benchmarks are
tested, resulting in the 5 curves on each graph:

Virtual20 A plain virtual call, implemented with
the invokevirtual bytecode, that can cope
with any number of possible receiver types!.

BinaryTreeStaticThisarg20 This is a binary tree
dispatch, with 20 leaves that are static calls,
the receiver object being passed as an explicit
argument.

IfSequenceStaticThisarg20 A sequence of ifs con-
taining 20 static leaf calls.

'For Virtual and NoCall, the “20” in the name is only
kept for consistency with other benchmark names.

SwitchStaticThisarg20 A Java switch, translated
into a tableswitch bytecode with 20 cases,
each being a static call.

NoCall20 This benchmark contains no call at all,
it shows the base cost of the benchmark mech-
anism (loop and static method call).

The different control structures are tested against
41 execution patterns of the four kinds presented in
section 3.4, constant, cyclic, random and stepped,
that compose the x axis. The numbers appearing
in the pattern name indicate the active range of
type IDs for each pattern. Thus rnd-01-07 is a
pattern made of random type IDs between 1 and 7,
step-01-09 is a type ID pattern with 9 steps, from
1 to 9, and cst-04 is a pattern with constant type
ID 4, and so on.

4.1 Observations

Figure 6 shows performance in milliseconds of exe-
cution time for the IBM JIT on a Pentium III. Plain
virtual calls (invokevirtual, shown as continuous
black curve) appear to be sensitive to the dynamic
execution patterns tested. Virtual calls executing
constant patterns and stepped patterns take about
700 ms, compared to 1000 ms for cyclic and random
patterns. The NoCall20 micro-benchmark executes
in 600 ms. Therefore the overhead of virtual calls
varies between 100 and 400 ms, a factor of four due
only to differences in type patterns. Other JVMs on
the Pentium platform show similar ratios (figures 6
and 7). On an UltraSparc III (figure 9), virtual calls
appear less sensitive to execution patterns. The con-
stant pattern is executed slightly more efficiently,
but a stepped pattern shows the same performance
as a random or cyclic pattern. In contrast, stepped
patterns with low variability behave well on all Pen-
tium JVMs (figures 6, 7 and 8), with a cost close to
that of the constant pattern. Overall, virtual calls
tend to be more expensive than other structures es-
pecially when the number of different types is small
and when the type pattern is cyclic. These results
indicate optimization opportunities for JVM imple-
mentors.

The performance of if sequences depends on the size
of the sequence and the rank of ifs exercised, shorter
sequences being faster. Short if sequences are the
most efficient way to implement dynamic dispatch
among the tested control structures across all plat-
forms, all JVMs and all execution patterns. Al-
though the precise cutoff point varies, it is safe to
consider that if sequences up to 4 are a sure win over
current implementations of virtual calls. The actual
gain in performance varies but can be as high as 52%
(including benchmark overhead) on the duomorphic

" Virtual20 se—

BinaryTreeStaticThisarg20 =====:

IfSequenceStaticThisarg20 ==
SwitchStaticThisarg20

~NoCall20 ==

008T

0097

00vT 0021 000T 008 009
(sdoo| WOT / sw) awi uonnoax3y

ooy

0z-T0-dais
01-T0-dals
60-T0-dos
80-T0-das
10-T0-dos
90-T0-das
S0-T0-days
#0-T0-da1s
€0-T0-das
20-T0-dass
02-10-Pu
0T-T0-PUI
60-T0-pul
80-T0-pul
£0-TO-pul
90-T0-pul
S0-TO-pul
#0-T0-PU
€0-TO-pul
20-T0-pul
02-T0-[9Ad
0T-T0-[0Ad
60-T0-19A2
80-T0-19Ad
£0-T0-19Ad
90-T0-19Ad
S0-T0-19Ad
#0-T0-[0Ad
€0-T0-10A0
20-10-19A2
02159
01180
60159
80-189
10189
90-189
G0-1s9
¥0-1S9
€019
20189
10189

I11

imum

IBM ¢x130-20010502 on a dual Pent

Figure 6

" Virtual20 se—

BinaryTreeStaticThisarg20 =

IfSequenceStaticThisarg20 ==

SwitchStaticThisarg20

~NoCall20 ==

o

.

bt

008T

0097

00vT 0021 000T 008 009
(sdoo| IWOT / sw) awi uoinoax3y

ooy

00¢

0z-T0-dais
01-T0-dels
60-T0-dos
80-T0-das
10-T0-dos
90-T0-dajs
G0-T0-dals
#0-T0-da1s
€0-T0-das
20-T0-dass
02-10-Pu
0T-T0-PUI
60-T0-pul
80-T0-pul
£0-TO-pul
90-T0-pul
S0-TO-pul
#0-T0-PU
€0-TO-pul
20-T0-pul
02-T0-[9Ad
0T-T0-[9Ad
60-T0-19A2
80-T0-19Ad
£0-T0-19Ad
90-T0-19Ad
S0-T0-10Ad
#0-T0-[0Ad
€0-T0-19A2
20-T0-1942
02159
01180
60159
80-189
10189
90-189
G0-1s9
¥0-159
€019
20189
10189

I11

1mum

SUN HotSpot Server 1.3.1-b24 on a dual Pent

Figure 7

cycl-01-02 pattern on HotSpot Server on Pentium
III (figure 7) or 24% on the step-01-02 pattern on
HotSpot Client on UltraSparc IIT (figure 9). There-
fore one can significantly optimize the implementa-
tion of dynamic dispatch in current JVMs when the
number of possible types is known (by static analysis
or dynamic sampling) to be small.

Binary tree dispatch (BTD) provides another way
to perform strength reduction of dynamic dispatch
sites. Binary trees appear to be significantly faster
than virtual calls in most cases (all figures, particu-
larly figures 7 and 9). When BTDs are slower than
virtual calls, it is generally by a small margin, as fig-
ures 6 and 8 show. Since the cost of BTD grows as
the logarithm of the number of branches, whereas
sequences of ifs have a linear cost, BTD is more
scalable. This makes BTD a good implementation
for dynamic dispatch when the number of types is
too large to use simple if sequences (above 4 or 8,
depending on the JVM and platform), but small
enough to prevent extensive code expansion. The
cutoff point where BTD become faster than if se-
quences is clearly visible for cyclic patterns on all
JVMs and platform, and for constant and stepped
patterns in the SUN HotSpot JVMs on both plat-
forms (figures 7, 8 and 9).

Figure 6 shows that Java dense switches (bytecodes
tableswitch), when used to implement dynamic
dispatch, result in performance very similar to that
of virtual calls on the IBM JVM, revealing an im-
plementation based on jump tables. In the HotSpot
Client JVM however, both on Pentium IIT and Ul-
traSparc III (figures 8 and 9), tableswitches be-
have exactly like if sequences, which indicates an
actual implementation based on sequences of condi-
tional branches. Table switches are therefore unre-
liable in terms of performance across JVMs.

The “Infinite...” results in figure 7 correspond to ex-
ecutions of NoCall20 that were running forever?. We
think that this behavior indicates an optimization
bug on this particular JVM and platform, since the
call of an empty method is an unlikely (but legal) oc-
currence, and all other JVMs dealt with it correctly.
Indeed, the exact same bytecode for NoCall20 is cor-
rectly executed on all other JVM-platform combi-
nations, that is with all other JVMs on the same
platform and with all JVMs on all other platforms
(we also checked on Athlon and Celeron). The same
problem happens under the exact same conditions
for other NoCall benchmarks with other sizes, but

2«Forever” means for example that such a program was
still running after 18 hours, instead of a typical execution
time below one minute.

is much less frequent.

Since all our benchmarks are very small and simple
and share most of their code, we are confident their
Java source code (including the one for NoCall20)
is correct. Furthermore, since all the benchmarks
are executed correctly on all JVM-platform combi-
nations but one, we trust the javac compiler gener-
ated a correct bytecode. We thus suspect some ag-
gressive, non-systematic optimizations by the JVM
might be the cause of this issue.

4.2 Discussion

Obviously, using micro-benchmarks focused on dy-
namic dispatch magnifies the impact of the various
dispatch techniques in terms of performance. Al-
though the actual impact on real programs is likely
to be smaller, since programs generally do other
things than dispatch, our study makes it possible
to get a clearer view of what is actually happening.
We thus believe that the previous results are an im-
portant first step and can already be widely used.

First, these results are important to Java compiler
and Java VM designers, when implementing multiple-
target control structures such as dynamic dispatch.
We show that the performance of dynamic dispatch
varies a lot across JVMs, hardware and execution
patterns. It is safe to say that dynamic dispatch
implementation in current JVMs is not always opti-
mal and can be significantly improved, using mostly
known techniques. Direct implementation in the vir-
tual machine is likely to provide the highest payoff.

Second, these results are also useful to Java devel-
opers, since they stress differences between the var-
ious JVMs, highlighting strengths to take advan-
tage of and weaknesses to avoid, for instance large
tableswitches in the HotSpot Client.

Third, our results show that strength reduction of
control structures is likely to be beneficial regard-
less of the hardware and JVM, when the number
of possible receiver types can be determined to be
small. For numbers of possible types up to 4, if
sequences are most efficient. Between 4 and 10, bi-
nary tree dispatch is generally preferable. For more
types, the best implementation is a classical table-
based implementation such as currently provided by
most JVMs for virtual calls. These are safe, con-
servative bets, that generally provide a significant
improvement and, when not optimal, result only in
a small decrease in performance.

Finally, these measurements expose architectural fea-
tures (especially branch predictors) of the target hard-

" Virtual20 se—

BinaryTreeStaticThisarg20 =====:
IfSequenceStaticThisarg20 =+

008T

0097

00vT
(sdoo| WOT / sw) awi uonnoax3y

00cT 000T 008 009

ooy

0z-T0-dais
01-T0-dals
60-T0-dos
80-T0-das
10-T0-dos
90-T0-das
G0-T0-das
¥0-10-dols
€0-10-da1s
20-T0-dais
02-10-Pu
0T-T0-PUI
60-T0-pul
80-T0-pul
£0-TO-pul
90-T0-pul
S0-TO-pul
#0-T0-PU
€0-TO-pul
20-T0-pul
02-T0-[9Ad
0T-T0-[0Ad
60-T0-19A2
80-T0-19Ad
£0-T0-19Ad
90-T0-19Ad
S0-T0-19Ad
#0-T0-[0Ad
€0-T0-10A0
20-10-19A2
02159
01180
60159
80-189
10189
90-189
G0-1s9
#0150
€019
20189
10189

111

t 1.3.1-b24 on a dual Pentium

1en

SUN HotSpot Cli

Figure 8

" Virtual20 se—

BinaryTreeStaticThisarg20 =

IfSequenceStaticThisarg20 ==

SwitchStaticThisarg20

~NoCall20 ==

008T

0097

00vT
(sdoo| IWOT / sw) awi uoinoax3y

00ctT 000T 008 009

ooy

0z-T0-dais
01-T0-dels
60-T0-dos
80-T0-dajs
10-T0-dos
90-T0-dajs
G0-T0-dals
¥0-10-dels
€0-10-da1s
20-T0-days
02-10-Pu
0T-T0-PUI
60-T0-pul
80-T0-pul
£0-TO-pul
90-T0-pul
S0-TO-pul
#0-T0-PU
€0-TO-pul
20-T0-pul
02-T0-[9Ad
0T-T0-[9Ad
60-T0-19A2
80-T0-19Ad
£0-T0-19Ad
90-T0-19Ad
S0-T0-10Ad
#0-T0-[0Ad
€0-T0-19A2
20-T0-1942
02159
01180
60159
80-189
10189
90-189
G0-1s9
#0-150
€019
20189
10189

t 1.3.1-b24 on UltraSparc ITI

ien

SUN HotSpot C1

Figure 9

ware. For instance, when executing virtual calls the
Pentium IIT branch target buffer ensures that con-
stant patterns have performance nearly identical to
that of slowly changing stepped patterns, whereas
this is not the case for the UltraSparc III. Similarly,
when executing if sequences, small cyclic patterns
are predicted accurately by the Pentium’s condi-
tional branch predictor, which, for all JVMs, results
in better performance on small cyclic patterns than
on random patterns.

Consequently, the results we provide in this paper
can be applied at various levels.

The information we gathered can be used by a static
compiler (e.g., javac) that performs a static anal-
ysis of the program to determine at compile time
the number of possible types, and generate byte-
code relying on the most appropriate implementa-
tions of dynamic dispatch for each call site, either
aggressively targeting a particular platform or con-
servatively performing transformations for multiple
platforms. An extra type ID field might have to be
added to all objects, which would lead to per-object
space overhead as well as initialization time over-
head. However, smart implementations (see [CZ99]
for an example in the context of Eiffel) can avoid the
need for the type ID field for objects which are not
subject to actual dynamic dispatch, as detected by
global analysis. The type ID overhead can also be
made smaller than an integer, for example when the
number of types subject to dispatch fits in 16 or 8
bits, or by packing the type ID in available bits in
the objets. Initialization overhead is dependant on
the objets lifetime, creation rate, and call frequency,
and thus varies between applications. Space and ini-
tialization overhead thus have to be better quantified
to find the conditions under which each solution is
the best.

JVM implementers can also make use of this infor-
mation in a rather similar way, by dynamically com-
piling bytecode into the most suitable native code
structures, based on program execution statistics.
Dynamic optimizers could thus switch between sev-
eral dynamic dispatch mechanisms, depending on
context, execution environment and profiling infor-
mation.

Finally, micro-architecture designers can use these
measurements to determine how to better support
the execution of JVMs and the programs that run on
those JVMSs, in particular with respect to dynamic
dispatch, for instance by providing improved branch
prediction mechanisms.

As mentioned in section 3.3, all the control struc-

tures we studied, except the plain invokevirtual,
have a size that is proportional to the number of
tested types. This number can become quite large,
in real OO programs; for example, in the Small-
Eifel compiler, the maximum arity at a dispatch
site is about 50 [ZCC97]. In such cases, an increase
in code size could happen, with adverse effects on
caches and performance, and thus would have to be
mastered. We did not work on this aspect in the
present study relying on micro-benchmarks. How-
ever, in the SmallEiffel projet, we tackled this issue
and used a simple but efficient solution, which con-
sists in factorizing all identical dispatch sites into one
or a few dispatching routines (“switch” functions in
[ZCC97]). Although we have obtained good results
with this technique in Eiffel, we still have to mesure
its feasabibility in Java.

5. CONCLUSIONSAND FUTUREWORK

The implementation of dynamic dispatch is impor-
tant for object-oriented program performance. A
number of optimization techniques exist, aimed at
de-virtualizing polymorphic calls which can be de-
termined, either at compile-time or runtime, to be
actually monomorphic. Complementary techniques,
either software- or hardware-based, seek to optimize
actual run-time polymorphism as well.

We present a prototype study of various control flow
structures for dynamic dispatch in Java, with vary-
ing hardware, virtual machine and execution pat-
terns.

Our results clearly show that:

e Virtual call performance is highly dependent
on the execution pattern at a particular call
site.

e When the call site has a low or medium degree
of polymorphism (2-3 target types up to about
10), strength reduction of control structures is
likely to improve performance across platforms,
using if sequences for up to 4 different target
types and Binary Tree Dispatch between 4 and
10 different types.

e Processor architecture shines through, more es-
pecially on high-performance JVMs: virtual call
performance of stepped patterns, for example,
is markedly different on different platforms, but
does not vary across different JVMs on the
same platform.

In future work, we could experiment with more tech-
niques or variants for dynamic dispatch, such as the

ones we mentioned in section 3.3, and more plat-
forms (JVM or hardware).

Another area we have to work on is interface dis-
patch in Java, which is more complex because of
multiple interface inheritance, and where some of
the techniques we described are not easily applied.

We also plan to more precisely assess the efficiency
of the techniques we described by completing our
micro-benchmarks suite with larger, real Java pro-
grams. This would give more applicable, although
less precisely understandable, results.

We also intend to evaluate the impact of these vari-
ous dispatch techniques with respect to code size and
memory footprint, especially for techniques whose
code size is proportional to the number of types (if
sequences and BTD).

We can do so by applying our results either to open-
source bytecode optimizers, such as Soot [VRHS99],
or directly to Java Virtual Machines, like the Open
VM [Va01], the Jikes Research VM [IBMO01] (for-
merly named Jalapefio) or the SableVM [GHO1].

Acknowledgements

We thank Laurie Hendren and Feng Qian, who helped
us in early stages of our experiments. We thank ev-

eryone who commented on the poster presentation of

this work at OOPSLA 2001. We are also grateful to

Wade Holst and Raimondas Lencevicius who com-

mented on early versions of this paper, and Matthew

Holly who proofread it. Finally, we thank the anony-

mous reviewers for their valuable comments and sug-

gestions.

This research was supported by NSERC and FCAR
(Canada), and INRIA (France).

6. REFERENCES

[AH96] Gerald Aigner and Urs Holzle. Elimi-
nating Virtual Function Calls in C++
Programs. In 10th FEuropean Confer-
ence on Object-Oriented Programming
(ECOOP’96), volume 1098 of Lecture
Notes in Computer Science, pages 142—
166. Springer-Verlag, 1996.

[BS96] David F. Bacon and Peter F. Sweeney.
Fast Static Analysis of C++ Virtual
Function Calls. In 11th Annual ACM
Conference on Object-Oriented Pro-
gramming Systems, Languages and Ap-
plications (OOPSLA’96), pages 324—
341. ACM Press, 1996.

[CCY9]

[CHPYS]

[CZ99]

[DDG*96]

[DGC95]

[DHY6]

[DH98a]

[DH98b]

Craig Chambers and Weimin Chen. Ef-
ficient Multiple and Predicated Dis-
patching. In 14/th Annual ACM Confer-
ence on Object-Oriented Programming
Systems, Languages and Applications
(OOPSLA’99), pages 238-255. ACM
Press, October 1999.

Po-Yung Chang, Eric Hao, and Yale N.
Patt. Target Prediction for Indi-
rect Jumps. In 1997 International

Symposium on Computer Architecture
(ISCA’97), July 1998.

Dominique Colnet and Olivier Zen-
dra. Optimizations of Eiffel programs:
SmallEiffel, The GNU Eiffel Compiler.
In 29th conference on Technology of
Object-Oriented Languages and Sys-
tems (TOOLS Europe’99), pages 341—
350. IEEE Computer Society, June
1999.

Jeffrey Dean, Greg DeFouw, David
Grove, Vassily Litvinov, and Craig
Chambers. Vortex: An Optimizing
Compiler for Object-Oriented Lan-
guages. In 11th Annual ACM Con-
ference on Object-Oriented Program-
ming Systems, Languages and Appli-
cations (OOPSLA’96), pages 83-100.
ACM Press, 1996.

Jeffrey Dean, David Grove, and Craig
Chambers. Optimization of Object-
Oriented Programs Using Static Class
Hierarchy Analysis. In 9th FEuropean
Conference on Object-Oriented Pro-
gramming (ECOOP’95), volume 952
of Lecture Notes in Computer Science,
pages 77-101. Springer-Verlag, 1995.

Karel Driesen and Urs Hélzle. The Di-
rect Cost of Virtual Function Calls in
C++. In 11th Annual ACM Confer-
ence on Object-Oriented Programming
Systems, Languages and Applications
(OOPSLA’96), pages 306-323. ACM
Press, 1996.

Karel Driesen and Urs Holzle. Accurate
Indirect Branch Prediction. In 1998 In-
ternational Symposium on Computer
Architecture (ISCA’98), July 1998.

Karel Driesen and Urs Holzle. The
Cascaded Predictor: Economical and
Adaptive Branch Target Prediction. In
Micro’98 Conference, pages 249-258,
December 1998.

[DHV95]

[DLM*00]

[Dri01]

[DS84]

[ES90]

[GHO1]

[GISBOO]

[HCU91]

[HU94]

Karel Driesen, Urs Holzle, and Jan
Vitek. Message Dispatch on Pipelined
Processors. In 9th FEuropean Confer-
ence on Object-Oriented Programming
(ECOOP’95), volume 952 of Lecture
Notes in Computer Science, pages 253—
282. Springer-Verlag, 1995.

Karel Driesen, Patrick Lam, Jerome
Miecznikowski, Feng Qian, and Derek
Rayside. On the Predictability of In-
voke Targets in Java Byte Code. In 2nd
Annual Workshop on Hardware Support
for Objects and Microarchitectures for
Java, pages 6-10, September 2000.

Karel Driesen. Efficient Polymorphic
Calls. The Kluwer International Series
in Engineering and Computer Science.
Kluwer Academic Publishers, 2001.

Peter L. Deutsch and Alan Schiff-
man. Efficient Implementation of the
Smalltalk-80 System. In 11th Annual
ACM Symposium on the Principles
of Programming Languages (POPL’84).
ACM Press, 1984.

Margaret A. Ellis and Bjarne Strous-
trup. The Annotated C++ Refer-
ence Manual. Addison-Wesley, Read-
ing, Massachusetts, 1990.

Etienne Gagnon and Laurie Hendren.
SableVM: A Research Framework for
the Efficient Execution of Java Byte-
code. In Ist Java Virtual Machine
Research and Technology Symposium
(JVM ’01), pages 27-39. The USENIX
Association, April 2001.

James Gosling, Bill Joy, Guy Steele,
and Gilad Bracha. The Java Language
Specification. The Java Series. Addison-
Wesley, 2000. Second Edition.

Urs Holzle, Craig Chambers, and David
Ungar. Optimizing Dynamically-Typed
Object-Oriented Languages with Poly-
morphic Inline Caches. In 5th European
Conference on Object-Oriented Pro-
gramming (ECOOP’91), volume 512
of Lecture Notes in Computer Science,
pages 21-38. Springer-Verlag, 1991.

Urs Holzle and David Ungar. Opti-
mizing Dynamically-Dispatched Calls
with Run-Time Type Feedback. In 199/
ACM SIGPLAN Conference on Pro-
gramming Language Design and Im-
plementation (PLDI’94), volume 29
of SIGPLAN Notices, pages 326—336.
ACM Press, 1994.

[IBMO1]

[Lis88]

[LY99]

[SHR+00]

[SLCM99]

[UP87]

[Va01]

[VRHS+99)

[ZCC97]

IBM Research - Jalapeno Project.
The Jikes Research Virtual Machine.
http://www.ibm.com/developerworks
/oss/jikesrvm, 2001.

Barbara Liskov. Data Abstraction and
Hierarchy. In Special issue: Addendum
to the proceedings of OOPSLA’87, vol-
ume 23 of SIGPLAN Notices, pages 17—
34. ACM Press, May 1988.

Tim Lindholm and Frank Yellin. The
Java Virtual Machine Language Spec-
ification. The Java Series. Addison-
Wesley, 1999. Second Edition.

Vijay Sundaresan, Laurie Hendren,
Chrislain Razafimahefa, Raja Vallée-
Rai, Patrick Lam, Etienne Gagnon,
and Charles Godin. Practical Vir-
tual Method Call Resolution for Java.
In 15th Annual ACM Conference on
Object-Oriented Programming Systems,
Languages and Applications (OOPSLA
2000), volume 35, pages 264-280. ACM
Press, October 2000.

Ulrik Pagh Schultz, Julia L. Lawall,
Charles Consel, and Gilles Muller. To-
wards Automatic Specialization of Java
Programs. In 15th FEuropean Confer-
ence on Object-Oriented Programming
(ECOOP’99), volume 1628 of Lecture
Notes in Computer Science, pages 367—
390. Springer-Verlag, 1999.

David M. Ungar and David A. Pat-
terson. What Price Smalltalk ? IEEFE
Computer Society, 20(1), January 1987.

Jan Vitel and al. The Open
Virtual Machine Framework.
http://www.ovmj.org, 2001.

Raja Vallee-Rai, Laurie Hendren, Vi-
jay Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot - a Java
Optimization Framework. In CASCON
1999, pages 125-135, 1999.

Olivier Zendra, Dominique Colnet,
and Suzanne Collin. Efficient Dy-
namic Dispatch without Virtual Func-
tion Tables. The SmallEiffel Com-
piler. In 12th Annual ACM Confer-
ence on Object-Oriented Programming
Systems, Languages and Applications
(OOPSLA’97), volume 32, pages 125—
141. ACM Press, October 1997.

