USENIX Association

Proceedings of the
2" Java™ Virtual Machine
Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

JaRTS: A Portable Implementation of Real-Time Core
Extensions for Java

Urs Gleim
Siemens AG, Corporate Technology

urs.gleim@mchp.siemens.de, http://www.siemens.com/ct/

Abstract

To implement real-time tasks in Java the Java Vir-
tual Machine has to be enhanced by the ability to
run threads in a predictable time and to access hard-
ware directly. One approach is to provide a real-
time add-on for standard Java Virtual Machines.
Benefits of this approach are a better predictability,
a better scalability and more flexibility.

In this paper JaRTS—an implementation of the
Real-Time Core Extensions specification—is pre-
sented. Some implementation details are inspected
and first results are shown.

1 Introduction

Complexity of embedded and real-time systems in-
creases from year to year and can only be handled by
providing state-of-the-art programming languages.
Usually software for those systems is written in C
and even assembly language. This implies in-depth
knowledge of the underlying hardware and the real-
time operating system (RTOS) used. To handle
complex software effectively a high abstraction layer
of the programming language is needed. The Java
Language provides an appropriate abstraction layer
but is not designed for resource limited embedded
systems and systems with real-time requirements.
Thus the Java Language Specification [1] and the
Java Virtual Machine Specification [2] need to be
enhanced. In order to add real-time capabilities this
is done by several specifications. Implementations of
these specifications were not available until Decem-
ber 2001 when TimeSys [13] released the first refer-
ence implementation of the Sun’s Real-Time Speci-
fication for Java (RTSJ) [3]. The Real-Time Core
Extensions (RTCE) [4] are a competing specifica-

tion by the Real-time Java Working Group.

In this paper we focus on real-time software such as
control software for industrial automation. In this
area there are systems running real-time software as
well as non-real-time parts like graphical user inter-
faces on the same machine (e.g. the SICOMP indus-
trial microcomputers [15]). On the other hand there
are small controllers with very limited resources.
Since RTCE fits better for these systems—this will
be explained later—we implemented RTCE instead
of RTSJ.

Designing real-time systems requires an overall sys-
tem view. You cannot look at single parts like
the Java Virtual Machine separately (assuming a
common single processor system is used; hardware
related topics are excluded). Therefore the paper
starts with a definition of real-time systems, which
are targeted. Based on that, current real-time op-
erating system architectures are described in a nut-
shell. After an overview over the current real-time
Java approaches the concept of the JaRTS Java real-
time Java compiler will be discussed. Since real-
time tasks run in a separate runtime environment
the communication between real-time and non-real-
time parts is shown in detail. Finally benchmarking
results comparing JaRTS to other solutions are pre-
sented before we conclude.

2 Real-time systems

The term ”real-time” is often used in different con-
texts with a different meaning. For example online
systems with short response times are often named
"real-time” systems. This is not meant in this pa-
per. A canonical definition of a real-time system
from Donald Gillies [12] is the following:

A real-time system is one in which the cor-
rectness of the computations not only de-
pends upon the logical correctness of the
computation but also upon the time at
which the result is produced. If the tim-
ing constraints of the system are not met,
system failure is said to have occurred.

If the timing constraints must always be met we
speak of a hard real-time system, it would be
soft real-time if missed deadlines only lead to less
throughput or an acceptable reduced quality of ser-
vice. Most real-time systems have additional re-
quirements concerning robustness and availability,
which are not discussed in this paper.

Writing hard real-time applications for single-
processor systems on top of an multi-threaded op-
erating system needs in-depth knowledge of the
scheduling strategy and the worst case times needed
for system calls in order to ensure the timeliness of
the application. Furthermore worst-case preemp-
tion times of every thread and especially system
calls have to be known. This leads to one important
parameter, the interrupt latency. Interrupt latency
is the time between occurrence of the hardware in-
terrupt and the entry of the software interrupt han-
dler (interrupt service routine, ISR).

3 Real-time operating systems

The difference between non-real-time operating sys-
tems like Windows and Linux and real-time operat-
ing systems like VxWorks is that real-time operating
systems have short guaranteed thread preemption
times and interrupt latencies. A standard Linux for
example has interrupt latencies up to a few hun-
dred milliseconds [11] while the latencies of current
real-time operating systems are around tens of mi-
croseconds which are guaranteed by the system ar-
chitecture. Worst-case times of a standard Linux
can be determined by measurements but there is
no guarantee that there are worse cases with even
longer latencies.

Real-time operating systems are much more uncom-
fortable to program than desktop operating sys-
tems. They often do not provide a process con-
cept (memory protection), which separates mem-
ory spaces of different applications and there is not
much abstraction from the underlying hardware.

Because applications running on embedded devices
become more and more complex additional abstrac-
tions are needed. Mostly it is only a small part of a
real-time application really having real-time require-
ments. For the rest of the software one would like to
have the convenience of desktop operating systems.
Therefore it makes sense to modify desktop operat-
ing systems to satisfy embedded and real time needs
(or having a programming environment like Java,
which we discuss later). To add real-time capabil-
ities to a non-real-time operating system there are
two approaches:

¢ Preemption Improvement: Modify the op-
erating system to be preemptible in a defined,
short time.

e Interrupt Abstraction: is a two kernel
model running the unmodified operating sys-
tem as the idle-task on top of a separate sched-
uler (also known as Interrupt Isolation or In-
terrupt Virtualization).

The fist approach is implemented for example by
MontaVista [14], who improved the preemption
times of Linux. Two kernel solutions for Linux are
RTLinux [7] and RTAI [8]. VxWin [16] and Ventur-
Com’s RTX [17] are two-kernel solutions for Win-
dows NT.

Due to the complexity of operating systems like
Linux it is a very difficult task to improve preemp-
tion times. Because it is really hard to examine ev-
ery code path in the kernel, worst case preemption
times cannot be guaranteed. The interrupt abstrac-
tion model allows predicting worse case times in the
small real-time layer exactly. A detailed comparison
of the two approaches for Linux can be read in the
articles [9] [10] [11].

4 Requirements to an implementa-
tion

The range of application for real-time Java is quite
huge. It can be used in small micro controller sys-
tems as well as in large systems having the power of
current personal computers and workstations. The
most important requirements to a real-time Java
implementation in this context are portability and
scalability:

e Portability: The real-time Java implemen-
tation should be available for many hardware
platforms and the porting effort has to be min-
imal.

e Scalability: The runtime environment should
be used for small resource limited systems up
to large systems with graphical user interfaces.

Portability of the Java applications is not explic-
itly required. It is a Java intrinsic feature that pro-
grams are easy to port to different systems. But for
the mentioned systems it is necessary to access the
hardware directly (access hardware registers, install
interrupt handlers, ...). There are frameworks like
the Real-Time Data access [5] targeting this issue.

5 Real-time Java approaches

Currently there are two leading Specifications
adding real-time capabilities to Java. Firstly the
Real-Time Specification (RTSJ) [3] for Java pro-
duced by the Real-Time for Java Expert Group
under the auspices of the Java Community Pro-
cess [18]. In December 2001 the first reference im-
plementation for the Real-Time Specification has
been released by TimeSys [13]. Secondly the Real-
Time Core Eztensions (RTCE) [4] produced by the
Real-Time Java Working Group supported by HP,
Microsoft and other corporations. Both specifica-
tions cover the necessary enhancements to enable
Java for real-time tasks:

e Thread scheduling and synchronization:
The Java Language Specification [1] does not
define the thread scheduling exactly. In addi-
tion the ten priorities provided by Java are not
enough for most real-time tasks.

¢ Memory management: Automatic memory
management of Java mostly leads to unpre-
dictable timely behavior. There is no defini-
tion of worst-case memory allocation times and
even concurrent garbage collectors are not pre-
emptible without latencies.

e Asynchrony: Hardware interrupts and soft-
ware events can occur asynchronously in real-
time systems and require an immediate change
of the control flow.

¢ Hardware access: Java does not provide
direct access to hardware registers, physical
memory and handling of hardware interrupts.

RTSJ implementations require modifications of the
Java Virtual Machine (JVM) internals. The appli-
cation developer can choose the thread scheduling
algorithm and there are several strategies for mem-
ory management. The approach of RTCE is differ-
ent. Instead of modifying the whole JVM RTCE
can be implemented as a real-time add-on working
closely with an arbitrary existing JVM.

6 Real-Time Core Extensions

For our requirements—portability and scalability—
the Real-Time Core Extensions are the more suit-
able approach. The real-time part is small and can
be implemented to be easy to port. Beyond that
it can be used as a stand-alone solution as well as
in combination with an off-the-shelf JVM. The sep-
aration of a non-real-time and a real-time runtime
environment allows an implementation on operating
systems implementing the Interrupt Abstraction ap-
proach.

According to the RT'CE specification real-time parts
of the application run in a runtime environment—
called Core Java'—separated from the standard
Java runtime environment—called Baseline Java
(figure 1). The Core part can also be used as a
stand-alone runtime environment. It has its own
set of class libraries (org.rtwg.*), which are also
separated from the standard Java class hierarchy.
Root of the Core class tree is not java.lang.0bject
but org.rtjwg.CorelObject. This library contains
special classes for handing thread scheduling, inter-
rupts, memory, I/O and event handling. The Core
runtime environment runs with a higher priority
than the Baseline Java. In so doing it is assured that
the Baseline threads and garbage collection has no
influence on the real-time behavior of Core threads.

The classes of the Core library are shown in figure 2.
They provide only basic functionality. The standard
Baseline Java can access dedicated methods of Core

1The term Core Java was not the best choice by the Real-
Time Java Working Group since it has a different meaning
in the standard Java community.

Standard JWh JaRTS Runtime
"Baseline Java" Communication "Core Java"
{lowy priority) {high priority)

Real-Time Operating System

Figure 1: separation of real-time and non-real-time
parts

objects, which are marked as ”Core-Baseline Meth-
ods” (more details below). There is a small Baseline
library for this communication, shown in figure 3.
A detailed documentation of those libraries can be
found in [4].

7 JaRTS: basic concept

For performance reasons it makes sense to compile
the code to native machine code at compile time
(ahead-of-time compilation). CPU time and mem-
ory is saved compared to a JIT-compiler and the
costs of dynamic class loading are avoided. The real-
time Java parts are used for drivers and embedded
control algorithms which mostly do not need dy-
namic class loading (however a solution for dynamic
class loading is planned, see section 14).

JaRTS (Java Real-Time by Siemens) is an imple-
mentation of a Core Java compiler and the RTCE
libraries. Output of the JaRTS compiler is plat-
form independent ANSI-C code as well as Java code
for the Baseline-Core communication. The plat-
form dependent parts are placed in separate operat-
ing system dependent include files. In addition the
communication between Baseline and Core is imple-
mented in platform dependent C files.

The prototype JaRTS compiler and runtime li-
braries were implemented for RTLinux. The Core
parts of an application (real-time parts) are com-
piled to native code running directly on the real-
time scheduler. For RTLinux the real-time code
has to be compiled into kernel modules that can
be loaded dynamically. Figure 4 shows the whole
build process of a JaRTS real-time Java application.
Platform dependent files for RTLinux are encircled.

CorelObject

CoreThrowable
CoreRuntimeException
CoreException
ScopedException

CoreClass

CoreArray

AllocationContext

SpecialAllocation

CoreString
DynamicCoreString

ATCEventHandler

ATCEvent

CoreRegistry

SignalingSemaphore

CountingSemaphore

Mutex

Configuration

Time

Unsigned

CoreTask
ISR _Task
SporadicTask

I0Port

Interfaces:
PCP
Atomic

Figure 2: Core API

java.lang.0Object
lava.lang.Classloader
BaselineCoreClassloader
CoreDomain
java.langException
ObjectNotFoundException
CoreBaselineRuntimeException

Figure 3: Baseline API

Non-RT Java Code
(Baseline Java)

I RT Java Code
(Core Java)

JaRTsS
Compiler

Java-Code for Baseline
Proxies

.class Files

Standard Java VM

dependent

Communicatio
via JNI

Linux

RT-Linux Kernel Module ___|

Figure 4: build process and platform dependent files

We implemented the communication of Baseline and
Core Java via JNI (Java Native Interface) that is
supported by most JVMs. Since all the real-time
processing should take place in the Core part the
interface between the Core and the Baseline part
of an application is very small and the poor perfor-
mance of JNI is not an issue.

8 JaRTS implementation

To get quick results the JaRTS compiler is based
on in Open Source Java to C translator called
bock, written by Charles Briscoe-Smith [6]. This
translator did not support threads and therefore
no synchronization. This was added to imple-
ment CoreTask, ISRTask and SporadicTask of the
RTCE specification. Since we needed a periodic
task—which is a task executing periodically af-
ter a specified time—we added an additional class
PeriodicTask.

The Core library was implemented straightforward,
mapping mutexes, interrupt handlers etc. directly
to the functions provided by the underlying system.
Native C code used in the libraries is weaved di-
rectly into the output of the compiler. So there is

no additional runtime overhead for invoking native
methods.

In the following section handling of the interrupt
service routines, the communication between real-
time and non-real-time parts as well as the memory
management strategy is described.

9 Interrupt service routines

Because of object orientation Java requires runtime
overhead even for conceptually simple tasks like in-
terrupt handling. An interrupt service routine (ISR)
in Java (RTCE) is implemented similar to a thread.
A work () method has to be implemented in a sub-
class of ISRTask. The interrupt number is a mem-
ber variable of this class. There can be several in-
stances of the same class handling different inter-
rupts.

To access member variables in the C translation
of the ISRTask a pointer to the corresponding ob-
ject has to be known inside the translated work ()
method.

In real-time operating systems ISRs are assigned to

a hardware interrupt by a system call. This call
has only two parameters: the interrupt number and
the address of the handler method. In RTLinux it
would look like this:

rtl_request_irq(irnumber,
handler);

Of course it is not possible to pass arguments to
the handler method because it will be called by
the underlying operating system. Therefore the in-
terrupt handler has to get the object pointer from
somewhere else. In the JaRTS runtime environment
there is a wrapper function for all interrupt han-
dlers fetching an object pointer of the correspond-
ing ISRTask object from a small table whenever an
interrupt occurs. This wrapper is used for all inter-
rupts handled by Core Java applications. Roughly
the wrapper function looks like this (some details
left out):

void isr_entry(int irq) {
isr_object* o=table[irq];
(o->methods->work) (o) ;

}

This is connected to every handled interrupt by

rtl_request_irq(irnumber,
isr_entry) ;

The object pointers are written to the table dur-
ing initialization of the ISRTask. Accessing the ta-
ble (table[]) does not require mutual exclusion be-
cause it will not be reallocated and values are only
read (after the initialization phase where the han-
dler will not be called with the current interrupt
number).

So the Java overhead for ISRs is the table access and
an additional function call in the isr_entry() func-
tion. This leads to slightly longer interrupt latencies
compared to C but this is a predictable worst-case
time. This time can be calculated by looking at the
(assembly language) output of the C compiler with
the assumption that all data and the code of the
work () method is not in cache.

10 Baseline-Core communication

The prototype implementation was done for
RTLinux [7]. As mentioned, RTLinux uses Interrupt
Abstraction to make Linux real-time capable. This
is a two-kernel solution where Linux runs on top of a
real-time scheduler. Hence the Core Runtime envi-
ronment has to run directly on the real-time sched-
uler and communication must be possible from the
real-time threads to the non-real-time threads run-
ning on a standard JVM on top of the Linux kernel.
This is implemented by some communication rou-
tines that use the FIFOs provided by RTLinux for
communication between real-time threads and non-
real-time Linux threads. These FIFOs are accessed
by native code via JNI (figure 5).

10.1 The Core part

To access methods in the Core code from Baseline
these methods have to be marked as Core-Baseline
methods with the keyword baseline?, for example
(CoreTask is the Core thread class):

public class Controller extends
CoreTask {

public void baseline setSpeed(...)

public void baseline getSpeed()

By now only the methods which may be accessed
by Baseline Code are marked.

Objects instantiated in the Core part can be pub-
lished to Baseline with a string name:

MyCoreObject co =
new MyCoreObject();
CoreRegistry.
publish("myObject01", co);

Objects are published by sending the name, the type
and a unique object ID via FIFO to the Baseline

2There is an notation that doesn’t introduce a new
keyword: calling
CoreRegistry.registerBaseline(<mthd_signatures>) in
the static initializer

JaRTS
NI native
?;ir;d\?ﬁ COMmmumi-
cation RT-Linus
routines FlIF @5
JaRT= Runtime
Environment
Linux Kernal thigh priority}
(low priority)

Real-Time Kemnel

Figure 5: separation of real-time and non-real-time parts

JVM (described below). To receive method calls
from Baseline a loop is listening at another FIFO
for commands (CoreListener).

10.2 The Baseline part

The Baseline instance for Baseline-Core com-
munication is CoreDomain. Previously pub-
lished Core objects can be obtained by calling
CodeDomain.lookup(), for example:

MyCoreObject bco =
CoreDomain.lookup("myObject01");
bco.foo (42, 3.1416);

What CoreDomain.lookup() actually returns is a
proxy object doing the communication with the cor-
responding Core object. The JaRTS compiler gen-
erates the proxy classes for each Core class contain-
ing Core-Baseline methods. These proxy classes are
subclasses of a Baseline version of CoreObject (fig-
ure 6).

We added an internal class
BaselineCoreConnector that handles the con-
nection. It is a singleton and used by the proxy
objects. Therefore it is a static member of the proxy
superclass CoreObject. A BaselineFifolListener
waits for commands like publishing objects in the
Core as well as for returning functions (figure 7).
The actual communication is done in native files
written in C. These files have to be adapted when
porting JaRTS to other platforms.

EzsdineCoraeConnedtor

returnalue : ResultH as hilap
corelistener: BaselineFifolistener

t methodC alin cid : int, in oid : int, in mid : int, in poount it int
uwaitF orbdethod B eturng)

Hun b ch hdutesa)

i+ getR aturn®faluedin cid @ int) : int

1

! 1

EzsdinsFifo Listerer Result HashMap

Figure 7: auxiliary classes for the JaRTS implemen-
tation

10.3 Calling Core-Baseline methods

Figure 8 shows a sequence diagram of the publica-
tion and a Core-Baseline method call. Arrows cross-
ing the horizontal line between Baseline and Core
are standing for data sent through the FIFOs. The
data sent is described in the balloons.

Name, type and ID (for optimization) of a published
object are received by the FifoListener and in-
ternally stored in a hash map of CoreDomain for
lookup. The latter is not shown in the sequence
chart. For every published object a proxy object on
the Baseline side is created. This proxy objects con-
tains wrappers for all the Core-Baseline methods in
the corresponding Core object. When called, these
wrappers send a ”call method” command followed
by the object ID, method ID and the parameters to
the CoreListener. Since multiple threads can call

CoreDomain

+lookuplin name : String) : CoreObject

+defineClasslin name, in b Byte, in off ; int, in len cint): Corellass
+loadC laz=(in name : String) : CoraClass

+instanciatelin o CoreClass): CoreObject

+profiles() : String

Corelbject
Bas e clazs for the
Ba=eline-Core
prosies
CoreClass
lke jawa.lang.Class
for Care objects

wesne ption s B
Thi if
(Objc et otF aundException Co[r?;:main lod upty
failz

Figure 6: classes for Baseline-Core communication

the same method concurrently an additional call ID
is sent. This is important to distinguish the method
returns. The call ID can be a thread ID or a unique
number. On the Core side a thread is started exe-
cuting the wanted method.

The calling Baseline thread is blocked by a wait ().
The calling thread will be resumed by a notify()
after the calls Core method has sent its return val-
ues. Since multiple threads can call Core-Baseline
methods concurrently return values are stored in a
hash map with their call ID and can be fetched by
the wrappers.

11 Memory management

The JaRTS runtime environment does not support
garbage collection as known from Standard JVMs.
Most real-time software components like interrupt
handlers and device drivers would derive no or only
a little benefit from having automatic garbage col-
lection. On the other hand garbage collection im-
poses significant costs in terms of runtime efficiency,
predictability and system complexity.

RTCE provides the concept of Allocation Contexts.
Objects are allocated on an Allocation Context of
the current thread. The Allocation Context is re-
leased when the thread terminates or can be released
explicitly by the programmer. It is also possible to
allocate objects on dedicated Allocation Contexts.
The second memory strategy of RTCE, allocation
objects on the stack is currently not implemented.

| Sieve | Loop | Logic
JaRTS 180 | 227 933
CVM 60 61 60
Sun 1.3 285 | 1098 769

Table 1: benchmarking results

12 Results

Up to now the results are promising;:

Latency periods: As expected the interrupt la-
tency periods are nearly the same as the la-
tencies of interrupt handlers implemented in C.
The average time between a hardware interrupt
(at the parallel port of an 150 MHz Pentium)
is 7 ps for interrupt service routines in C. The
Java version needs about 9.5 ps. The Java over-
head of 2.5 us is acceptable for most real-time
systems.

Performance: Performance was tested with a
sieve of Eratosthenes, which calculates prime
numbers, a loop test sorting values and a sim-
ple test of logical decisions.

Table 1 shows the results (score, higher val-
ues are better). Compared to Sun’s HotSpot
Client VM (1.3) the code generated by JaRTS
was about 20% faster for the logic test. The
other tests ran about 58% (sieve test) up to
366% (loop test) slower. Compared to Sun’s
CVM [20] (on which the TimeSys real-time ref-
erence implementation is based) JaRTS is 3
times up to more than 15 times faster.

Improvements of the JaRTS performance
should still be possible since there was no ef-
fort in optimizing performance, yet.

Baseline Core
zomeC ode ResultH 2= hhia FifoListener || BazelineCoreC onnector || MyCoreObjectPro Wy C oreQ bject Corelistenar LoreRegistry some other Care code

T T T T T T T

1 1 1 1 1 1 1 1

1 1 1 1 1 I | new(

1 1 1 1 1 ™ T T

| | | | | | | | i

1 1 1 1 1 1 1 publizh()

1 1 1 1 send object type, name, id 1 1

1 1 I I I I I

1 1 [[[

| | | -[e} 1 1 1

1 1 L » 1 1 1

1 1 1 1 1 1 ! 1

1 1 1 1 1 1 1

: : : : : : send object type, name, id :

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

| 1 1 1 1 1 1 | 1

] 1 ' 1 1 1 1 1
1 someC orebdethod() 1 1 1 1 start method 1
: : : : : : call: send object :
i i ! callMethod() i id, methad id, i
1 1 1 call id, 1
' ' 1 parameters i
| | T T ¥ 1
! ! ! stathethodinAN ewThread() ! !
1 1 1 1 1
1 1 1 [l 1 1
! ! ! W aitF erReturn) ! ! !
1 1 . 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
: : The current thread wai : : : :
! ! for a notify(d on the current ! ! ! !
| | java.lang.Thread object 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 ! 1 1 1 1 1
1 r T T T 1 1 1
wirite ToH as hidap() ! ! ! ! !

1 i 1 1 1 1

i* B 1 uwait) 1 L I| send callid 1 1 1
: : : of returning : : :
1 - 1 1 method and 1 1 1
1 notify() 1 1 1 1 1 1
| | 1| return value | | |
1 [1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
| | return) 1 1 1 1 1
1 [1 1 1 1
1 1 ;. 1 1 1 1
| | getR eturnValuel) 1 1 1 1
L 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 oreturni) 1 1 1 1 1 1
1 ! ! ! 1 1 1 1

i [TTTTTTTT T TTTTT T T 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

Figure 8: publishing methods and method call

Portability: There are only a few files contain-
ing platform dependent code. This code con-
tains wrappers for handling threads, mutexes
and semaphores and the code controlling the
FIFOs for Baseline-Core communication. Be-
cause the JaRTS compiler generates platform
independent ANSI-C code it can be ported to
any system providing an ANSI-C compiler eas-
ily. Due to the separation of real-time and non-
real-time parts it can also be run on systems
using Interrupt Abstraction.

Code size: The Core run-time currently has a
footprint of about 700 kilobytes including the
Core libraries. This is about the same size as
current MIDP [19] implementations, used for
mobile phones. Until now there were no op-
timization efforts in this area, so there is still
space for improvement.

13 Conclusion

We wanted to show that it is possible to implement a
portable and scalable real-time Java extension with
hard real-time capabilities.

The platform dependent code is relatively small and
manageable. It is much easier to port JaRTS to a
new platform than a complex JVM implementing
RTSJ.

Currently the TimeSys RTSJ reference implementa-
tion is based on the CVM and the Foundation Pro-
file libraries [20]. CVM is too big for resource lim-
ited systems (more than 2.5 MByte for CVM with
Foundation Profile) where only a very small library
would be sufficient.

In addition to this JaRTS can be used with any
JVM implementing JNI. So the applications can use
all available Java libraries. Compared to this CVM
is very limited and, for example, does not provide
graphics yet.

The following list summarizes the JaRTS features:

e Can be used on operating systems with Inter-
rupt Abstraction (two kernel solution) easily

e Can be used on small embedded systems not
requiring a full Java environment

e Easy to port to different systems

e Only some operating system dependent files
used by the JaRTS compiler have to be adapted
(rest: ANSI-C, compiler available for almost
every operating system)

e An off-the-shelf JVM which is already available
for most systems is used for the non-real-time
parts. This JVM can support all known Java
libraries.

Since JaRTS currently is a prototype implementa-
tion there is space for improvement in terms of mem-
ory and performance. The bock compiler was cho-
sen to get to a first implementation very quickly.
The translation was not tuned to be efficient and
resource saving. Nevertheless with the current im-
plementation it is possible to generate control pro-
grams with very low latency times and an acceptable
performance.

14 Future work

As mentioned JaRTS is a prototype implementation
and of course there are open issues:

Memory Management: Stack allocation has to
be implemented.

Tooling: A Java runtime environment can only be
used in an efficient way if there are good de-
velopment tools. A remote debugger, profil-
ing tools an a simulator for the JaRTS runtime
have to be developed.

Benchmarks: A more sophisticated benchmarking
suite has to be developed. One reason is to de-
termine the performance and memory bottle-
necks. The other reason are more convincing
comparisons to other real-time Java solutions.

Optimization of the translation: The Java to
C translation has to be optimized in terms of
performance and memory consumption.

Dynamic class loading: Concepts for dynamic
class loading (of Core classes) have to be in-
vestigated and implemented. Possible would
be to compile loadable classes into loadable na-
tive libraries (for RTLinux this would be sep-
arate kernel modules, for other operating sys-
tems this would be shared libraries) or using
the standard Java Bytcode (class files) and
common techniques (interpreter, JIT compiler,
compile at class-loading time). Compiling at
class loading time using the existing compiler
(JaRTS in combination with a C compiler) has
very high memory and CPU requirements. The
JIT solution needs much effort to port it to a
new processor. So a feasable solution would
be an interpreter or the precompiled loadable
libraries.

15 Acknowledgements

I would like to thank my colleague Thomas Hen-
ties for a large part of the implementation and the
Siemens CT SE 2 Embedded Team for many useful
suggestions.

Thanks also to Charles Briscoe-Smith who wrote
the bock compiler and published the source code in
the Internet.

References

[1] James Gosling, Bill Joy, Guy Steele, Gi-
lad Bracha: The Java Language Specification
(Second Edition). Addison-Wesley. 2000
<http://java.sun.com>

[2] Tim Lindholm, Frank Yellin: The Java Vir-
tual Machine Specification (Second Edition).
Addison-Wesley. 1999
<http://java.sun.com>

[3]

[5]

[6]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Greg Bollella e.al.: The Real-Time Specifica-
tion for Java (version 1.0). Addison-Wesley.
Dec. 2001

<http://www.rtj.org>

J-Consortium, Real-Time Java Working
Group: Real-Time Core Extensions (revision
1.0.14). Sept. 2000
<http://www.j-consortium.org/
rtjwg/index.shtml>

J-Consortium, RTDA Working Group: Real-
Time Data Access (version 1.8). Febr. 2001
<http://rtawg.khe.siemens.de/
rtawg.html>

Bock compiler. available at:
<http://packages.debian.org/
unstable/devel/bock.html>

RTLinux by FSM labs:
<http://fsmlabs.com/community/>

RTAI (Real Time Application Interface):
<http://www.aero.polimi.it/
projects/rtai/>

Tim Bird: Comparing two approaches to
real-time Linuz. Dec. 2000
<http://www.linuxdevices.com/
articles/AT7005360270.html>

Tim Bird: Two Approaches to Real-Time Ser-
vices in Linuz. RTC Magazine, November 2000

Jim Ready, Kevin Morgan: Application-
Oriented Approach to Real-Time Linux. RTC
Magazine, November 2000

Comp.realtime: Frequently Asked Questions
(FAQs). (version 3.5)
<http://www.faqs.org/faqs/
realtime-computing/faq/>

TimeSys.
<http://www.timesys.com/>

MontaVista.
<http://www.mvista.com/>

Industrial microcomputers SICOMP.
<http://wwwl.ad.siemens.de/
sicomp/index_76.shtml>

LP-Elektronik.
<http://www.lp-elektronik.com/>

[17]

[18]

[19]

[20]

VenturCom. Real-time Extensions for Win-
dows NT

<http://www.vci.com/products/
windows_embedded/rtx.asp>

Java Community Process.
<http://www.jcp.org/>

Mobile Information Device Profile.
<http://java.sun.com/ products/midp/>

CVM and the Foundation Profile.
<http://java.sun.com/products/cdc/>
<http://java.sun.com/products/
foundation/>

