i

The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages
Santa Barbara, California, October 1997

Domain Specific Languages for ad hoc Distributed Applications

Matthew Fuchs
Walt Disney Imagineering

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org

Domain Specific Languages for ad hoc Distributed Applications

Matthew Fuchs
Walt Disney Imagineering
1401 Flower St., POB 25020
Glendale, CA 91221-5020

mattQudi. disney.com

Abstract

The Internet provides a medium to combine human
and computational entities together for ad hoc co-
operative transactions. To make this possible, there
must be a framework allowing all parties (human or
other) to communicate with each other. The current
framework makes a fundamental distinction between
human agents (who use HTML) and computational
agents, which use CORBA or COM. We propose
DSLs as a means to allow all kinds of agents to
“speak the same language.” In particular we adopt
some ideas (and syntaz) from SGML/XML, espe-
cially the strict separation of syntax and semantics,
so each agent in a collaboration is capable of ap-
plying a behavioral semantics appropriate to its role
(buyer, seller, editor). We develop the example of
a card game, where the syntax of the language itself
implies some of the semantics of the game.

1 Introduction

The Internet is a large collection of entities, some
computational, some human, each evolving indepen-
dently, with its own goals, strategies, and capabil-
ities. Our goal is to support cooperation among
them, both ad hoc and institutionalized. This im-
plies coordinating both human and computational
agents. Popular current technologies, such as the
WWW and CORBA, do not adequately support co-
operation because they cannot deal with the hetero-
geneity among these agents and their goals. Domain
specific languages (DSLs), however, can provide a
framework for overcoming these difficulties

This kind of heterogeneity is a particularly difficult
problem the Internet, and the Web, have not yet
dealt with. The current approach, smoothing over
differences through general protocols, such as the
use of HTML for user interface and Java for ap-
plets, only works because of the server-centric na-

ture of the Web. Essentially all computation occurs
at the server (such as through CGI scripts) or is di-
rected by the server (such as Java applets and even
the display of HTML pages). There is no real com-
munication between the information from the server
and the client’s environment beyond the browser.
When all code and all applications are developed
under a central control, the heterogeneity prob-
lem doesn’t exist. In our early work with mobile
objects[5] we developed both display markup lan-
guages and object interfaces; as long as all the code
was developed by a single source, all went well.
However, our goal was to support ad hoc coopera-
tion, and these approaches did not scale well across
the range of agents.

If we wish to build distributed applications in a fu-
ture Web, we cannot assume the reader of a Web
page is a human staring at a browser. It may be
an application developed entirely by the client. Yet
there is no formal way to extract information from
a Web page and store it in a database, or to connect
forms and pages to workflows. Conversely, applets
are objects with interfaces accessible to other ob-
jects on the client’s machine, but this is only useful if
their interface supports the client object’s needs, as
opposed to just other objects from the same server.
As is the case in the database world, the server can-
not know all the ways a client will want to use its
information. Then there is the further problem of
combining information across a variety of servers in
a seamless fashion.

Domain-specific languages may hold the key to deal-
ing with heterogeneity. As we shall see, they sub-
sume both text markup languages and class inter-
faces in a powerful way. They are easily transmit-
ted. If they are truly domain specific, they imply
little about their implementation, leaving the client
free to support a variety of implementations, each
specific to a particular purpose.

The rest of this paper will expand on our approach
of using DSLs as a means of supporting heteroge-

nous agents in an open network. Section two will
expand on the problem. Section three explains the
significance of DSLs, while section four describes
two short examples of DSLs in use. Section five
describes the approach we have been taking. Other
work is described in section six and we conclude in
section seven.

2 How heterogeneity impedes dis-
tributed systems on the Web

The current World Wide Web architecture assumes
the existence of three entities - the server, the
browser, and the (human) user. The server sends
information to the browser to be displayed to the
use. Occasionally the user enters some information
into the browser to be sent back to the server, which
responds with some new information. If the user
wants to enter the information in some local appli-
cation it must be done manually. If the user wants
to see two screens, or enter information from one
screen into a form from another server (essentially
creating an ad hoc distributed application), it must
be done manually.

We want to replace “the browser and the user” with
“a local agent,” which may just be a browser and
a user, but not necessarily. This local agent re-
ceives information — text or objects — from one or
more servers and does something with it. What that
something is may be to display it, store it, place it
within new documents, email it, trigger some trans-
action, etc. But it is a local decision what to do
(which might merely be executing code from the
server).

We also want to enable clients to combine informa-
tion from a variety of servers, or arrange for the
servers to communicate with each other. This turns
the current Web architecture on its head to treat
the whole network in a peer-to-peer way.

Our approach to this question grew out of our ex-
periences developing Dreme, a dialect of Scheme
with mobile objects, and what appeared to be the
basic asymmetry between communication with hu-
mans and communication with programs. In this
scenario, suppose an object migrates to your desk-
top and wishes to communicate with you. If you
happen to be a:

e Human, then the conventional mechanism is
through a GUI. The GUI provided a sequence
of pictures and simple responses for the human
to interact with the object/agent. Software
engineering “conventional wisdom” insists this

will constitute the bulk of the object’s code.
Our earliest efforts looked at traditional toolk-
its, such as Athena, then moved to SGML-
based markup languages in the quest for plat-
form independence. HTML with forms would
also seem a good choice here.

e Computer program, then the conventional
mechanism is through some kind of functional
interface, such as method invocation. The best
candidate for this was the OMG’s IDL. In con-
junction with a distributed CORBA implemen-
tation, an object would be able to seemlessly
communicate with other objects anywhere and
bring its interface along with it.

These two approaches turn out to be very differ-
ent on a number of levels. On the face of it, they
are incompatible in any realistic way. Other than
during program development, humans will not in-
terface directly with objects through an IDL in-
terface, especially naive users unfamiliar with the
interface. Even more absurd would be the notion
of humans communicating with each other through
IDL defined interfaces. Conversely, it is highly un-
likely objects will communicate with each other us-
ing HTML forms. This is, at present, a common way
to support human/object communication (through
CGI scripts), but even there it is unwieldy.

In an information-rich, networked universe, sup-
porting both mechanisms is very onerous. For an
object to communicate with both other objects and
humans, it effectively needs two user interfaces. Just
as a matter of limited resources, it is unlikely both
will be complete, and there is also the problem of
possible inconsistencies between them. Requiring
two Uls is an undesireable feature from an engineer-
ing point of view.

The sender of an object may have a clear idea of
the object’s goals at the recipient, but to the recip-
ient the object is also a resource to be manipulated
for the recipient’s purposes. A server may send a
Java applet to a client to accept information for a
purchase order, but the client will also want to log
the transaction locally, and perhaps have the pur-
chase order approved by local financial systems be-
fore it is finally submitted. And the client’s interest
does not end there; it is important to ensure the
appropriate information is transmitted back to the
server. Because the interface between the local ap-
plet and server is essentially private, and because a
malicious applet can internally alter itself so the ma-
licious code is garbage collected, the client has good
reason to know exactly what purchase information
passed to the server[4].

3 DSLs for distributed applications

We consider domain specific languages as the means
to resolve the heterogeneity issue. In this paradigm,
an object’s interfaces are the languages in which it
expresses the information it carries and its process-
ing requirements.These domain specific languages
are normally small, often much smaller than HTML,
a popular domain-specific language for displaying
simple hypertext. Whether a particular language
is Turing-complete will depend completely on the
particular language, but it is more likely the imple-
mentation language will be than the language itself.
In our approach we separate language semantics into
two levels:

e The abstract semantics, corresponding to the
objects in the domain itself, without any regard
for actual implementation. This corresponds to
what is generally considered as semantics.

e the operational, or concrete, semantics, cor-
responding to however the recipient processes
that message. We will discuss how this pro-
cessing might be done, and how we have done
it, but this does not presume that all message
recipients will do likewise. This looseness is one
of the strong points of our approach, as it allows
a variety of different recipients to be swapped
in and out of a distributed application.

In the “usual” programming language, the abstract
semantics is usually straightforward (the syntax was
created to reflect the semantics) and the operational
semantics is simply the implementation of the ab-
stract semantics on a particular machine.

In the world of DSLs, we can still consider the oper-
ational semantics to implement the abstract seman-
tics on a machine, but we must enlarge somewhat
our concept of machine. Mawl[9], for example, is
implemented on an HTML/HTTP “machine.” If
we generally consider the receiving entity as a ma-
chine, our view of “machine” becomes quite broad.
The DSL implementer may view a corporation as a
machine with workflows, email to be sent, database
entries to read, store, or update, etc., if that is the
domain. Or the domain may be far smaller, like a
card game. Any particular site might actually have
many machines defined for the different ways they
might want to handle the incoming information.
Our approach is a social model. Exchanged strings
represent actions by the various parties. The clos-
est analogy is with speech acts, as first discussed by
Austin[1] and then extended by Searle[12]. Tradi-
tional logic has always considered sentences to be

statements about the state of the world. As such
they could be assigned truth values based on their
correspondance with actual fact. Austin was the
first to notice that some statements were actually
acts themselves, and their utterance changes the
state of the world. Austin called these speech acts.
The classic example of a speach act is the marriage
ceremony. At the end of the ceremony, both parties
say “I do.” These two utterances initiate the mar-
riage, so they have, in fact, changed the state of the
world.

According to Searle, for a speach act to be success-
ful, it not only needs the right syntax, it also needs
the appropriate context. The marriage speech acts,
at least in the United States, can only be performed
by unmarried individuals in the presence of an au-
thorized individual, such as a justice of the peace.
If performed by actors during a show, then it is not
a valid as a marriage creating speech act. It is still
a speech act, but one of a different kind.

We can take a similar approach using model theory.
Although there may be a general domain model,
each message is interpreted using a local model (and
possibly more than one, if there are multiple opera-
tions to be performed). The net effect of interpret-
ing a message using the local model, however, must
be congruent with the abstract model. Accepting a
purchase order should eventually lead to a shipment
and a bill.

Model theory also leads, in a roundabout way, to
justifying the application of DSLs. Just as there
may be many models for a particular language,
there may be many languages to express a partic-
ular model. For each of these languages there is
an interpretation function to describe the mapping
between it and the model. The interpretation func-
tions for programming languages usually appear rel-
atively straightforward. They describe how state-
ments in the language function in general. However
the interpretation function from a program in a tra-
ditional programming language to a particular id-
iosyncratic domain will be far more complex. Given
that the interpretation function can vary in com-
plexity, we would argue the appropriate language for
any domain is the one with the simplest interpreta-
tion function. This is certainly the case where the
language syntax corresponds directly with domain
semantics so there is a one-to-one correspondance
between language elements and the corresponding
domains.

We’ve sidestepped the issue of implementing the
language, or even of the variety of implementations
corresponding to the different operational semantics
we might require. But we’ve subdivided the initial

problem — how to implement a variety of apparently
unrelated applications in a particular problem do-
main — into two smaller problems:

e What is the language that best expresses the
semantics of the domain.

e How can we implement this language to express
the various operational semantics we need.

We maintain this is simpler. The first item is mostly
a design issue, which needs to be addressed in any
case. For the second one, each operational seman-
tics corresponds roughly to an application, but it
is now a mapping from a particular language to a
particular implementation. Most of the operational
semantics will fall into a small group, such as GUI,
storage and retrieval, etc. Since we have subsumed
the different problem domains under a particular
structure (a language) and have now factored the
different ways we’ll need to manipulate those struc-
tures, we can attack each area separately (how to
display a message, how to decompose and store a
message, etc.). Our prefered method would be to
use metalanguages to describe these mappings.

We can look at objects in message-passing based
languagas, such as C++ and Java, as implicitly be-
ing language processors as well. In these languages,
each object has one or more interfaces it presents to
the rest of the world (C++ objects have one based
on its class, Java objects can have several). Each
interface describes a set of messages, called meth-
ods, accepted by the object. We can consider the
set, of methods as the alphabet of the object’s lan-
guage. After creation, an object receives a (poten-
tially infinite) list of method invocations. Methods
not in the alphabet are gibberish. (Dynamic lan-
guages, like SmallTalk, may have a default means
to handle this; statically typed ones catch these at
the compilation stage.) Otherwise the list of mes-
sages form a string in the language defined by the
interface. Interface definition languages for object
oriented languages currently specify no more that
the alphabet, so any string (sequence of method in-
vocations) is declared valid even though objects do
not necessarily accept all sequences.

4 SGML/XML as DSL metagram-
mar

We have relied heavily on SGML, the Standard Gen-
eralized Markup Language, as the metagrammar for
defining our various DSLs. SGML has some impor-
tant characteristics which make it a candidate for
the role:

<!ELEMENT element-name ((eleml, elem2)+ |
(elem3, elem4)x*)>

Figure 1: Element definition

e It is an existing international standard already
used to mark up terabytes of information, much
of which may be interesting for the kinds of
applications under consideration.

e Although rather complex, a number of parsers
are available. XML, a simplified version of
SGML designed for Web delivery is designed
to be simple to parse.

e It is LL(1), as we will discuss later.

e Most important, SGML was designed to enable
a complete break between syntax and semantics
through its promulgation of logical, or descrip-
tive, markup.

e SGML is also the metagrammar in which
HTML is defined, so it will look familiar to peo-
ple who have read Web document sources.

In de-
scriptive markup, a tag designates what it is, not
how it should be shown. For example, the <date>
tag in the fragment <date>10/29/1999</date> in-
dicates that the string is to be interpreted as a date
not, for example, a part number. How it is to be
displayed must be designated elsewhere, either in a
display application or a stylesheet. However differ-
ent applications - for database storage, for display,
etc. - can all use the presence of the <date> tag.
SGML/XML does not use Backus-Nauer forms for
defining grammars. An SGML rule is called an ele-
ment definition. An example is given in figure 1. It
has three parts:

1. The ELEMENT keyword to indicate this is an el-
ement definition.

2. The element name (the left hand side of a BNF
production).

3. The content model, a regular expression what
the internal contents of the element are. Where
the element contains text, this is designted by
the #PCDATA keyword.

We will give an example of a full grammar when
explaining the Bridge application.

<!ELEMENT bridge (player+, deal,

bidding, dummy, play)>
<!ELEMENT player #EMPTY>
<!ATTLIST player position (north | south |

east | west)
#REQUIRED
name cdata #required>

<!ELEMENT deal (card+)>
<!ELEMENT card #empty>
<!ATTLIST card suit (spades | hearts |
diamonds | clubs)
#REQUIRED
face cdata #REQUIRED>
<!ELEMENT bidding (bid | pass)>
<VELEMENT bid #empty>
<!ATTLIST bid suit (spades | hearts |
diamonds | clubs |
no-trump) #REQUIRED
tricks cdata #REQUIRED>
<!ELEMENT pass #empty>
<!ELEMENT dummy (card+)>
<!ELEMENT play (trick+)>
<!ELEMENT trick (card, card, card, card)>

Figure 2: Grammar for Bridge Game

5 An example — the game of Bridge

A straightforward distributed application we have
tried is a Bridge tournament. Bridge is interesting
because it has both an interactive component and a
multilayered architecture.

Bridge is the most popular of a number of games all
based on the same basic procedure. In all of them:

1. Dealer deals the cards.

2. The parties bid to determine a trump suit and
who will play the first card.

3. The “dummy,” the partner of the highest bid-
der, lays his cards on the table.

4. The cards are played in a series of rounds. Each
round is started by the winner of the previous
round.

5. The play is scored.

Other families of card games are a variation on this,
such as poker, where players can exchange some of
their cards before bidding.

We can write a grammar to cover the context free
aspects of this schema, as in figure 2. Some aspects
of a game are necessarily context sensitive (such as
not playing the same card twice) — these are handled

<bridge>

<player position = ‘‘north’’
name = ‘‘author’’> ...

<deal><card suit = ‘‘spades’’

face = ‘‘king’’> ... </deal>
<bidding><bid suit = ‘‘hearts’’

tricks = ‘¢27’> ... <pass></bidding>
<dummy><card suit = ‘‘clubs’’

face = ‘‘277>...</dummy>

<play><trick><card suit = ‘‘hears’’
face = ““6’’>...</trick>

</play>
</bridge>

Figure 3: Schematic Brige Game

by the agents, who or whatever they may be. It
is also possible to create another meta-language to
specify some of these context sensitivities (such as
most steps proceed in a round robin fashion, or play
is selection without replacement).

A correct and complete game of bridge 3 is a string
in this language, although (due to context sensi-
tivity) not all strings are correct games. In a dis-
tributed game of bridge:

1. The actions of all the parties will, jointly, create
a correct string in the language.

2. Each party will receive (and interpret) a correct
bridge string. We can guarantee this because of
the nature of bridge. There are other domains
where only one party can determine that a cor-
rect string has been produced. There may also
be domains where no party actually sees the fi-
nal string (it may be distributed), but there is
enough information to verify it is correct.

3. A knowledgeable party can view the resulting
string and determine that it was, indeed, a cor-
rect game.

When playing bridge, the dealer generates the first
part of the game by passing out the cards. Each
player receives an open game start tag and then
their 13 cards. If the entire game is automated,
these may come in one message. On the other hand,
if the dealer is human, the cards will be dealt one
at a time, so the 13 cards will come in 13 messages.
After this comes the bidding. Bidding terminates
when three consecutive players pass. Each player,
in turn, sends its bids to all the others, ensuring
each player sees the same (correct) sequence. As the

bids must escalate, this either requires some check-
ing from the agent, or the grammar will drastically
increase in size (since the number of possible games
is actually finite, we could use a finite state machine,
but this would not be terribly practical). It is easy
enough to check the resulting string. Next comes
the laying out of the dummy’s hand — another 13
cards. These are sent by the dummy to the all the
players (it also sends to itself for completeness). Fi-
nally the actual play begins. With each round, the
leading player starts the round and plays its card,
followed by the others. Again these are sent to all
the players until the game terminates. At the end
of the game, each player will have received a correct
string. They will be the same except for the initial
cards dealt.

As long as the players generate their pieces of the
string correctly, it does not matter if they are com-
putational objects or human. Non-participants or
judges can listen in and follow that part of the game
open to the public. The string can also be stored,
printed, spoken, compared with other games, or oth-
erwise manipulated.

If we want to compare computational and human
agents, we can see that support in either direction
is incremental. In the former case, the string only
needs to be parsed into a data structure. Beyond
that is the need to produce agents capable of play-
ing bridge at whatever level is desired. This is out-
side the scope of this paper. In the human case, the
interface can be as simple or complex as desired.
A human could function with a simple, command
line interface for Bridge, reading the messages di-
rectly and typing in bids and cards. This approach
rapidly reaches a point of diminishing returns as the
information becomes more complex, so a more so-
phisticated user interface is required.

Because the language is public, any client under-
standing the language is a valid participant. Who-
ever defines the Bridge language has created a public
protocol. Bridge players can build their own clients
or retrieve them from anywhere.

Maintaining the string representation down to the
lowest level can facilitate ad hoc collaboration. Sup-
pose, while playing bridge, I retrieve a bridge advi-
sor program. Somehow I need to communicate the
current state of the game to the advisor, and it needs
to be able to give me feedback. If a traditional OO
approach is taken, access to the GUI is encapsulated
in the bridge client through a tangle of widgets and
callbacks. Either the bridge client has a separate
interface for other computational agents (such as a
set of methods) or the information must be entered
by hand. The second case is laborious and labor

prone. The first, as we mentioned above, requires
the client to have two interfaces - the GUI and the
method. On the other hand, if the GUI, or some
component of it, is really just a mapping from the
current string to widgets, the advisor can retrieve
the string directly from the GUI without requiring
any communication with the bridge client. Ideally,
the advisor can even borrow the display mapping
to show the user alternative scenarios. Since the
callback of playing a card is to send some tokens,
it would even be possible to develop higher level
tools to redirect the user’s choice through the advi-
sor (particularly if the advisor is also a tutor).

While the game string itself resulting from several
processes interacting, that same string can be both
program and datastructure to other applications.
For example it is a program to a bridge game pretty-
printer or DBMS storage routine. It is a data struc-
ture to any query facility trying to analyze the game

6 Implementation architecture

In discussing implementation, we will separate ar-
chitectural issues into two parts, language consider-
ations and application considerations.

We can also distinguish two broad application types
- one in which processing is done continuous with
the transmission of tokens (the bridge game) and
one in which the entire language string is received
by the client before any processing needs to be done
(such as a purchase order).

6.1 The importance of top-down pars-
ing

The flow of the bridge application — each player
adding its piece to the construction of the final
string — requires the use of an LL(1) grammar and
parser for the language, as opposed to the more com-
mon LR(1) or LALR(1) grammars. These latter
grammars lead to bottom up parses, while LL(1)
grammars have top-down parses. In the LL parse,
the parser knows which production it is entering as
each token is encountered. This is imperative for the
game, since the client always needs to know which
state it is in to perform correctly. The LR parser, in
contrast, knows which production it is leaving when
the last token for the production has been seen. In
other words, the parse will report to the application
what has happened, not what will happen.

LL(k) parsing, in general, has been deprecated until
recently because the need for a variable amount of

lookahead. However, [11] has shown how to mini-
mize the lookahead. As most rules seem to be LL(1),
this makes LL(k) parsing very attractive.

An LR grammar, by contrast, appears able to sup-
port the purchase order application since the en-
tire message should be available at the client be-
fore parsing begins. However this is not necessarily
true; it might be that the document as sent contains
references to other information which could be ex-
panded in place if necessary. In other words, the
sender leaves it to the receiver to determine if the
additional information is necessary. For example,
only a part of an item’s record might be sent. If the
parse is top down, the application will have more
information about the message when it reaches the
reference than if the parse is bottom up (this does
not mean there will necessarily be sufficient infor-
mation - it may be the information is necessary for
something later in the document). However in a
top-down parse, the additional information can be
retrieved at the point the reference is encountered.
In a bottom-up parse it is more likely that part of
the parse would need to be discarded when it is time
to retrieve the additional information. I would also
argue that queries against a message are also easier
in the LL scenario for the same reason. The more
elaborate the path on a query, the more it resembles
a parse in which most of the document is discarded.
An LL grammar makes it more likely there will be
a reasonable path through the document to the de-
sired information.

6.2 Interpreter structure

The application architecture we have used is heav-
ily influenced by our choice of Scheme for imple-
menting our initial mobile object language. Lisp
dialects are generally LL(1) because of the use of
S-expressions. The feature facilitates the develop-
ment of the various Lisp macro systems. A macro,
in essence, is a function whose parameters are not
evaluated. The body of the macro can rewrite the
parameters (which may be a large chunk of code)
and then have the rewritten code evaluated in place
of the original code. This implies a top down eval-
uation. The other interesting aspect of Scheme is
its support for nested lexical scopes (closures) and
first class functions. By treating the parser itself as
a coprocess, we have been able to write top down
interpreters with several levels of nesting.

We essentially use an event-driven model, with
events based on the generic identifiers of the the
tags. Event handlers are grouped in lexically scoped
groups. Each handler has three sections:

1. A pretraversal section for processing related to
the current node in the parse tree. For example,
suppose we had a purchase order and needed to
keep track of the total cost for all the included
items. Because of the lexical scoping, the code
can simply define a variable here which will be
accessed while the subtree is traversed. Also,
because of the scoping, there is a possibility to
use the same events recursively, so we can track
prices of lists within lists.

2. A traversal section, in which the tree rooted
at the current node is traversed. It is possible
at this point to designate a new list of event
handlers for nodes in the subtree. These event
handlers are only required for events whose pro-
cessing changes in the context of the current
node. Since the event handlers are nested, if a
handler is not found in the current scope, outer
scopes are searched until one is located. In
particular, as these handlers are also lexically
scoped within the pretraversal section, they can
have access to variables created at that level.
So, for the purchase order example, the variable
defined in the pretraversal state is incremented
here.

3. A post traversal section for final processing af-
ter the subtree has been traversed. In the pur-
chase order example, we would now have the
total amount of the items and can print, trans-
mit, store, etc., that value as we wish.

An example of this structure is given in figure 4.
Note that due to the lexical scoping it is possible to
have one event for a card when it appears during
the deal, and another when it is part of play.

7 Related Work

Another approach to communicating among agents,
either contrasting or complimentary depending on
implementation, is given by KIF/KQMLJ7, 6]. This
effort has grown out of the Al segment of the agent
community. KIF is a predicate calculus based lan-
guage for encoding ontologies — exhaustive analyses
of the information in a particular domain. When
used as a communication language, small Lisp-like
programs are sent and executed remotely. KQML is
a protocol for wrapping inter agent messages based
on speech act theory. KIF seems to be very com-
plimentary with our approach when considered as
a domain specification language. The model must
be described one way or another. However, while

(’bridge
(let ((varil 1)
)
(startup code)
(event-list
’deal (lambda (event)
(let ((C...))

&ééent—list
’card
(lambda (event)
el)
oY)
D))
;éiay (lambda (event)
(let ((...))

(event-list
’card
(lambda (event)
o))
o))
(post-processing...)))

Figure 4: Interpreter Structure

the predicate calculus may be the best language for
describing a domain, it is not necessarily the best
syntax for making statements in that domain. The
ideal DSL is the one with the most economical map-
ping between the syntax and semantics. The KIF
community is concerned with producing ontologies -
exhaustive analyses of domains. Our approach does
not require that much overhead. KQML is a pro-
tocol for wrapping messages among agents heavily
influenced by speech acts. Although it was devel-
oped with KIF in mind, it is agnostic concerning
the language of the message and so could work with
DSLs as well.

We see this approach as very compatible with
aspect-oriented programming[8] and jargons[10].
Both of these look at decomposing a problem into a
number of different aspects (or jargons), each with
its own domain and language. A complete applica-
tion is built by composing the program from state-
ments in the different domain specific languages.
The AOP effort weaves these together from separate
programs, while the jargon approach allows the pro-
grammer to mix them in the source code. Both of
these approaches are very implementation oriented.
They represent possible alternative means of imple-
menting local processing of a DSL message. The
automatic weaving element of AOP is very attrac-
tive, as aspects could represent additional informa-
tion the client could get from the server about the
message without being completely dependent on the
server for all aspects of processing.

The Shopbot[3] takes an explicitly AI view to in-
tegrating Web pages into a particular application.
Shopbot is a shopping agent for the World Wide
Web. Using a set of heuristics, it can learn how a
shopping site is organized and help a user find prod-
ucts in a specific domain. This is a valid approach
where:

e The problem domain is well structured but the
messages are not.

e The difficulty of creating the agent is compen-
sated by the number of uses.

Where the messags are structured in a domain ap-
propriate way, the Shopbot approach is unnecessary.
However, if it can convert unstructured messages to
strucured ones, it could be integrated into such a
system.

8 Conclusions

We have shown how DSLs can play an important
role as the glue in multi-organizational distributed

applications in the Internet. With the strong break
between language definition and implementation se-
mantics, we can map these languages into GUIs for
human agents and functional interfaces for objects,
so this approach subsumes both HTML and IDL
and presents a unified communication paradigm.
This approach has many similarities to EDI[2]. In
EDI the messages are standardized, so they could be
considered a DSL, and each party is free to process
them any way they require, so long as it is congru-
ent with the abstract semantics, as determined by
the international standards bodies. However, imple-
menting EDI has been extremely difficult, even for
large corporations. We suspect that our approach
could simplify EDI implementation considerably.
We intend to apply this approach in a number of
problem domains. The appearance and ready ac-
ceptance of XML indicates the Web requires this
kind of approach.

References

[1] J. L. Austin. How to Do Things with Words.
Oxford University Press, 1962.

[2] Edward Cannon. EDI Guide: a step by step
approach. Van Nostrand Reinhold, 1993.

[3] Robert Doorenbos et al. A scalable
comparison-shopping agent for the world-wide
web. In Proceedings of the First Inter-
national Conference on Autonomous Agents.
ACM, 1997.

[4] Matthew Fuchs. Beyond the write-only web.

Technical report, 1995.
http://cs.nyu.edu/phd_students/fuchs/in-
long.ps.

[5] Matthew Fuchs. Dreme: for Life in the Net.
PhD thesis, New York University, 1995.

[6] KQML Advisory Group. An overview of kqml:
A knowledge query and manipulation language.
Technical report, University of Maryland, 1992.

[7] Thomas Gruber. A translation approach to
portable ontology specifications. Technical Re-
port KSL 92-71, Knowledge Systems Labora-
tory, 1993.

[8] Gregor Kiczales et al. Aspect oriented pro-
gramming. In Proceedings of DSL °97. Uni-
versity of Illinois Computer Science, 1997.
http://www-sal.cs.uiuc.edu/ kamin/dsl.

[9] David A. Ladd and J. Christopher Ram-
ming. Programming the web: An application-
oriented language for hypermedia service pro-
gram-
ming. Technical report, 1997. http://www.bell-

labs.com/project/MAWL/papers/Overview.html.

[10] Lloyd Nakatani and Mark Jones. Jargons
and infocentrism. In Proceedings of DSL ’97.
University of Illinois Computer Science, 1997.
http://www-sal.cs.uiuc.edu/ kamin/dsl.

[11] Terence Parr. Obtaining Practical Variants of
LL(k) and LR(k) for k > 1 by Splitting the
Atomic k-Tuple. PhD thesis, Purdue Univer-
sity, 1993.

[12] John Searle. Speech Acts. Cambridge Univer-
sity Press, 1969.

