
USENIX Association

Proceedings of the
2nd JavaTM Virtual Machine

Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

To Collect or Not To Collect?

Machine Learning for Memory Management

Eva Andreasson
 BEA/Appeal Virtual

Machines
Folkungagatan 122
S-102 65 Stockholm

eva.andreasson@appeal.se,
 d97-eva@d.kth.se

Frank Hoffmann
Centre for Autonomous

Systems
Royal Institute of

Technology
S-100 44 Stockholm
hoffmann@nada.kth.se

Olof Lindholm
BEA/Appeal Virtual

Machines
Folkungagatan 122
S-102 65 Stockholm
olof.lindholm@bea.com

ABSTRACT
This article investigates how machine learning methods
might enhance current garbage collection techniques in
that they contribute to more adaptive solutions. Machine
learning is concerned with programs that improve with
experience. Machine learning techniques have been
successfully applied to a number of real world problems,
such as data mining, game playing, medical diagnosis,
speech recognition and automated control.
Reinforcement learning provides an approach in which
an agent interacts with the environment and learns by
trial and error rather than from direct training examples.
In other words, the learning task is specified by rewards
and penalties that indirectly tell the agent what it is
supposed to do instead of telling it how to accomplish
the task. In this article we outline a framework for
applying reinforcement learning to optimize the
performance of conventional garbage collectors.

In this project we have researched an adaptive decision
process that makes decisions regarding which garbage
collector technique should be invoked and how it should
be applied. The decision is based on information about
the memory allocation behavior of currently running
applications. The system learns through trial and error to
take the optimal actions in an initially unknown
environment.

1 Introduction
JRockit™, the Java™ Virtual Machine (JVM)
constructed by Appeal Virtual Machines and now
owned by BEA and named Weblogic JRockit, was
designed recognizing that all applications are different
and have different needs. Thus, a garbage collection
technique and a garbage collection strategy that works
well for one particular application may perform poorly
for another. To achieve good performance over a broad
spectrum of different applications, various garbage
collection techniques with different characteristics have
been implemented. However, any garbage collection
technique requires a strategy that allows it to adapt its
behavior to the current context of operation. Over the
past few years, the need for better and more adaptive
strategies has become apparent.

Imagine that a JVM is running a program X. For this
program, it might be best to garbage collect according
to a rule Y. Whenever Y becomes true, the JVM
garbage collects. However, this might not be the
optimal strategy for another program X'. For X', rule Y'
might be the best choice. Combining rule Y and Y' does
not have to be complicated, but consider writing a
combined rule that works really well for hundreds of
programs? How does the JVM implementer know that a
rule that works really well for many programs doesn't
perform badly on others? Providing startup parameters
for controlling the rule heuristics is a good start but it
cannot adapt over time to a dynamic environment that
has different needs at different points of time.

The idea is to let a learning decision process decide
which garbage collector technique to use and how to
use it, instead of static rules making these decisions
during run time. The learning decision process selects
among different kinds of state of the art garbage
collection techniques in JRockit™, the one that is best
suitable for the current application and platform.

The objective for this investigation is to find out if
machine learning is able to contribute to improved
performance of a commercial product. Theoretically
machine learning could contribute to more adaptive
solutions, but is such an approach feasible in practice?

This paper is concerned with the question whether and,
if so, how a learning decision process can be used for a
more dynamic garbage collection in a modern JVM,
such as JRockit.

1.1 Paper Overview
Section 2 relates the paper to previous work and in
Section 3 we present the problem specification. Section
4 provides a survey of the reinforcement learning
method that has been used. Section 5 presents possible
situations of a system that uses a garbage collector in
which a learning decision process might perform better
than a regular garbage collector. Section 6 handles the
design of the prototype and is followed by a
presentation of experimental results, discussion of
future developments and conclusions in Section 7, 8
and 9.

2 Related work
To our current best knowledge we are not aware of any
other attempt to utilize reinforcement learning in a
JVM. Therefore, we are not able to provide references
to similar approaches for that particular problem. Many
papers on garbage collection techniques include some
sort of heuristics on when the technique should be
applied, but they are usually quite simple. These
methods are usually straightforward and based on
general rules that do not take the specific characteristics
of the application into account.

Brecht et al. [7] provide an analysis on when garbage
collection should be invoked and when the heap should
be expanded in the context of a Boehm-Demers-Weiser
(BDW) collector. However, they do not introduce any
adaptive learning but instead investigate the
characteristic properties of different heuristics.

3 Problem Specification
The problem to solve is: how to design an automatic
and learning decision process for more dynamic
garbage collection in a modern JVM.

Unlike some other garbage collection techniques, such
as parallel garbage collection and stop-and-copy,
concurrent garbage collection starts to garbage collect
before the memory heap is full. A full heap would
cause all application threads to stop, which would not
be necessary if the concurrent garbage collector had
started in time, since a concurrent garbage collector
allows running applications to run concurrently with
some phases of the garbage collection. For further
reading about garbage collection, see references [2, 6,
8, 9, 13, 14].

An important issue, when it comes to concurrent
garbage collection in a JVM, is to decide when to
garbage collect. Concurrent garbage collection must not
start too late, or else the running program may run out
of memory. Neither must it be invoked too frequently,
since this causes more garbage collections than
necessary and thereby disturbs the execution of the
running program. The key idea in our approach is to
find the optimal trade-off between time and memory
resources by letting a learning decision process decide
when to garbage collect [2, 6, 8, 9, 13, 14].

4 Reinforcement Learning
Reinforcement learning methods solve a class of
problems known as Markov Decision Processes (MDP).
If it is possible to formulate the problem at hand as an
MDP, reinforcement learning provides a suitable
approach to its solution [3, 4, 5].

Decision process Environment

1. Environment ! State (st) + Reward (rt) ! Decision process

2. Decision process ! Action (at) ! Environment

3. Environment ! new State (st+1) + new Reward (rt+1)

a

s + r

Figure 1 The figure shows model of a reinforcement
learning system. First the decision process observes the current state
and reward then the decision process performs an action that effects
the environment. Finally the environment returns the new state and
the obtained reward.

Figure 1 depicts the interaction between an agent and
its environment in a typical reinforcement learning
setting. The agent perceives the current state of the
environment by means of the state signal st upon which
it responds with a control action at.

More formally, a policy is a mapping from states to
actions π: SxA → [0, 1], in which π(s, a) denotes the
probability with which the agent chooses action a in
state s. As a result of the action taken by the agent in
the previous state, the environment transitions to a new
state st+1. Depending on the new state and the previous
action the environment might pay a reward to the agent.
The scalar reward signal indicates how well the agent is
doing with respect to the task at hand. However, reward
for desirable actions might be delayed, leaving the
agent with the temporal credit assignment problem of
figuring out which actions lead to desirable states of
high rewards. The objective for the agent is to choose
those actions that maximize the sum of future
discounted rewards:

R = rt + γ rt+1 + γ2 rt+2 ….

The discount factor γ∈ [0,1] favors immediate rewards
over equally large payoffs to be obtained in the future,
similar to the notion of an interest rate in economics [1,
3, 5].

Notice, that usually the agent knows neither the state
transition nor the reward function, neither do these
functions need to be deterministic. In the general case
the system behavior is determined by the transition
probabilities P(st+1 | st, at) for ending up in state st+1 if
the agent takes action at in state st and the reward
probabilities P(r | st, at) for obtaining reward r for the
state action pair st, at.

A state signal that succeeds in retaining all relevant
information about the environment is said to have the
Markov property. In other words, in an MDP the
probability of the next state of the environment only
depends on the current state and the action chosen by
the agent, and does not depend on the previous history
of the system [1, 3, 5].

A reinforcement learning task that satisfies the Markov
property is an MDP. More formally: if t indicates the
time step, s is the state of the environment, a is an
action taken by the agent and r is a reward, then the
environment and the task have the Markov property if
and only if [5]:

Pr{st+1 = s’, rt+1 = r | st, at} is equal to:

Pr{st+1 = s’, rt+1 = r | st, at, rt, st-1, at-1,…, r1, s0, a0}

If it is possible to define a way of representing states
such that all relevant information for making a decision
is retained in the current state, the garbage collection
problem becomes an MDP. Therefore, a prerequisite for
being able to use reinforcement learning methods
successfully is to find a way to represent states in a
correct manner [1, 3, 5].

In theory it is required that the agent has complete
information about the state of the environment in order
to be able to guarantee asymptotic convergence to the
optimal solution. However, often fast learning is much
more important than a guarantee of eventually optimal
performance. In practice, many reinforcement learning
schemes are still able to achieve a good behavior in a
reasonable amount of time even if the Markov property
is violated [10].

Whereas dynamic programming requires a model of the
environment for computing the optimal actions,
reinforcement learning methods are model free and the
agent obtains knowledge about its environment through
interaction. The agent explores the environment in a
trial and error fashion, observing the rewards obtained
of taking various actions in different states. Based on
this information the agent updates its beliefs about the
environment and refines its policy that decides what
action to take next [4, 5].

4.1 Temporal-Difference Learning
There are mainly four different approaches to solve
Markov decision processes: Monte Carlo, temporal-
difference, actor-critic and R-learning. For further
discussion about these methods, see references [5, 6,
12, 15].

What distinguishes temporal-difference learning
methods from the other methods is that they update
their beliefs at each time step. In application
environments where the memory allocation rate varies a
lot over time, it is important to observe the amount of
available memory at each time step. Hence temporal-
difference learning seems to be well suited for solving
the garbage collecting problem [3, 5, 11, 15].

Temporal-difference learning is based on a value
function, referred to as the Q-value function, which
calculates the value of taking a certain action in a
certain state. The algorithm performs an action,
observes the new state and the achieved reward at each
time step. Based on the observations, the algorithm
updates its beliefs – the policy – and thereby
theoretically improves its behavior at each time step [3,
5, 11, 15].

There are mainly two different approaches when it
comes to temporal-difference methods: Q-learning and
SARSA (State, Action, Reward, new State, new
Action). This project has investigated the SARSA
approach, since it is an on-policy method. On-policy
means updating the policy that is being followed, i.e.
the policy improves while being used. Further issues
regarding how to use this method are discussed below.

4.2 Exploring vs. Exploiting
In reinforcement learning problems the agent is
confronted with a trade-off between exploration and
exploitation. On the one hand it should maximize its
reward by always choosing the action a = maxa Q(s, a’)
that has the highest Q-value in the current state s.
However, it is also important to explore other actions in
order to learn more about the environment. Each time
the agent takes an action it faces two possible
alternatives. One is to execute the action that according
to the current beliefs has the highest Q-value. The other
possibility is to explore a non-optimal action with a
lower expected Q-value of higher uncertainty. Due to
the probabilistic nature of the environment, an uncertain
action of lower expected Q-value might ultimately turn
out to be superior to the current best-known action.
Obviously there is a risk, that the taking of the sub-
optimal action diminishes the overall reward. However,
it still contributes to the knowledge about the
environment, and therefore allows the learning program
to take better actions with more certainty in the future
[4, 5, 11, 12].

There are three different types of exploration strategies
for choosing actions, the greedy algorithm, the ε-greedy
algorithm and the soft-max algorithm. The greedy
algorithm is not of interest to use, since the garbage
collection problem requires exploration. Both the other
two algorithms are well suited for the garbage
collection problem. However, the ε-greedy algorithm
was the choice we made.

The ε-greedy algorithm chooses the calculated, best
action most of the times, but with a small probability ε
a random action is selected instead. The probability of
choosing a random action is decreased over time and
hence satisfies both needs for exploration and
exploitation [1, 5].

4.3 Generalization
Another common problem is environments that have
continuous, and consequently infinitely many states. In
this case it is not possible to store state-action values
(Q-values) in a simple look-up table. A look-up table
representation is only feasible when states and actions
are discrete and few. Function approximation and
generalization are solutions to this problem [3, 12].

Generalization is a way of handling continuous values
of state features. As it is the case of the garbage
collection problem, generalization of the state is
needed. Alternative approaches, other than
generalization, to approximate the Q-value function are
regression methods and neural networks [4, 6].
However, the approach used during this project was
generalization.

There are mainly four approaches for generalizing
states and actions: coarse coding, tile coding, radial
basis functions and Kanerva coding. For further reading
about these methods see references [3, 5, 6].

Coarse coding is a generalization method using a binary
vector, where each index of the vector represents a
feature of the state, either present (1) or absent (0). Tile
coding is a form of coarse coding where the state
features are grouped together in partitions of the state
space. These partitions are called tilings, and each
element of a partition is called a tile. The more tilings
you have, the more states will be affected of the reward
achieved and share the knowledge obtained from an
action performed. On the other hand, the system will
get exponentially more complex depending on how
many tilings are used [3, 5].

Tile coding is particularly well suited for use on
sequential digital computers and for efficient online
learning and is therefore used in this project [5].

5 State Features and Actions of the
General Garbage Collection Problem

In the sections below some state features, actions and
underlying reward features, possible to apply in a
memory management system, are presented.
Discussions of how they may be represented are also
provided.

5.1 Possible State Features
A problem in defining state features and rewards for a
Markov decision process, is the fact that the evolution
of the state to a large extent is governed by the running
application as it determines which objects on the heap
are no longer referenced and how much new memory is
allocated. The garbage collector can only partially
influence the amount of available memory in that it
reduces fragmentation of the heap and frees the
memory occupied by dead objects. Therefore, it is often
difficult to decide whether to blame the garbage
collecting strategy or the application itself for
exceeding the available memory resources.

In the following sections we present some suggestions
of possible state features. Some state features might be
difficult to calculate accurately at run time. For
example, if the free memory were distributed across
several lock-free caches, the number of free bytes
would be hard to measure, or would at least take
prohibitively long time to measure correctly. We
therefore have to assume that approximations of these
parameters are still accurate enough to achieve a
reasonably good behavior.

A fragmentation factor that indicates what fraction of
the heap is fragmented is of interest. Fragments are
chunks of free memory that are too small (<2kB) to
belong to the free-list, from which new memory is
allocated. As the heap becomes highly fragmented,
garbage collection should be performed more
frequently. This is desirable as it might reduce
fragmentation by collecting dead objects adjacent to
fragments. As a result, larger blocks of free memory
may appear that can be reused for future memory
allocation. In other words garbage collection should be
performed when the heap contains a large number of
non-referenced, small blocks of free memory.

It is important to keep track of how much memory is
available in the heap. Based on this information the
reinforcement learning system is able to decide at
which percentage of allocated memory it is most
rewarding to perform a certain action, for instance to
garbage collect.

If the rate at which the running program allocates
memory can be determined, it would be possible to
estimate at what point in time the application will run
out of memory, and hence when to start garbage
collection at the latest.

If it is possible to estimate how much processor time is
actually spent on executing instructions of the running
program, this factor could be used as a state feature.
However, when using a concurrent garbage collector it
is very difficult to measure the exact time spent on
garbage collection versus the time used by the running
application. Hence, this measurement will either be
impossible to obtain or the information is highly
inaccurate.

The average size of newly allocated objects might
provide valuable information about the application
running that can be utilized by the garbage collector.
Another feature of the same category is the average age
of newly allocated objects, if measurable. The amount
of newly allocated objects is another possible feature.

5.2 State Representation
Each observable system parameter, described in the
previous section, constitutes a feature of the current
state. Tile coding, see Section 4.3, is used to map the
continuous feature values to discrete states. Each tiling
partitions the domain of a continuous feature into tiles,
where each tile corresponds to an interval of the
continuous feature.

The entire state is represented by a string of bits, with
one bit per tile. If the continuous state value falls within
the interval that constitutes the tile, the corresponding
bit is set to ‘one’, otherwise it is set to ‘zero’:

• The tile contains the current state feature value !
1

• The tile does not contain the current state feature
value ! 0

For example, a particular state is represented by a
vector s = [1, 1, 0, …, 1, 0, 1], where each bit denotes
the absence or presence of the state feature value in the
corresponding tile.

5.3 Possible Rewards
To evaluate the current performance of the system,
quantifiable values of the goals of the garbage collector
are desired. The objectives of a garbage collector (see
references [6, 9, 13 14]) concern maximization of the
end-to-end performance and minimization of long
interruptions of the running application, caused by
garbage collection. These goals provide the basis for
defining the appropriate scalar rewards and penalties.

A necessity when deciding the reward function is to
decide what are good and bad states or events. In a
garbage-collecting environment there are a lot of
situations that are neither bad nor good per se but might
ultimately lead to a bad (or good) situation. This
dynamic aspect adds another level of complexity to the
environment. It is in the nature of the problem that
garbage collection always intrudes on the process time
of the running program and always constitutes extra
costs. Therefore, no positive rewards are given but all
reinforcement signals are penalties for consuming
computational resources for garbage collection or even
worse: running of out of memory. The objective of the
learning process is to minimize the discounted
accumulated penalties incurred over time.

A fundamental rule for imposing penalty is to punish all
activities that consume processing time from the
running program. For instance a punishment is imposed
every time the system performs a garbage collection.
An alternative is to impose a penalty proportional to the
fraction of time spent on garbage collection compared
to the total run time of the program.

Another penalty criterion is to punish the system when
the average pause time exceeds an upper limit that is
considered still tolerable by the user. It is also important
to assure that the number of pauses does not exceed the
maximum allowed number of pauses. If the average
pause time is high and the number of pauses is low, the
situation may be balanced by taking less time-
consuming actions more frequently. If they are both
high, a penalty might be in order.

When using a concurrent collector, a severe penalty
must be imposed if the running program runs out of
memory and as a result has to wait until a garbage
collection is completed, since this is the worst possible
situation to arise.

At first, it seems like a good idea to impose a penalty
proportional to the amount of occupied memory.
However, even if the memory is occupied up to 99 %
this does not cause a problem, as long as the running
application terminates without exceeding the available
memory resources. In fact, this is the most desirable
case, namely that the program terminates requiring no
garbage collection but still never runs out of memory.
Therefore, directly imposing penalties for the
occupation of memory is not a good idea.

The ratio of freed memory after completed garbage
collection compared to the ratio allocated memory in
the heap prior to garbage collection provides another
possible performance metric. This parameter gives an
estimate of how much memory has been freed. If the
amount is large there is nothing to worry about, as
illustrated to the left in Figure 2. If the amount freed
memory is low and the size of the free-list is low as
well, problems may occur and hence the garbage
collector should be penalized. The latter situation,
illustrated to the right in Figure 2, might occur if a
running program has a lot of long-living objects and
runs for a long time, so that most of the heap will be
occupied.

A

D

E

B

C

F

B

AA

G

H

D

E

B

C

F

I

J

The heap

Example of a good situation

G

E

B

C

F

I

J

F

G

H

Example of a bad situation

I

j

The heap

Figure 2 A good situation with a high freeing rate is
illustrated to the left. A worse situation is illustrated to the right,
where there is little memory left in the heap although a garbage
collection has just occurred. This last situation may cause problems.

When using compacting garbage collectors, it is
interesting to observe the success rate of allocated
memory in the most fragmented area of the heap. The
actual amount of new memory allocated in the
fragmented area of the heap is compared to the
theoretical limit of available memory in case of no
fragmentation at all. An illustration of some possible
situations is shown in Figure 3. It is desirable that 100
% of the newly allocated memory is allocated in the
most fragmented area of the heap, in order to reduce
fragmentation. A penalty is imposed that is inversely
proportional to the ratio of actual allocated memory and
its theoretical limit in the best possible case.

1

3

A B C

= f r e e m e m o r y
= o c c u p i e d m e m o r y

2

4

A i s o f s i z e 2
B i s o f s i z e 1
C i s o f s i z e 3

T h e h e a p AB C

5 0 % w a s s u c c e s s f u l l y a l l o c a t e d
i n t h e f r a g m e n t e d h e a p

8 3 % c o u l d t h e o r e t i c a l l y b e
a l l o c a t e d i n t h e f r a g m e n t e d h e a p

AB C AB C

= n o n –f r a g m e n t e d h e a p

5 0 % w a s s u c c e s s f u l l y a l l o c a t e d
i n t h e f r a g m e n t e d h e a p

1 0 0 % c o u l d t h e o r e t i c a l l y b e
a l l o c a t e d i n t h e f r a g m e n t e d h e a p

1 0 0 % w a s s u c c e s s f u l l y a l l o c a t e d
i n t h e f r a g m e n t e d h e a p

1 0 0 % c o u l d t h e o r e t i c a l l y b e
a l l o c a t e d i n t h e f r a g m e n t e d h e a p

Figure 3 To the upper right (2) half of the new allocated
memory was successfully allocated in the fragmented heap. To the
lower left (3) the same percentage was successfully allocated in the
fragmented heap although space for all new allocated objects exists
in the fragmented area. To the lower right (4) all new allocated
objects were successfully allocated in the fragmented heap.

If the memory relies on global structures that need a
lock to be accessed, taking the lock ought to be
punished. This might be the case for memory free-lists,
caches etc.

The more time a compacting garbage collector spends
on iterating over the free-list (for explanation see
references [13, 14]) the more it should be penalized. A
long garbage collection cycle is an indicator for a
fragmented heap. High fragmentation in itself is not
necessarily bad, but the iteration consumes time
otherwise available to the running application, which is
why such a situation should be punished.

When it comes to compacting garbage collectors a
measurement of the effectiveness of a compaction
provides a possible basis for assigning a reward or a
penalty. If there was no need for compacting, the
section in question must have been non-fragmented.
Accordingly a situation like this should be assigned a
reward.

There is one possible desirable configuration to which a
reward, rather than a penalty, should be assigned,
namely if a compacting collector frees large, connected
chunks of memory. The opposite, if the garbage
collector frees a small amount of memory and the
running program is still allocating objects, could
possibly be punished in a linear way, as some of the
other reward situations described above.

5.4 Possible Actions
Whether to invoke garbage collection or not at a certain
point of time is the most important decision for the
garbage collecting strategy to take. Therefore, the set of
possible actions taken by the prototype discussed in the
later section is reduced to this binary decision.

When the free memory is not large enough and the
garbage collection fails to free a sufficiently large
amount of memory, a possible remedy is to increase the
size of the heap. It is also of interest to be able to
decrease the heap size, if a large area of the heap never
becomes allocated. To decide whether to increase or
decrease the heap size can constitute an action. If a
change is needed a complementary decision is to decide
the new size of the heap.

To save heap space or rather to use the available heap
more effectively, a decision to compact the heap or not,
could also be of interest. In addition the action could
specify how much and which section of the heap to
compact.

To handle synchronization between allocating threads
of the running program, a technique of using lock-free
Thread Local Areas (TLAs) is usually used. Each
allocating thread is allowed to allocate memory within
only one TLA at a time and vice versa there is only one
thread permitted to allocate memory in a particular
TLA. The garbage collection strategy could determine
the size of each TLA and how to distribute the TLAs
between the threads.

When allocating large objects often a Large Object
Space (LOS) is used, especially in cases where
generational garbage collectors are considered, in order
to avoid moving large objects. Deciding the size of the
LOS and how large an object has to be, to be
considered a large object, are additional issues for the
reinforcement learning decision process to consider.

To reduce garbage collection time, smaller free blocks
might not be added to a free list during a sweep-phase.
The memory block size is the minimum size of a free
memory block for being added to the free list. Different
applications may have different needs with respect to
this parameter.

How many generations are optimal for a generational
garbage collector? With the current implementation it is
only possible to decide prior to starting the garbage
collector if it operates with either one or two
generations. It might be possible, even today, to reduce
the number of generations from two to one, but not to
increase them during run-time. When it comes to future
generational garbage collectors it would be of interest
to let the system vary the size of the different
generations. If there is a promotion rate available, this
is a factor that might be interesting for the system to
vary as well.

If the garbage collector uses an incremental approach,
deciding the size of the heap area that is collected at a
time might be an interesting aspect to consider. The
same applies to deciding whether to use the concurrent
approach, in conjunction with the factors of how many
garbage collection steps to perform at a time and how
long a time the system should pre-clean (for
explanation see references [14]).

6 The Prototype
The state features used in the prototype are the current
amount of available memory s1 and the change in
available memory s2, calculated as the difference
between s1 at the previous time step - s1 at the current
time step.

There is only one binary decision to make, namely
whether to garbage collect or not. Hence, the action set
contains only two actions {0, 1}, where 1 represents
performing a garbage collection and 0 represents not
performing a garbage collection.

The tile coding representation of the state in the
prototype was chosen to be one 10x2-tiling in the case
where only s1 was used. In the case where both state
features were used the tile coding representation was
chosen to be one 10x7x2-tiling, one 10-tiling, one 7-
tiling and one 10x7-tiling. A non-uniform tiling was
chosen, in which the tile resolution is increased for
states of low available memory, and a coarser
resolution for states in which memory occupancy is still
low. The tiles for feature s1 correspond to the intervals
[0, 4], [4, 8], [8, 10], [10, 12], [12, 14], [14, 16], [16,
18], [18, 20], [22, 26] and [30, 100]. The tiles for
feature s2 are at a resolution: [<0], [0-2], [3-4], [5-6],
[7-8], [9-10] and [>10].

The reward function of the prototype imposes a penalty
(-10) for performing a garbage collection. The penalty
for running out of memory is set to -500. It is difficult
to specify the quantitative trade-off between using time
for garbage collection and running out of memory. In
principle the later situation should be avoided at all
costs, but a too large penalty in that case might bias the
decision process towards too frequent garbage
collection. Running out of memory is not desirable
since a concurrent garbage collector is used. A
concurrent garbage collector must stop all threads if the
system runs out of memory, which is the major purpose
of using a concurrent garbage collector in the first
place.

The probability p that determines whether to pick the
action with the highest Q-value or a random action for
exploration evolves over time according to the formula:

p = p0 * e -(t / C)

where p0 = 0.5 and C = 5000 in the prototype, which
means that random actions are chosen with decreasing
probability until approximately 25000 time steps
elapsed. A time step t corresponds to about 50ms of real
time between two decisions of the reinforcement
learning system.

The learning rate α decreases over time according to
the formula stated below:

α = α0 * e -(t / D)

where α0 = 0.1 and D = 30000 in the prototype. The
discount factor γ is set to 0.9.

The test application used for evaluation is designed to
demonstrate a very dynamic memory allocation
behavior. The memory allocation rate of the test
application alternates randomly between different
behavior cycles. A behavior cycle consists of either
10000 iterations or 20000 iterations of either low or
high memory allocation rate. The time performance of
the RLS is measured during a behavior cycle as the
number of milliseconds required to complete the cycle.

6.1 Interesting Comparative Measurements
The performance of the garbage collector in JRockit
ought to be compared to the performance when using
the reinforcement system for deciding when to garbage
collect not only in terms of time performance but also
in terms of the reward function. The reward function is
based on the throughput and the latency of a garbage
collector and the underlying features of the reward
function are hence suitable for extracting comparable
results of the two systems.

However, learning a proper garbage collection policy
should take a reasonable amount of time, as otherwise
the reinforcement learning system would be of little
practical value. The first step of an evaluation of RLS is
to verify that learning and adaptation actually occur at
all, namely that the system improves its performance
over time. The learning success is measured by the
average reward per time step. Analyzing the time
evolution of the Q-function provides additional insight
into the learning progress.

7 Results
One of the main objectives of this project is the
identification of suitable state features, underlying
reward features and action features for the dynamic
garbage-collection learning problem. An additional
objective is the implementation of a simple prototype
and the evaluation of its performance on a restricted set
of benchmarks in order to investigate whether the
proposed machine learning approach is feasible in
practice.

This section compares the performance of a
conventional JVM with a JVM using reinforcement
learning for making the decision: when to garbage
collect. The JVM using reinforcement learning is
referred to as the RLS (Reinforcement Learning
System) and the conventional JVM is JRockit.

Since JRockit is optimized for environments in which
the allocation behavior changes slowly, environments
where the allocation behavior changes more rapidly
might cause a degraded performance of JRockit. In
these environments it is of special interest to investigate
if an adaptive system, such as an RLS, is able to
perform equally well or even better than JRockit.

Figure 4 shows the results of using the RLS and JRockit
for the test application described in Section 6. Due to
the random distribution of behavior cycles a direct
cycle-to-cycle comparison of these two different runs is
not meaningful. Instead, the accumulated time
performances, illustrated in Figure 4, are used for
comparison. As may be seen in the lower chart, the
RLS performs better than JRockit in this dynamic
environment. This confirms the hypothesis of an RLS
being able to outperform an ordinary JVM in a dynamic
environment.

R L S v s J R o c k i t A c c u m u l a t e d T i m e
(t h e f i r s t 2 0 b e h a v i o r c y c l e s)

0

200000

400000

600000

800000

1000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B e h a v i o r C y c l e (n r)

T
i m

 e

(m
 s

)

RLS
JRockit

R L S v s J R o c k i t A c c u m u l a t e d T i m e
(a f t e r a p p r o x i m a t e l y 5 0 0 0 0 t i m e s t e p s)

2750000

2950000

3150000

3350000

3550000

3750000

80 82 84 86 88 90 92 94 96 98 10
0

B e h a v i o r C y c l e (n r)

T
i m

 e

(m
 s

)

RLS
JRockit

Figure 4 The figure illustrates the accumulated time
performance of the RLS and JRockit when running the application
with behavior cycles of random duration and memory allocation rate.
The upper chart shows the performances during the first 20 behavior
cycles and the lower chart shows the performances during 20
behavior cycles after approximately 50000 time steps. Notice that
lower values correspond to better performance.

Figure 5 illustrates the accumulated penalty for the RLS
compared to JRockit. In the beginning the RLS runs out
of memory a few times, as shown in the graph labeled
penalty RLS for running out of memory, but after about
15000 time steps it learns to avoid running out of
memory. The lower chart shows the current average
penalty of the RLS and JRockit. After about 20000 time
steps the RLS has adapted its policy and achieves the
same performance as JRockit. The results show that the
RLS in principle is able to learn a policy that can
compete with the performance of JRockit. The test
session only takes about an hour, which is a reasonable
learning time for offline learning (i.e. following one
policy while updating another) of long running
applications. Also, no attempt has been made to
optimize the parameters of the RLS, such as exploration
and learning rate, in order to minimize learning time
within this project.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

-5

-4
-3

-2
-1

0 x 10
4

Ti me Step

Penat l y

Accumulated Penal ty

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 104

-400

-300

-200

-100

0

Ti me Step

Average
Penal ty
(dr /dt)

Current Average
P l

penal ty RLS
penal ty for perf ormi ng a garbage col l ect i on
penal ty for runni ng out of memory
penal ty JRocki t

penal ty RLS
penal ty for perf ormi ng a garbage col l ect i on
penal ty for runni ng out of memory
penal ty JRocki t

Figure 5 The upper chart illustrates the accumulated
penalty for the RLS compared to JRockit. The lower chart illustrates
the average penalty as a function of time. For RLS the penalty due to
garbage collection and due to running out of memory is shown
separately.

The accumulated penalty over a time period between
time step 30000 and 50000 after RLS completed
learning, has been calculated to -8400. The
corresponding accumulated penalty for JRockit for the
same period of time was calculated to -8550. This
shows that the results of the RLS are comparable to the
results of JRockit. The values verify the results
presented above: that the RLS performs equally well or
even slightly better than JRockit in an intentionally
dynamic environment.

In the following we analyze the learning process in
more detail by looking at the time evolution of the Q-
function for the single feature case that only considers
the amount of free memory. The upper chart in Figure 6
compares the Q-function for both actions, namely to
garbage collect or not to garbage collect, after
approximately 2500 time steps. Notice, that the RLS
always prefers the action of higher Q-value. The
probability p of choosing a random action is still very
high and garbage collection is randomly invoked
frequently enough to prevent the system from running
out of memory. On the other hand the high frequency of
random actions during the first 5000 time steps leads
the system to avoid deliberate garbage collection action
at all. In other words it always favors not to garbage
collect in order to avoid the penalty of -10 units for the
alternative action.

Initially, the system does not run out of memory due to
the high frequency of randomly performed garbage
collections. The only thing the system has learned so far
is that it is better not to garbage collect than to garbage
collect. Notice, that the system did not learn for states
of low free memory, as those did not occur yet. The
difference of the Q-value between the two actions is -
10, which corresponds exactly to the penalty for
performing a garbage collection. This makes sense
insofar as the successor state after performing a garbage
collection is similar to the state prior to garbage
collection, namely a state for which the amount of
memory available is still high.

The middle chart in Figure 6 shows the Q-function after
approximately 10000 time steps. The probability of
choosing a random action has now decreased to the
extent, that the system actually runs out of memory.
Once that happens the RLS incurs a large penalty, and
thereby learns to deliberately take the alternative action,
namely to garbage collect at states of low available
memory.

The lower chart in Figure 6 illustrates the Q-function
after approximately 50000 time steps. At this point the
Q-values for the different states has already converged.
Garbage collection is invoked once the amount of
available memory becomes lower than approximately
12%. This policy is optimal considering the limited
state information available to RLS, the particular test
application and the specific reward function.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-150
-100
-50

0
Q-funct i on af ter 2500

no gar bage col l ect i on
gar bage col l ect i on

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-150
-100
-50

0 Q-funct ion af ter 10000 t ime steps

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-150
-100
-50

0 Q-funct i on af ter 50000

X-axi s: s1

Y-axi s:
Q(s1)

no gar bage col l ect i on
gar bage col l ect i on

no gar bage col l ect i on
gar bage col l ect i on

Figure 6 The figure shows the development of the state-
action value function, the Q-function, over time. The upper chart
shows the Q-function after approximately 2500 time steps. The middle
chart shows the Q-function after approximately 10000 time steps and
the lower chart shows the Q-function after approximately 50000 time
steps and is then constant.

The performance comparison between the RLS and
JRockit suggests further investigation of reinforcement
learning for dynamic memory management. Regarding
the fact that this first version of the prototype only
considers a single state feature, it would be interesting
to investigate the performance of an RLS that takes
additional and possibly more complex state features
into consideration. Additional state features might
enable the RLS to take more informed decisions and
thereby achieve even better performance.

In Figure 7 the accumulated time performance of the
RLS using one (1F2T) and two state features (2F5T),
and JRockit (JR) is compared. In the case of two state
features, five (instead of only two) tilings were used in
order to achieve better generalization across the higher
dimensional state space. In order to illustrate the effect
of five tilings, the time performance of an RLS using
two state features but only two tilings (2F2T) is also
shown in the charts of Figure 7. The upper chart
illustrates the performance of the four systems in the
initial stage at which the RLS is adapting its policy. The
lower chart shows the performance after approximately
50000 decisions (time steps). The graphs show that the
RLS using two state features and five tilings does not
perform better than the RLS using only one state
feature or JRockit. However, the system using five
tilings is significantly better than the RLS using two
state features and two tilings.

The main reason for the inferior behavior is probably
that the new feature increases the number of states and
that therefore converging to the correct Q-values and
optimal policy requires more time. The decision
boundary is more complex than in the case of only a
single state feature. The number of states for which the
RLS has to learn that it runs out of memory, if it does
not perform a garbage collection, has increased and
thereby also the complexity of the learning task.

A c c u m u l a t e d T i m e P e r f o r m a n c e
(t h e f i r s t 4 0 b e h a v i o r c y c l e s)

0

100000

200000

300000

400000

500000

600000

700000

800000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

B e h a v i o r C y c l e (n r)

T
i m

 e

P
e

r f
 o

 r
m

 a
 n

 c
 e

(m

 s
)

2F2T
2F5T
JR
1F2T

A c c u m u l a t e d T i m e P e r f o r m a n c e
(a f t e r a p p r o x i m a t e l y 5 0 0 0 0 t i m e s t e p s)

1500000

2000000

2500000

3000000

3500000

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

16
6

16
8

17
0

17
2

17
4

17
6

17
8

18
0

B e h a v i o r C y c l e s

T
i m

 e

P
e

r f
 o

 r
m

 a
 n

 c
 e

(m

 s
)

2F2T
2F5T
JR
1F2T

Figure 7 The figure shows the accumulated time performance of
JRockit compared to the RLS using one state feature and two RLS
using two state features but different tilings.

Another consequence of the increased number of states
is that the system runs out of memory more often. To
some extent Q-function approximation (i.e. tile coding,
function approximation) provides a remedy to this
problem. Further investigation regarding this aspect is
needed, see the discussion in Section 8.

To provide some standard measurement results the best
RLS, i.e. the RLS using only one state feature, is
compared to the JRockit version used in previous test
sessions due to SPECjbb2000 scores. In Figure 8 the
results of a test session with full occupancy from the
beginning are presented. As mentioned before, the RLS
is learning until the 30000th time step (decision).

S P E C j b b 2 0 0 0 : R L S v s J R o c k i t

0

5000

10000

15000

20000

25000

30000

0 6250 12500 18750 25000 31250 37500 43750

T i m e S t e p

S
c

o
r e

(o

 p
 s

 /
s

e
c

)

RLS
JRockit

Figure 8 The figure illustrates the performance of the RLS using
one state feature compared to JRockit of a SPECjbb2000 session with
full occupancy from the beginning.

The average performance scores of both systems are
presented in Table 1. As may be observed, the use of
the RLS for the decision of when to garbage collect
improves the average performance by 2%. That number
already includes the learning period. If the learning
period of the RLS is excluded (i.e. measured after
approximately 30000 decisions), the average
improvement when using the RLS is 6%.
Table 1 The table illustrates the average performance results of
the RLS using one state feature and JRockit, when running
SPECjbb2000 with full occupancy.

System Average score
(learning incl.)

Average score
(learning
excl.)

JRockit 22642,86 23293,98

RLS 23093,08 24775,43

Improvement (%) 1,98832 6,359799

8 Discussion and Future Developments
The preliminary results of our study indicate that
reinforcement learning might improve existing garbage
collection techniques. However, a more thorough
analysis and extended benchmark tests are required for
an objective evaluation of the potential of
reinforcement learning techniques for dynamic memory
management.

The most important task of future investigation is to
systematically investigate the effect of using additional
state features for the decision process and to investigate
their usefulness for making better decisions.

The second important aspect is to investigate more
complex scenarios of memory allocation, in which the
memory allocation behavior switches more rapidly and
less regularly. It is also of interest to investigate other
dimensions of the garbage-collection problem such as
object size and levels of references between objects,
among others. It is important to emphasize that the
results above are derived from a limited set of test
applications that cannot adequately represent the range
of all possible applications.

The issue of selecting proper test application environ-
ments also relates to the problem of generalization. The
question is: how much does training on one particular
application or a set of multiple applications help to
perform well on unseen applications? It would be
interesting to investigate how long it takes to learn from
scratch or how fast an RLS can adapt when the
application changes dynamically.

Another suggestion for improving the system is to
decrease the learning rate more slowly. The same
suggestion applies to the probability of choosing a
random action in order to achieve a better balance
between exploitation and exploration. The optimal
parameters are best determined by cross-validation.

An approach for achieving better results when more
state features are taken into account might be to
represent the state features in a different way. For
instance, radial basis functions, mentioned earlier in
this report, might be of interest for generalization of
continuous state features. An even better approach
would be to represent the state features with continuous
values and to use a gradient-descent method for
approximating the Q-function.

It seems that that the total number of state features is a
crucial factor. JRockit considers only one parameter for
the decision of when to garbage collect. The
performance of the RLS was not improved using two
state features, likely due to the enlarged state space.
The question remains, whether the performance of the
RLS improves if additional state information is
available and the time for exploration is increased. The
potential strength of the RLS might reveal itself better
if the decision is based on more state features than
JRockit uses currently.

Another important aspect is online vs. offline
performance. How much learning can be afforded, or
shall only online-performance be considered? That of
course is also a design issue for JRockit, which relies
on a more precise definition of the concrete objectives
and requirements of a dynamic Java Virtual Machine.

Once a real system has been developed from the
prototype, it can be used to handle some of the other
decisions related to garbage collection proposed in this
report.

It is recommended to investigate this research area
further, since it is far from exhausted. Considering that
the results were achieved using a prototype that is
poorly adjusted in several aspects, further development
might lead to interesting and even better results than
obtained within the restricted scope of this project.

9 Conclusions
The trade-off that every garbage collecting system faces
is that garbage collection in itself is undesirable, as it
consumes time from the running program. However, if
garbage collection is not performed the system runs the
risk of running out of memory, which is far worse than
slowing down the application. The motivation for using
a reinforcement learning system is to optimize this
trade-off between saving CPU time and avoiding
exhaustion of the memory.

This report has investigated how to design and
implement a learning decision process for a more
dynamic garbage collection in a modern JVM. The
results of this thesis show that it is in principle possible
for a reinforcement learning system to learn when to
garbage collect. It has also been demonstrated that on
simple test cases the performance of the RLS after
training in terms of the reward function is comparable
with the heuristics of a modern JVM, such as JRockit.

The time it takes for the RLS to learn also seems
reasonable since the system only runs out of memory 5-
10 times during the learning period. Whether this cost
of learning a garbage collecting policy is acceptable in
real applications depends on the environment and the
requirements on the JVM.

From the results in the case of two state features, it
becomes clear that using multiple state features
potentially results in more complex decision surfaces
than simple standard heuristics. Observations have also
been made that there exists an evident trade-off
between using more state features, in order to make
more optimal decisions, and the increased time required
for learning due to an enlarged state space.

From the above results one can learn that the use of a
reinforcement learning system is particularly useful if
an application has a complex dynamic memory
allocation behavior, which is why a dynamic garbage
collector was proposed in the first place. It is
noteworthy to observe that machine learning through an
adaptive and optimizing decision process can replace a
human designed heuristic such as JRockit that operates
with a dynamic threshold.

This article is an excerpt of the project report
Reinforcement Learning for a Dynamic JVM [6], which
may be obtained by contacting the author at:
eva.andreasson@appeal.se.

10 References
Literature

1. Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Athena Scientific, Belmont,
Massachusetts, USA.

2. Jones, R. and Lins, R. (1996). Garbage collection –
algorithms for automatic dynamic memory
management. John Wiley & Sons Ltd., Chichester,
England, UK.

3. Mitchell, T. M. (1997). Machine learning. McGraw
Hill, USA.

4. Russell, S. J. and Norvig, P. (1995). Artificial
intelligence – a modern approach. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, USA.

5. Sutton, R. S. and Barto, A. G. (1998). Reinforcement
learning – an introduction. MIT Press, Cambridge,
Massachusetts, USA.

Papers

6. Andreasson, E. (2002). Reinforcement Learning for a
dynamic JVM. KTH/Appeal Virtual Machines,
Stockholm, Sweden.

7. Brecht, T., Arjomandi, E., Li, C. and Pham, H.
(2001). Controlling garbage collection and heap
growth to reduce the execution time of java
applications. ACM Conference, OOPSLA, Tampa,
Florida, USA.

8. Flood, C. H. and Detlefs, D.; Shavit, N.; Zhang, X.
(2001). Parallel garbage collection for shared
memory multiprocessors. Sun Microsystems
Laboratories, USA; Tel-Aviv University, Israel;
Harvard University, USA.

9. Lindholm, D. and Joelson, M. (2001). Garbage
collectors in JRockit 2.2. Appeal Virtual Machines,
Stockholm, Sweden. Confidential.

10. Pack Kaelbling, L.; Littman, M. L. and Moore,
A. W. (1996). Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, Volume 4.

11. Pérez-Uribe, A. and Sanchez, E. (1999). A
comparison of reinforcement learning with eligibility
traces and integrated learning, planning and
reacting. Concurrent Systems Engineering Series,
Vol. 54, IOS Press, Amsterdam.

12. Precup, D., Sutton, R. S. and Dasgupta, S.
(2001). Off-policy temporal-difference learning with
function approximation. School of computer science,
McGill University, Montreal, Quebec, Canada and
AT & T Shannon laboratory, New Jersey, USA.

13. Printezis, T. (2001). Hot-swapping between a
mark&sweep and a mark&compact garbage
collector in a generational environment. Department
of Computing Science, University of Glasgow,
Glasgow, Scotland, UK.

14. Printezis, T.; Detlefs, D. (1998). A
generational mostly-concurrent garbage collector.
Department of Computing Science, University of
Glasgow, Glasgow, Scotland, UK; Sun Microsystems
Laboratories East, Massachusetts, USA.

15. Tsitsiklis, J. N. and Van Roy, B. (1997). An
analysis of temporal-difference learning with
function approximation. Laboratory for information
and decision systems, MIT, Cambridge,
Massachusetts, USA.

