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Abstract

This paper describes our experience in porting Com-
paq’s Fast VM from the Alpha processor architec-
ture to the Intel x86 processor architecture. We
encountered several opportunities and pitfalls along
the way in porting a JVM designed for a RISC ar-
chitecture to a CISC architecture. Our goal was to
preserve most of the FastVM’s performance benefits
already available on the Alpha platform, and modify
or discover new optimizations as they were required
for x86. We found that by porting a fast RISC JVM
to x86, we could generate a JVM with performance
competitive to state-of-the-art production JVM im-
plementations.

1 Introduction

The Alpha processor architecture [23] and the Intel
x86 processor architecture [1] have totally different
design philosophies. Alpha, which is a RISC archi-
tecture [18], provides a minimal, simple instruction
set which can be efficiently decoded. Intel x86 is
a CISC architecture which is designed to run more
complex operations within a single instruction, and
thus includes more different instructions and for-
mats. While porting Compaq’s Fast VM [6] from
Alpha to x86, we encountered several opportunities
and pitfalls because of this change in architectural
philosophy.

Fortunately, many parts of the JVM required little
or no modification when switching from one archi-
tecture to another. These parts include the class
loader, bytecode verifier, and most of the garbage
collector. Other parts of the JVM were ported by
others - we took advantage of Sun’s port of the Java
libraries to x86/Linux so we did not have to repeat
that work. Instead, we concentrated on the major
changes required in the just-in-time (JIT) compiler

and closely related modules, like the stack unwind-
ing mechanism. Crucial to a successful (i.e., fast)
port of the JIT was maintaining the quality of gener-
ated code that was the result of many optimizations
performed in the RISC JIT. We found that some op-
timizations were straightforward to port, other op-
timizations required major rework, and still others
were simply unworkable in a CISC architecture. Fi-
nally, we also found that some additional optimiza-
tions not required at all by a RISC machine were of
critical importance to fast CISC code.

The different design philosophies of the Alpha and
x86 architectures impose different design constraints
on a Java virtual machine:

• Reduced number of registers: The Alpha archi-
tecture has 31 registers, compared to the x86
architecture which has only 8. This differen-
tial makes it crucially important to do register
allocation well on the x86.

• Instructions contain multiple operations: On a
RISC architecture instructions either load val-
ues from memory, store values into memory,
or execute arithmetic operations. In contrast,
CISC architectures support complex instruc-
tions that integrate these different RISC func-
tions into a single instruction. Selecting the op-
timal instruction for a certain task, therefore,
becomes more difficult on the x86.

• Different addressing modes: Because x86 in-
structions decompose into multiple operations,
similar instructions are built from slightly dif-
ferent primitive operations. For example, an
addition can add a value in memory and a value
in a register, or add two registers.

• Non-orthogonality of instruction set: Not all
registers can be used with every instruction,



so CISC architectures impose additional con-
straints on how data is allocated to registers.

• Source registers get overwritten: Within an
arithmetic instruction, a source register is often
overwritten on a CISC architecture to store the
result. If the old value of the source register is
needed, an additional copy step before such an
instruction is required.

In addition to these five general aspects, the x86 ar-
chitecture has the following design differences with
Alpha:

• 32-bit architecture: Porting the JVM from a
64-bit architecture to a 32-bit architecture in-
troduces several complications. Since the Java
VM supports 64-bit integer operations, a 32-bit
implementation must emulate these operations
using multiple instructions. Furthermore, the
32-bit architecture limits the maximum feasi-
ble heap size to 4GB.

• Limited set of registers per instruction: RISC
instructions support access to either all integer
or floating-point registers, depending on the in-
struction. On the x86 architecture, certain in-
structions require their arguments to be in cer-
tain registers. For example the shift operations
require the shift amount to be given in regis-
ter %cl, whereas in the Alpha architecture, the
shift amount can be in any register. These re-
strictions impose additional complexity on reg-
ister allocation [9].

• Floating-point stack versus floating-point reg-
isters: In the x86 architecture, all floating-
point operations are executed on a floating-
point stack instead of floating-point registers.
Operationally, an arithmetic operation on two
floating-point values pops the first two elements
on the floating-point stack, executes the opera-
tion, and pushes the result on the floating-point
stack. The resulting stack has one less element
than the original stack. The register allocator
must take these movements into consideration.

• Floating-point precision toggle: On the Alpha
architecture, the precision of the floating-point
operation is always encoded in the instruction
itself, whereas it needs to be explicitly set by an
additional instruction in the x86 architecture
before the instruction operates on two registers
on the floating-point stack.

The following two sections describe various opti-
mizations we implemented in the x86 JVM. Sec-
tion 2 describes modifications we made to existing
optimization algorithms to port them from Alpha
to x86. Section 3 describes new optimizations im-
plemented specifically for the x86.

2 Modified Optimizations

The Fast VM for Alpha [6] is a fast, full-featured
virtual machine for Alpha and Tru64 Unix. For the
purposes of this paper, we will concentrate on the
JIT inside this JVM, as the majority of modifica-
tions required to port to x86/Linux occur inside the
JIT. In this section, we describe three JIT optimiza-
tions that are crucial for efficient performance on
x86 and which, for various reasons, required some
redesign for the x86 port.

We describe the optimizations here – we postpone
our experimental analysis of these optimizations to
the performance section (Section 4).

2.1 Register Allocation

A crucial difference between the x86 and Alpha
architectures is the number of directly-addressable
machine registers. In particular, the x86 architec-
ture has only 8 integer registers (none of which
are completely general-purpose), compared to 31
on the Alpha. This differential makes it cru-
cially important to do register allocation well on
the x86. Many algorithms for register allocation
have been developed for use in standard compil-
ers [11, 10, 12, 14, 21]. Although these allocators
generate excellent allocations, they are typically too
slow for use in a just-in-time setting. Much re-
cent work has focused on faster just-in-time allo-
cators [19]. The Alpha register allocator, which we
adapted for use on the x86, does a simple global1

allocation based on access frequency, and then uses
a greedy allocator within each basic block.

The data structure used for the allocator in the
FastVM is called an lmap (“location map”) (see Fig-
ure 1). In the global allocation phase, each Java en-
tity (Java stack location Si or local variable Li) is
assigned a home machine location (H), either a reg-
ister or stack slot. The register allocator dedicates
every register either as a home location (H) for a
particular Java entity, or a temporary location (T)

1global in this context means across a single procedure.
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Figure 1: LMAP register allocation.

that can be used for storing intermediate results or
call arguments. The allocation of home locations
is a simple priority-based allocator, where the pri-
ority of a Java entity is just its estimated access
frequency. Because interference analysis is expen-
sive, the allocator assumes that every Java entity
interferes with every other Java entity. The lack of
interference analysis is not too detrimental as Java
entities, particularly stack slots, encompass many
live ranges. At each basic-block boundary, all live
entities are forced to their home locations.

Within a basic block, the allocator uses a greedy al-
location algorithm. The lmap maintains a mapping
from Java entities to the locations where their values
are currently stored to facilitate allocation. Meth-
ods of lmap are used to move arguments into reg-
isters, allocate additional temporary registers, and
record the result registers. The lmap maintains sep-
arate allocation information for integer and floating-
point registers.

Since the number of registers on the x86 is relatively
small, it is important to use those registers during
code generation effectively. We implemented a num-
ber of optimizations of the RISC register allocation
algorithm to improve register utilization. First, the
RISC allocator divides the available register set into
two categories – home locations and temporary loca-
tions. For the x86 allocator, such a static partition-
ing was too restrictive, so we allowed the allocator
to use home locations as temporaries when the home
location was dead. This allowed us to increase the
percentage of registers that are allowed to be home
locations without overly constricting the temporary
register set. Second, the x86 instruction set is not
orthogonal – not all instructions can use all regis-
ters, so additional code was added to the allocator
to allow allocation from a specific subset of possi-
ble registers. Finally, many instructions in the x86
architecture can accept arguments in memory loca-
tions instead of registers, so the allocator was also
modified to understand that allocation of particu-

lar arguments to registers is optional, so that under
high register-pressure conditions the memory form
of the operation is used.

Wasteful static register allocations had to be elim-
inated as well. Because the Alpha architecture has
lots of registers, the Alpha JVM assigned a few
registers exclusively to particular tasks. One reg-
ister was dedicated to holding a pointer to thread-
local state, one register was reserved for interface
method invocation, and one register was reserved
as a scratch location for the code generator. Dedi-
cating 3 registers to specific uses is tenable when 31
registers are available, but when only 8 registers are
available, being carefree with your registers is not
advisable.

Of particular importance to the performance of the
RISC JVM is fast access to thread-local storage.
The object allocator and mutex mechanism make
heavy use of thread-local variables, so access to
them must be fast. The RISC JVM assigned a regis-
ter to point to the thread’s own variables, so access
to those variables required just a load or store with
this register as a base. The CISC JVM cannot af-
ford to spare a general-purpose register for this pur-
pose. However, the x86 has other registers, one of
which we “stole” to provide fast thread-local access
without requiring any general-purpose registers. We
store our thread-local pointer in a segment register
on the x86 to avoid using a general-purpose register
(fortunately, the %fs segment register is unused by
current Linux x86 compilers and libraries).

For the other two purposes that the RISC JVM re-
serves a register, we instead reserve a thread-local
variable. Although typically slower than a register,
the thread-local variables have the same semantics
as a register and thus can be used in their stead.
We also take advantage of the fact that most in-
structions that use these reserved registers in the
RISC JVM have analogues in the x86 world that
accept our thread-local memory locations (constant
offsets from %fs) instead of registers. The CISC na-
ture of the x86 is thus a two-edged sword – fewer
registers require us to be crafty about our register
use, but at the same time the x86 provides us with
more instructions and addressing modes to be crafty
with.

The combination of these register allocation im-
provements increased the JVM’s spec rating by
68%. For details on our experiments, see Section 4.



2.2 Instruction Selection

Instructions on a RISC architecture are structured
in a systematic way. They can be categorized into
ALU operations, memory operations, and control
operations. ALU operations always work on reg-
isters, and every register from the register set can
be addressed by every ALU operation. Memory op-
erations move values between the register set and
memory. This structure makes instruction selection
relatively easy, and the Java data types map 1:1 to
the instruction architecture.

The optimal selection of instructions is more com-
plex on x86 than it is on Alpha for the following
reasons:

• Different addressing modes: Because a lot of
operations exist in different addressing modes,
unlike a RISC processor, the correct kind of in-
struction needs to be chosen in order to avoid
any additional instructions for moving values.
For example if the values for an addition op-
eration are in a memory and in a register the
instruction selection algorithm always picks an
add instruction that adds a memory and a reg-
ister location.

• Limited set of registers per instruction: When
picking the next instruction, the code genera-
tor always checks in which registers the current
values are in and chooses the instruction ap-
propriately. If the current register allocation
doesn’t fit to the instruction at all, values need
to be moved. This scheme could be improved
with more global analysis, but at the expense
of a larger compile-time cost.

• Efficient 64-bit operations: The Java bytecode
contains 64-bit integer and floating-point oper-
ations that the x86 platform needs to support.
For each of these bytecode operations the num-
ber of temporary registers and the amount of
memory accesses need to be minimized. For ex-
ample, the following code is one possible imple-
mentation of the ladd (64-bit integer addition)
bytecode instruction.

mov 0x0(%esp,1),%eax

add 0x8(%esp,1),%eax

mov 0x4(%esp,1),%ecx

adc 0x10(%esp,1),%ecx

2.3 Instruction Patching

Because just-in-time compilation takes place in a
single pass, the generated code needs to be fixed up
in certain situations:

• class initializers: Java requires that a class be
initialized before any of its methods or fields
are accessed. For any reference in the code
we are compiling that refers to an uninitialized
class, the JIT must insert instructions before
the reference to ensure that the class is initial-
ized. After the class is initialized, these added
instructions are superfluous and can be patched
to NOPs for improved performance.

• fix up branches: When generating code, the
target address of forward branches is not yet
known, so these branches must be fixed up
when the destination address is known.

• copying registers: In some situations, regis-
ter copy operations can be avoided by renam-
ing registers backward in the already-generated
code.

• inlining: Small methods can be directly inlined
at the call site.

Since the instruction length is fixed on RISC archi-
tectures, it is relatively easy to implement instruc-
tion patching efficiently and safely.

In certain cases (see Section 2) instructions need to
be patched at runtime. Patching in a JVM can be
a delicate operation, because often the code that
is being patched is being executed concurrently by
another thread or processor. Thus, all intermediate
states of the patching operation need to be seen by
all processors as valid and correct code.

On Alpha, patching is straightforward since every
instruction is exactly 4 bytes long. Each instruc-
tion can be atomically replaced with a single write
(and the JVM is designed to only require single-
instruction patching). However, on the x86 archi-
tecture, instruction lengths may be different, which
complicates the patching process. We need to make
sure that we can atomically patch any instruction
of reasonable length with another, possibly different
length, instruction sequence.

To make patching possible, at code generation time
we ensure that any patchable instruction contains



enough bytes for any instruction which we might
want to patch over it, and that the patch location is
suitably aligned so that an atomic operation can be
used to perform the switch. On Pentium-class pro-
cessors, this means that the patch location must not
straddle a cache-line (32-byte) boundary. Finally, at
patch time we equalize the lengths of the sequences
by padding the inserted sequence with nop’s, and
use an atomic compare-and-exchange operation to
ensure the patch is performed exactly once.

2.3.1 Inlining

Small compiled methods that fit into a call site can
easily be inlined using the code patching mecha-
nism. The JVM inlines a method by patching the
method body into a call site and pads the remain-
ing space with nops. Interestingly, inlining in this
manner allows us to inline a method after all call
sites to it have been compiled. This kind of inlin-
ing typically happens because inlining at the time
we compile the caller is not always possible, usu-
ally because of class initialization constraints. More
sophisticated techniques for inlining can be found
in [13].

2.3.2 Retargeting

The Alpha JIT uses retargeting to avoid register-
to-register copies. When a Java entity needs to be
moved from one register to another, the Alpha JIT
scans backward in the code to find the instruction
that generated the value (if it exists), and rewrites
it to use the new destination.

Although retargeting is very effective on the Alpha,
it is difficult to implement on the x86 for three rea-
sons. First, it is difficult in general to walk backward
in code when instructions are not fixed size. Sec-
ond, many x86 instructions generate their results in
particular registers and thus are not retargetable.
Finally, for many x86 instructions the output regis-
ter is also an input register, so rewriting the output
register alone is not possible. For these reasons, we
added instead a forward-looking heuristic into our
register allocator. The allocator computes the pre-
ferred register into which each Java entity should
be placed, based on the requirements of its nearest
future use. The allocator then uses these suggested
registers, if possible, to satisfy allocation requests.
By preferentially using the suggested registers, the
allocator often ensures that the entity is in the cor-

register use type

eax 1st int arg, first int return scratch

ecx method ptr scratch

edx 2nd int arg, second int return scratch

ebx preserved

esi preserved

edi preserved

ebp preserved

esp stack pointer preserved

Figure 2: Optimized Calling Convention

rect location when the use of the entity is later en-
countered.

3 Optimizations for x86

Simply updating the JVM optimizations to take
into account the different properties of x86 was not
enough, however. The x86 platform has additional
peculiarities that required the implementing of some
additional optimizations. We describe these opti-
mizations here.

3.1 Calling Convention

There are four problems with the x86 calling con-
vention that make it difficult to port the RISC JVM
to x86. First, the x86 argument passing and (some)
return value passing are done on the stack instead of
in registers. Second, the x86 dedicates two registers
to stack management, a frame pointer and a stack
pointer, when it is possible to use only a single regis-
ter. Third, we need to be able to unwind the stack to
implement the Java exception model, and changes
to the x86 calling convention were required to sim-
plify and speed up this unwinding. In addition, Java
requires precise detection of stack overflow, which is
difficult in the standard calling convention because
almost any instruction can cause a stack overflow.
Finally, the x86 calling convention enforces only 4-
byte alignment of stack frames, which can be a per-
formance problem because 8-byte stack operations
might be unaligned.

In order to solve all of these problems, we developed
a new calling convention as shown in Figure 2. This
register assignment gives us 3 scratch (caller-save)
registers and 4 preserved (callee-save) registers, plus
a stack pointer.

We modified the calling convention to use a fixed



stack pointer over the life of a method, as opposed
to the standard x86 convention which encourages
the use of push and pop instructions which mod-
ify the stack pointer. Local stack variables can be
accessed at constant offsets from the stack pointer.
The optimized stack scheme of our implementation
is shown in Figure 3. The prolog/epilog and a sam-
ple callsite of the optimized calling convention can
be found in Figures 4 and 5 respectively.

By allocating a callee-saved register slot at the bot-
tom of the stack frame, the prolog of a method
can immediately check whether a stack overflow has
occurred by storing a callee-saved register (or any
value, if there aren’t any registers that need to be
saved) to the bottom of the stack frame. Thus, the
only instructions that can cause a stack overflow are
the first store in the method prolog, and call instruc-
tions (which push their return address). At both of
these locations, stack overflow exceptions are simple
to deal with.

We also took the opportunity while changing the
calling convention to align stack frames to 8-byte
boundaries for faster stack operations on the double
type.

input arguments
...

return address
callee-save space

...
local variables

...
output stack arguments

...
callee-save space (4 bytes)

Figure 3: Optimized stack frame layout

subl $24, %esp

movl %ebx, (%esp) # save %ebx,

stack check

...body of method...

movl (%esp), %ebx # restore %ebx

addl $24, %esp

ret

Figure 4: Method prolog/epilog of the optimized calling
convention.

movl $1, %eax % 1st arg

movl $2, %edx % 2nd arg

movl $3, 4(%esp) % 3rd arg

call method

% return value

in %eax

Figure 5: Example call site in the optimized calling
convention.

3.2 Floating-Point Modes

Switching the floating-point precision mode on x86
inserts an additional instruction into the code and
also causes stalls in the processor pipeline. For Java
methods using 32-bit and 64-bit floating-point op-
erations, switching precision is inevitable. However,
our experiments have shown that while running the
benchmarks, only one method in the Java class li-
braries and one method in the benchmark programs
(mpegaudio) use two precision modes within a sin-
gle method. Even in these cases the less frequent
precision is used at most two times. To take advan-
tage of this fact, we choose a default precision mode
for each method and set the precision mode to the
default at the beginning of each method that uses
floating-point operations. Thus, default precision
operations require no additional instructions, while
the precision mode needs to be set and reset around
the occasional non-default precision operation. Our
calling convention considers the precision mode to
be a preserved value, so it must be reset at the end
of the method.

Because non-default precision operations are rare,
this strategy significantly decreases the number of
switches required and thus increases performance.
Precisely analyzing the control-flow and optimizing
the number of switches in a given method would
help, but may be too expensive for just-in-time com-
pilation.

4 Performance

In this section we show performance results for the
FastVM implementation on x86 and compare it to
other state-of-the-art JVM implementations on x86.
The second part presents improvements of the dif-
ferent single optimization methods which we have
explained in the previous sections.

To compare the different JVM implementations on



x86 we ran the SpecJVM98 [4] benchmark suite
(large size) on a Compaq Deskpro machine (Pen-
tium III 866MHz) with 256MB main memory run-
ning Linux 2.4.3. The heap size of the JVM is
128MB since we want to avoid as many side ef-
fects of garbage collection activity as possible during
the measurements. Setting the heap size to 128MB
eliminates most garbage collections.

For performance measurements we set up a Java
wrapper program that invokes every single bench-
mark three times. At the end we compare the geo-
metric mean as well as the best and the worst of all
three benchmark times.

With a just-in-time compiler the first run usually
takes the most time and any succeeding run is
shorter since later runs invoke methods that have
already been compiled to native machine code. We
found that after three runs most JVM implemen-
tations do not improve much further by using al-
ready precompiled code. We also chose to restart
the JVM after a single benchmark, so that bench-
marks cannot take advantage of a method that has
been compiled by a benchmark invoked earlier.

The FastVM uses a simple heuristic approach to de-
cide whether a method needs to be compiled or not.
During execution the FastVM counts how often a
method gets invoked, and if the count exceeds an up-
per limit the methods gets compiled and optimized.
In contrast, in a feedback-based compiler, optimiza-
tion takes place only in the parts of the code that
are frequently executed. To find out which parts the
JVM needs to optimize, the compiler gets program
profiling information as feedback from the runtime
system. The advantage of feedback-based systems
is that frequently executed parts of the program
get well optimized. On the other hand, profiling
and optimizing code imposes an additional runtime
penalty and often code can be efficiently optimized
using lightweight optimization methods as described
in this paper.

4.1 Performance comparison of different
JVM implementations

In this performance evaluation we compare the
FastVM to Sun’s JRE 1.3.1 (HotSpot client and
server) and IBM JRE 1.3.0. These two JVM imple-
mentations are the leaders in the SpecJVM bench-
mark results and therefore a reasonable performance
indicator.

SpecJVM performance on x86
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Figure 6: Average runtimes of SpecJVM on x86.

Figure 6 shows the average runtime of the four
JVMs over three runs. The FastVM is the fastest
JVM on jess, javac, and jack, and comes last in
mpegaudio and mtrt. Mpegaudio and mtrt mainly
use floating point operations, and so far we have
not spent much effort in optimizing floating point
operations apart from switching precision modes as
explained in section 3.2. The FastVM is faster by
5-30% on some benchmarks and can be slower as
much as 95% in mpegaudio.
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Figure 7: Best-case runtimes of SpecJVM on x86.

Figure 7 shows the best-case scenario. Here the
feedback-based JVM code generators have an ad-
vantage since they can spend more time on optimiz-
ing code. However, the FastVM is still among the
fastest JVMs for jess, jack, and javac. The lead of
the FastVM is only around 2-3%.

In the worst-case scenario (Figure 8) feedback-based
compilers, especially the Sun Hotspot server, lag
behind since they spend a lot of time during the
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Figure 8: Worst-case runtimes of SpecJVM on x86.

first run in order to optimize native code. Here the
FastVM has a lead in jess, javac, and jack. In javac
the FastVM can be up to 39% faster than other im-
plementations.

It is difficult to compare feedback-based code gener-
ators and non-feedback-based code generators. If a
Java method that is difficult to optimize gets called
frequently it is better to use a feedback-based com-
piler that applies heavy optimization techniques.
On the other hand profiling code adds a runtime
penalty, and therefore a simple approach for code
optimization leads to a good performance. Further-
more, static compilers such as Swift [20] can be used
to generate highly optimized native code in advance.

Simple code optimizations of a non-feedback-based
code generator can compete with a feedback-based
code generator, and these optimizations could even
take place in the feedback-based system to improve
runtime before any strong and time-consuming opti-
mization starts. Furthermore, a simple heuristic ap-
proach for making decisions about whether or not
to compile methods works reasonably well on the
client applications of SpecJVM.

4.2 Optimizations for the FastVM on x86

This section investigates the effects of the different
code optimizations we implemented for the FastVM
on x86. These optimizations are register allocation,
method inlining, and floating-point precision mode
optimizations as we described in section 3. All three
optimization techniques impose a negligible amount
of additional compilation time to the VM.

4.2.1 Register Allocation

In this section we test the performance of the opti-
mized register allocation scheme, and furthermore,
how the benchmarks behave when we reduce the
number of available registers.

Register allocation
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Figure 9: Benchmark speedup when enabling regis-
ter allocation. The performance number represents
the ratio between the measured runtime with the non-
optimized compiler and the optimized compiler running
register allocation only.

Figure 9 shows the overall performance improve-
ment when we use register allocation instead of
copying values from and to memory at each opera-
tion. The maximum speedup factor we achieve by
enabling register allocation is about 3 for compress,
but generally every benchmark profits from passing
the arguments in registers.

The reason that compress gets more speedup than
the other benchmarks is that it frequently runs se-
quential operations within one method that can be
optimized well.

This effect becomes clearer in Figure 10 where we
decrease the number of registers to a minimum of
three and measure the performance. The y-axis in-
dicates the speedup to the same code optimization
that uses only three registers. In benchmarks that
profit a lot from register allocation like compress we
get a gradual speedup from three to seven available
registers. In other benchmarks performance may
even slow down a bit. The reason is that by using
our simple local register allocation scheme we do not
always pick the theoretically optimal allocation, and
therefore performance may slow down by a nuance
if the register allocation that uses only one register
less was closer to the optimal solution. Benchmarks
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Figure 10: Reducing the number of available registers
in the register allocator. The performance number rep-
resents the ratio between the measured runtime with
four, five, six, and seven registers and the measured run-
time with three registers.

that show only little improvement when we increase
the number of available registers mostly profit from
passing method arguments in registers.

4.2.2 Method inlining

This section shows the impact of inlining small
methods. Before register allocation takes place we
inline short methods before register allocation takes
place. Figure 11 shows that inlining of short meth-
ods generally has only a marginal influence on per-
formance for most benchmarks. Javac is the only
exceptions with a speedup of 1.15.
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Figure 11: Benchmark speedup for inlining of short
methods. The performance number represents the ratio
between the measured runtime with method inlining en-
abled and the measured runtime with method inlining
disabled.

4.2.3 Floating-Point precision toggle

When we set the floating-point precision at ev-
ery single floating-point instruction explicitly, a sig-
nificant number of memory operations gets added
to the instruction stream that stalls the processor
pipeline and thus degrades performance. By using
a simple heuristic for determining whether a method
uses single or double precision predominantly (as de-
scribed in section 3), we are able to increase perfor-
mance by a factor of up to 1.8 as shown in Figure 12.
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Figure 12: Benchmark performance when enabling op-
timization for toggling floating-point precision. The per-
formance number represents the ratio between the mea-
sured runtime with floating-point mode optimization
enabled and the measured runtime with floating-point
mode optimization disabled.

In SpecJVM, only mpegaudio and mtrt use floating
point operations frequently. However, in mpegau-
dio the compiler generates more register to register
floating point operations that require the precision
mode to be switched.

4.2.4 Overall performance improvement

Figure 13 shows the complete picture of the opti-
mized code generator versus a non-optimized naive
code generator.

Benchmarks profiting most from the optimizations
are compress and mpegaudio. Each of them im-
proves by a different optimization technique, which
demonstrates the necessity of multiple optimization
passes. The optimization techniques are simple and
inexpensive and can be widely applied.
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Figure 13: Benchmark speedup of optimized version us-
ing register allocation, floating-point optimization, and
method inlining compared to the non-optimized imple-
mentation of the FastVM on x86.

5 Related Work

There has been a lot of work on writing JVMs in
general [25], on JVMs for 64-bit RISC [16], and
JVMs for x86 in particular [22]. Many of these
JVMs are not well documented in the research liter-
ature because of competitive concerns. Two notable
exceptions are IBM’s Jalapeño JVM[8] and Intel’s
Open Research Platform(ORP)[7]. IBM’s JVM is
similar to ours in that it started out life as a RISC
JVM on PowerPC, and has recently been ported
to x86 [24]. Intel’s JVM is of course native to the
x86, but may experience similar porting pains when
moving the IA64[2]. [17] describes the architecture
of the HotSpot Virtual Machine. [6] describes the
FastVM for Alpha that we ported to x86. In addi-
tion to just-in-time compilers several static compil-
ers exist that generate native code from Java source
code and use standard compiler backends for opti-
mization [3, 5, 20] Unlike much of the published lit-
erature on x86 JVMs, our work focuses on the gritty,
low-level design considerations required to make a
JVM use a CISC instruction set effectively.

6 Conclusion

We have shown that it is possible to port a JVM
implementation from a 64-bit RISC architecture to
a 32-bit CISC architecture spending minimal ef-
fort and without losing much performance. The
achieved performance is competitive with state-of-
the-art Java Just-in-time compilers. Nevertheless,
there were some pitfalls to get around, including
floating-point precision mode, register allocation,
and calling convention. On the other hand we had

opportunities for further improvement in instruction
selection. After all, from our experience it is gen-
erally simpler to generate efficient RISC code be-
cause of the complexity in addressing modes and
instructions of CISC. Disregarding the architectural
issues, more architecture-neutral compiler optimiza-
tion techniques such as [19] and [15] can be imple-
mented to further improve performance.
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