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Abstract

Recent developments in Component technology en-
able the construction of complex software systems
by assembling together o�-the-shelf components.
However, it is still diÆcult to develop eÆcient,
reliable, and dynamically con�gurable component-
based systems. Components are often developed by
di�erent groups with di�erent methodologies. Un-
speci�ed dependencies and behavior lead to unex-
pected failures.

Component-based software systems must maintain
explicit representations of inter-component depen-
dence and component requirements. This provides
a common ground for supporting fault-tolerance and
automating dynamic con�guration.

In this paper, we present a generic model for reify-
ing dependencies in distributed component systems
and discuss how it can be used to support automatic
con�guration. We describe our experience deploy-
ing the framework in a CORBA-compliant re
ective
ORB and discuss the use of this model in a new dis-
tributed operating system.

1 Introduction

Research on object-oriented technology and its in-
tensive use by the industry has led to the develop-
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ment of component-oriented programming. Rather
than being an alternative to object-orientation,
component technology extends the initial concepts
of objects. It stresses the desire for independent
pieces of software that can be reused and combined
in di�erent ways to implement complex software sys-
tems.

Recently developed component architectures
[Ham97, Den97, OMG97] support the construction
of sophisticated systems by assembling together
a collection of o�-the-shelf software components
with the help of visual tools or programmatic
interfaces. However, there is still very little support
for managing the interactions between components.
Components are created by di�erent programmers,
often working in di�erent groups with di�erent
methodologies. It is hard to create robust and
eÆcient systems if the dynamic dependencies
between components are not well understood. It
is very common to �nd cases, in both legacy and
component-based systems, in which a module
fails to accomplish its goal because an unspeci�ed
dependency is not properly resolved. Sometimes,
the graceful failure of one module is not properly
detected by other modules leading to system failure.

A similar problem can be detected in a di�erent con-
text. Current systems are continuously being up-
dated and modi�ed. For example, system adminis-
trators working on UNIX or Windows NT environ-
ments must be aware of security announcements on
a daily basis and be prepared to update the oper-
ating system kernel with security patches. In addi-
tion, users demand new versions of applications such
as web browsers, text editors, software development
tools, and the like. Often, building and installing a



new package requires that a series of other tools be
updated.

Users of workstations and personal computers are
also not free from the burden of system or account
maintenance. In environments like MS-Windows,
the installation of some applications is partially au-
tomated by \wizard" interfaces which directs the
user through the installation process. However, it
is common to face situations in which the installa-
tion cannot complete or in which it completes but
the software package does not run properly because
some of its (unspeci�ed) requirements are not met.
In other cases, after installing a new version of a
system component or a new tool, applications that
used to work before the update, stop functioning. It
is typical that applications on MS-Windows cannot
be cleanly uninstalled. Often, after executing spe-
cial uninstall procedures, \junk" libraries and �les
are left in the system.

The problem behind all these diÆculties is the lack
of a model for representing the dependencies among
system and application components and mecha-
nisms for managing these dependencies.

We argue that operating system and middleware
environments must provide support for represent-
ing the dependencies among software components
in an explicit way. This representation can then be
manipulated in order to implement software com-
ponents that are able to con�gure themselves and
adapt to ever changing dynamic environments.

By reifying the interactions between system and ap-
plication components, system software can recog-
nize the need for recon�guration to better support
fault-tolerance, security, quality of service, and op-
timizations. In addition, it gains the means to carry
out this recon�guration without compromising sys-
tem stability and reliability and with minimal im-
pact in performance.

Our research builds on previous and ongoing work
on software architecture [SG96], dynamic recon-
�guration of distributed systems [HWP93, Hof94,
SW98], and quality of service speci�cation [FK98,
LBS+98]. Our long-term goal is to develop a generic
model for automatic con�guration that can be ap-
plied to modern component architectures.

1.1 Paper Contents

The initial objective of our research is the support
for representing dependencies among software com-
ponents in an explicit way. With that support, we
develop mechanisms that utilize this representation
to perform automatic (re)con�guration of software
components in dynamic environments.

This paper describes our model for representing
component prerequisites (section 2.1) and runtime
inter-component dependence (section 2.2). Al-
though we describe the implementation of a frame-
work for reifying inter-component dependence, the
details about the implementation of prerequisites
are out of the scope of this paper and will be ad-
dressed in a future document.

Section 3 presents two application scenarios: section
3.1 describes our experience using the framework to
support on-the-
y recon�guration of dynamicTAO ,
a re
ective CORBA-compliant ORB and section 3.2
discusses the use of our model in the 2K distributed
operating system.

After discussing related work in section 4, we de-
scribe our plans for the future in section 5 and
present our conclusions in section 6.

2 Inter-Component Dependence

To address the problems described in the previous
section, a con�guration system must explore two
distinct kinds of dependencies:

1. Requirements for loading an inert component
into the runtime system (called prerequisites).

2. Dynamic dependencies among loaded compo-
nents in a running system.

As long as the system knows exactly what the re-
quirements are for installing and running a soft-
ware component, the installation and con�guration
of new components can be automated. As a byprod-
uct of this knowledge, component performance can
be improved by analyzing the dynamic state of sys-
tem resources, analyzing the characteristics of each
component, and by con�guring them in the most
eÆcient way.



Also, if the system knows what the dynamic depen-
dencies among running components are, it can (1)
better handle exceptional behavior that could po-
tentially trouble component operation, and (2) sup-
port dynamic recon�gurations of large systems by
replacing individual components on-the-
y.

Prerequisites and runtime dependencies are two dis-
tinct forms of the same entity. Prerequisites usually
are expressed as dependencies on \persistent" hard-
ware and software components while runtime de-
pendencies refer to dynamic, possibly volatile, com-
ponents. In particular, if one freezes a component's
state (including its runtime dependencies) and stops
it, one could later resume its execution by using
the frozen runtime dependencies as the prerequi-
sites for reloading the component. However, in or-
der to make the model as clear as possible, we are
going to treat prerequisites and runtime dependen-
cies as separate entities. Prerequisites usually refer
to hardware resources, QoS requirements, and soft-
ware services. Runtime dependencies refer to loaded
software components. Thus, we believe that the sep-
aration of concepts is justi�able. In the future, after
the basic problems are solved, we may consider to
unify these concepts in order to build a simpler and
more generic model.

2.1 Prerequisites

The prerequisites for a particular inert component
must specify any special requirement for properly
loading, con�guring, and executing that component.
We consider three di�erent kinds of information that
can be contained in a list of prerequisites.

1. The nature of the hardware resources the com-
ponent needs.

2. The capacity of the hardware resources it
needs.

3. The software services (i.e., components) it re-
quires.

The �rst two items may be used by a distributed
Resource Management Service to determine where,
how, and when to execute the component. QoS-
aware systems can use these data to enable proper
admission control, resource negotiation, and re-
source reservation. The last item is the one which

determines which auxiliary components must be
loaded and in which kind of software environment
they will execute.

The �rst two items can be expressed by QoS speci�-
cation languages [FK98, LBS+98]. The third item is
equivalent to the requires clause in module intercon-
nection languages like, for instance, the one used in
Polylith [Pur94]. We are in the process of analyzing
existing speci�cation languages to study which ones
would best �t our needs. The language must al-
low processing speci�cations at execution time with
little overhead. We will deploy initial prototypes
in 2K , a new CORBA-based distributed operating
system [KSC+98, CNM98] currently under develop-
ment. The main purpose of this paper, however, is
to describe the design and implementation of the in-
frastructure for representing runtime dependencies
presented next.

2.2 Dynamic Dependencies

In our model, each component is managed by a com-
ponent con�gurator which is responsible for storing
the dependencies between a speci�c component and
other system and application components.

Depending on the way it is implemented, a compo-
nent con�gurator may be able to refer to compo-
nents running on a single address space, on di�er-
ent address spaces and processes, or even running
on di�erent machines in a distributed system. Fig-
ure 1 depicts the dependencies that a component
con�gurator rei�es.

Each component C has a set of hooks to which other
components can be attached. These are the com-
ponents on which C depends and are called hooked
components. There might be other components that
depend on C, these are called clients. In general,
each time one de�nes that a component C1 depends
on a component C2, the system should perform two
actions:

1. attach C2 to one of the hooks in C1 and

2. add C1 to the list of clients of C2.

As an example, consider a web browser that spec-
i�es, in its list of prerequisites, that it requires a
TCP/IP service, a window manager, and a local �le
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Figure 1: Rei�cation of component dependence.

service. Its component con�gurator should main-
tain a hook for each of these services. When the
browser is loaded, the system must verify whether
these services are available in the local environment.
If they are not, it must create new instances of them.
In any case, references to the services are stored in
the browser con�gurator hooks and may be later
retrieved and updated if necessary.

2.2.1 The ComponentCon�gurator class

The rei�cation of runtime dependencies is accom-
plished by assigning one ComponentCon�gurator ob-
ject to each component. A simpli�ed declaration
of the ComponentCon�gurator class in pseudo-C++
follows. Figure 2 shows a schematic representation
of some of its method calls.

The class constructor receives a pointer to the
component implementation as a parameter. It
can be later obtained through the implementation()
method.

The hook() method is used to specify that this com-
ponent depends upon another component and un-
hook() breaks this dependence. The registerClient()
and unregisterClient() methods are similar to hook()
and unhook() but they specify that other compo-
nents (called clients) depend upon this component.

class ComponentConfigurator {

public:

ComponentConfigurator(Object *implementation);

~ComponentConfigurator ();

int hook (const char *hookName,

ComponentConfigurator *component);

int unhook (const char *hookName);

int registerClient

(ComponentConfigurator *client,

const char *hookNameInClient = NULL);

int unregisterClient

(ComponentConfigurator *client);

int eventOnHookedComponent

(ComponentConfigurator *hookedComponent,

Event e);

int eventOnClient

(ComponentConfigurator *client,

Event e);

char *name ();

char *info ();

DependencyList *listHooks ();

DependencyList *listClients ();

ComponentConfigurator *

getHookedComponent (const char *hookName);

Object *implementation ();

}
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Figure 2: Methods for specifying dependencies and
sending events.

eventOnHookedComponent() announces that a com-
ponent which is attached to this component has gen-
erated an event. The ComponentCon�gurator() class
is subclassed to implement di�erent behaviors when
events are reported. Examples of common events
are the destruction of a hooked component, the in-



ternal recon�guration of a hooked component, or
the replacement of the implementation of a hooked
component.

eventOnClient() is similar to the previous method
but it announces that a client has generated an
event. This can be used, for example, to trig-
ger recon�gurations in a component to adapt to
new conditions in its clients. Our reference im-
plementation de�nes a basic set of events including
DELETED, FAILED, RECONFIGURED, REPLACED,
andMIGRATED. Applications can extend this set by
de�ning their own events.

name() returns a pointer to a string containing the
name of the component and info() returns a pointer
to a string containing a description of the compo-
nent. Speci�c info() implementations can return dif-
ferent kinds of information like a list of con�guration
options accepted by the component, or a URL for
its documentation and source code.

listHooks() returns a pointer to a list of Depen-
dencySpeci�cations. A DependencySpeci�cation is a
structure de�ned as

struct DependencySpecification {

const char *hookName;

ComponentConfigurator *component;

};

listClients() returns a pointer to a list of Dependen-
cySpeci�cations corresponding to the components
that depend on this component (its clients) and the
name of the hooks (in the client's ComponentCon-
�gurator) to which this component is attached.

Finally, getHookedComponent() returns a pointer to
the con�gurator of the component that is attached
to a given hook.

2.2.2 Towards Automatic Con�guration

As discussed above, rei�ed inter-component depen-
dence can help the automation of con�guration pro-
cesses. By scanning the list of prerequisites, the op-
erating system or middleware can be certain that
all hardware and software requirements for the ex-
ecution of a particular component are met before it
is initiated. This can avoid a large number of prob-
lems that are common in existing systems where the

lack of a particular component or resource is only
detected after the application is running.

The dynamic dependence information, in its turn,
enables the recon�guration of components that are
already running. In addition, it provides impor-
tant information for implementing fault-tolerance
and smooth exception handling in an environment
of centralized or distributed components.

As an example, consider the deletion of a component
containing our ComponentCon�gurator class. Di�er-
ent policies for dealing with component deletion can
be adopted. In general, when a component C is de-
stroyed, an announcement must be made to com-
ponents that depend on C and to components on
which C depends. The following piece of pseudo-
C++ code illustrates this process with a conserva-
tive implementation of the ComponentCon�gurator
destructor.

ComponentConfigurator::~ComponentConfigurator()

{

for (c in hookedComponents) {

c.configurator->unregisterClient (this);

}

for (c in clients) {

c.configurator->

eventOnHookedComponent (this,

DELETED);

}

// delete list of hooks and hookedComponents

// delete list of clients

// release resources

// delete component implementation

}// ~ComponentConfigurator ()

Implementations of this destructor can be special-
ized to adjust its behavior to di�erent component
types and to meet special requirements. Also, dif-
ferent component types must implement methods
such as eventOnHookedComponent() in proper ways
to take care of the di�erent kinds of dependencies.
In an extreme case, deleting a component will cause
all components that depend on it to be deleted. In
the other extreme case, these other components will
only be noti�ed and nothing else will change. In
most of the cases, we expect that these components
will try to recon�gure themselves in order to deal
with the loss of one of its dependencies.

The problem with this implementation is that the
complete destruction of the component only takes



place if all the method calls to hooked components
and clients return. If any of these calls block, the
component is not deleted. This problem is particu-
larly important if some of the clients decide to ini-
tiate their own destruction as a result of the call
to eventOnHookedComponent() and a long chain of
calls is established.

A na��ve solution to this problem could be to execute
the method calls asynchronously, for example, by
creating new threads to perform the calls. This so-
lution would incur in the additional cost of creating
new threads and could lead to dangerous situations
as a C++ component could try to call a method on
another component after the latter is destroyed.

Thus, it seems that we are trapped between a safe,
conservative solution that might block inde�nitely
and a liberal but unsafe solution that may crash
the whole system by executing invalid code. We
have been studying this problem and, in [KC98], we
discuss solutions that lie somewhere between these
two extremes. They are as safe as the conservative
one but are less subject to blocking.

2.2.3 Managing Dependencies

The use of our model in a language like C++ re-
quires strict collaboration from the component de-
veloper to conform to proposed guidelines. It is also
important that all the communication between com-
ponents be done through controlled interfaces. In
order to avoid a proliferation of programming errors
related to dependence rei�cation, it would be nec-
essary to develop special languages, compilers, and
runtime systems to guarantee the safety of compo-
nent execution and recon�guration.

A cleaner solution would be to use existing re
ec-
tive languages and environments. Iguana [GC96]
and OpenC++ [Chi95], for example, are extensions
to C++ that reify several features of this language,
allowing dynamic modi�cation of their implementa-
tions. In these languages, it would be possible to
instrument method invocation to take care of de-
pendence maintenance.

However, a major goal of our research is not to limit
the implementation to a particular programming
language and only use widely accepted standards.
We could also tie together the mechanisms for com-
munication and dependence representation using,

for example, abstract connectors [SDZ96]. But this
could limit the expressiveness of the model. Our
objective is to develop a generic methodology that
could be utilized in a large number of heterogeneous
environments. These requirements can only be met
by using a standard architecture like CORBA.

2.3 CORBA ComponentCon�gurator

CORBA permits the integration of components
written in di�erent programming languages on het-
erogeneous environments. In addition, CORBA's
(remote) method invocation mechanism can be de-
coupled from the base language method call. Thus,
it is possible to guarantee that bad CORBA ref-
erences are not translated into bad base language
references (like dangling C++ pointers for exam-
ple). Instead, exceptions are neatly handled by the
runtime and the application is informed of its oc-
currence.

In the CORBA implementation of our model, a De-
pendencySpeci�cation stores a CORBA Interopera-
ble Object Reference (IOR) so that the Component-
Con�gurator is able to reify dependencies among
distributed components. Prerequisites for software
components can be speci�ed either in terms of per-
sistent IORs [Hen98] or in terms of service type and
attributes. In the former case, an implementation
repository can be used to dynamically create a new
CORBA object if one is not available. In the latter
case, the CORBA Trading Object Service [OMG98]
can be used to locate an instance of the server com-
ponent that meets the requirements speci�ed by the
given attributes.

When a CORBA component is destroyed, the com-
ponent implementation (or the ORB) must call the
con�gurator destructor so that it can tell its clients
that the destruction is taking place. If a node
crashes or if the whole process containing both the
component and the con�gurator crash, it might not
be possible to execute the con�gurator destructor.
In this case, the clients will not be informed of the
component destruction. Subsequent CORBA invo-
cations to the crashed component will raise an ex-
ception announcing that the object is not reachable
or that it does not exist. In this case, it is the re-
sponsibility of the client component to locate a new
server component and update its ComponentCon�g-
urator .



As future work, we intend to perform experiments
with the di�erent ways of using the CORBA Com-
ponentCon�gurator to manage distributed applica-
tions. In particular, component con�gurators can
be (1) co-located with their respective component
implementations, (2) located in a separate process
in the same machine or (3) located in a centralized
node on the network while the component imple-
mentations are distributed. We will investigate the
bene�ts of the di�erent approaches.

2.4 Implementation Status

We have implemented prototypes of the Component-
Con�gurator for centralized applications in C++
and Java. The C++ implementation was deployed
in the dynamicTAO ORB as described in section
3.1. We have recently completed an implementa-
tion of distributed ComponentCon�gurators based
on CORBA.

We plan to extend the Java implementation to sup-
port Java Bean components and distributed object
communication with Java RMI. We will, then, work
on the interoperability among di�erent implemen-
tations of the model in di�erent component archi-
tectures.

3 Application Scenarios

This section describes the deployment of the Compo-
nentCon�gurator framework in dynamicTAO , a re-

ective Object Request Broker. It illustrates how
our model can be used to represent and manipu-
late the internal structure of a legacy system, en-
abling dynamic recon�guration. We, then, discuss
how this framework will be used to support archi-
tectural awareness in the 2K distributed operating
system.

3.1 dynamicTAO

One of the major constituent elements of 2K , a dis-
tributed operating system our group is developing
[KSC+98, CNM98], is a re
ective middleware layer
based on CORBA. After carefully studying existing
Object Request Brokers, we came to the conclusion

that the TAO ORB [SC99] would be the best start-
ing point for developing our infrastructure. TAO
is a portable, 
exible, extensible, and con�gurable
ORB based on object-oriented design patterns. It
uses the Strategy design pattern [GHJV95] to sepa-
rate di�erent aspects of the ORB internal engine. A
con�guration �le is used to specify the strategies the
ORB uses to implement aspects like concurrency,
request demultiplexing, scheduling, and connection
management. At ORB startup time, the con�gu-
ration �le is parsed and the selected strategies are
loaded.

TAO is primarily targeted for static hard real-
time applications such as Avionics systems [HLS97].
Thus, it assumes that, once the ORB is initially con-
�gured, its strategies will remain in place until it
completes its execution. There is very little support
for on-the-
y recon�guration.

The 2K project seeks to build a 
exible infrastruc-
ture to support adaptive applications running on
dynamic environments. On-the-
y adaptation is
extremely important for a wide range of applica-
tions including the ones dealing with multimedia,
mobile computers, and dynamically changing envi-
ronments.

The design of 2K depends on dynamicTAO , an ex-
tension of TAO that enables on-the-
y recon�gura-
tion of its strategies. dynamicTAO exports an in-
terface for loading and unloading modules into the
ORB runtime, and for inspecting the ORB con�gu-
ration state. The architecture can also be used for
dynamic recon�guration of servants running on top
of the ORB and even for recon�guring non-CORBA
applications.

3.1.1 Problems Encountered

Recon�guring a running ORB while it is servicing
client requests is a diÆcult task that requires care-
ful consideration. There are two major classes of
problems.

Consider the case in which dynamicTAO receives a
request for replacing one of its strategies (Sold) by a
new strategy (Snew). The �rst problem is that, since
TAO strategies are implemented as C++ objects
that communicate through method invocations, be-
fore unloading Sold, the system must be sure that
no one is running Sold code and that no one is ex-



pecting to run Sold code in the future. Otherwise,
the system could crash. Thus, it is important to as-
sure that Sold is only unloaded after the system can
guarantee that its code will not be called.

The second problem is that some strategies need
to keep state information. When a strategy Sold is
being replaced by Snew, part of Sold's internal state
may need to be transfered to Snew.

These problems can be addressed with the help of
the ComponentCon�gurator which is used to reify
the dependencies among strategies, instances of dy-
namicTAO , and servants.

3.1.2 DomainCon�gurator and TAOCon�g-

urator

Each process running the dynamicTAO ORB con-
tains a ComponentCon�gurator instance called Do-
mainCon�gurator . It is responsible for maintaining
references to instances of the ORB and to servants
running in that process. In addition, each instance
of the ORB contains a customized subclass of Com-
ponentCon�gurator called TAOCon�gurator .

TAOCon�gurator contains hooks to which dynam-
icTAO strategies are attached. A NetworkBroker
implements a simple TCP-based protocol that al-
lows remote entities to connect to the process to
inspect and change the con�guration of dynam-
icTAO by loading new strategies and attaching
them to speci�c hooks. Local servants and remote
CORBA clients can also access the Con�gurator ob-
jects through a programmatic CORBA interface.
Figure 3 illustrates this mechanism when a single
instance of the ORB is present.

If necessary, individual strategies may have their
own customized subclass of ComponentCon�gurator
to manage their dependencies upon ORB instances
and other strategies. These subclasses may also
store references to client connections that depend
on them. With this information, it is possible to
decide when a strategy can be safely unloaded.

Consider, for example, the three concurrency strate-
gies supported by dynamicTAO : Single-Threaded
Reactive [Sch94], Thread-Per-Connection, and
Thread-Pool. If the user switches from the Reactive
or Thread-Per-Connection strategies to any other
concurrency strategy, nothing special needs to be

.

.

.

ConcurrencyStrategy

SchedulingStrategyTAOConfigurator

NetworkBroker

Servant1Configurator Servant2Configurator

CORBA interface

DomainConfigurator

Figure 3: Remote Con�guration of dynamicTAO
strategies.

done. dynamicTAO may simply load the new strat-
egy, update the proper TAOCon�gurator hook, un-
load the old strategy, and continue. Old client con-
nections will complete with the concurrency policy
dictated by the old strategy. New connections will
utilize the new policy.

However, if one switches from the Thread-Pool
strategy to another one, special care must be taken.
The Thread-Pool strategy we developed maintains
a pool of threads that is created when the strat-
egy is initialized. The threads are shared by all in-
coming connections to achieve a good level of con-
currency without having the runtime overhead of
creating new threads. A problem arises when one
switches from this strategy to another strategy: the
code of the strategy being replaced cannot be imme-
diately unloaded. This happens because, since the
threads are reused, they return to the Thread-Pool
strategy code each time a connection �nishes. This
problem can be solved by a ThreadPoolCon�gurator
keeping information about which threads are han-
dling client connections and destroying them as the
connections are closed. When the last thread is de-
stroyed the Thread-Pool strategy signalizes that it
can be unloaded.

Another problem occurs when one replaces the
Thread-Pool strategy by a new one. There may be
several incoming connections enqueued in the strat-
egy waiting for a thread to execute them. The so-



lution is to use the Memento pattern [GHJV95] to
encapsulate the old strategy state in an object that
is passed to the new strategy. An object is used to
encapsulate the queue of waiting connections. The
system simply passes this object to the new strategy
which then takes care of the enqueued connections.

Our group is currently expanding the set of dynam-
icTAO strategies that can be replaced on-the-
y.
The TAOCon�gurator will have hooks for holding
strategies for connection management, concurrency,
(de)marshalling, request demultiplexing, method
dispatching, scheduling, and security. An explicit
knowledge of the dependencies among the ORB
components is essential for implementing dynamic
recon�guration safely.

3.2 Architectural Awareness in 2K

In contrast to existing systems where a large number
of non-utilized modules are carried along with the
basic system installation, the 2K operating system
is based upon a \what you need is what you get"
(WYNIWYG) model. The system con�gures itself
automatically and loads the minimum set of com-
ponents required for executing user applications in
the most eÆcient way. Components are downloaded
from the network and only a small subset of system
services are needed to bootstrap a node.

This is achieved by reifying the hardware and soft-
ware prerequisites for each loadable component. As
mentioned in section 2.1, the operating system can
use this information to make sure that all the ba-
sic services that a component requires are available
before the component is loaded. In addition, a dis-
tributed resource manager uses the speci�cations of
the component hardware requirements to decide in
which machine the component should be loaded and
perform admission control and resource reservation.
That way, one will not face a situation in which
a component fails to execute its task with the de-
sired quality of service because an unspeci�ed de-
pendency was not resolved.

As a component is loaded into the system, its pre-
requisites are scanned and all the speci�ed services
are made available. During this process, the sys-
tem can incrementally build a dynamic graph of de-
pendencies using the ComponentCon�gurator frame-
work.

The design of 2K supports fault-tolerant, self-
adapting systems by monitoring the environment
and maintaining a representation of the dynamic
structure of its services and applications. The
CORBA implementation of the ComponentCon�g-
urator framework rei�es the distributed system dy-
namic structure.

When a 2K component fails, the system inspects its
dependencies and informs the proper components
about the failure. The system may alternatively re-
cover from a failure by replacing the faulty compo-
nent with a new one. The same mechanism can
be used for adapting the system and its compo-
nents to changing parameters such as network band-
width, CPU load, resource availability, user access
patterns, etc.

4 Related Work

The idea of using prerequisites to represent the de-
pendencies among operating system objects was in-
troduced in the SOS operating system [SGH+89]
developed at INRIA, France. In the SOS model,
objects contain a list of prerequisites that must be
satis�ed before they are activated. Even though
the idea was promising, it was not fully explored
in that project. Prerequisites were only used to ex-
press that an object depends on the code imple-
menting it. Not much experimentation was carried
out [SGM89, Sha98]. SOS does not include a model
for dynamic management of inter-component depen-
dence.

Previous research in microkernels and customizable
operating systems { such as Mach [Lop91], SPIN
[BSP+95], Exokernel [KEG+97], and �Choices
[LTC96] { developed low-level techniques for dy-
namic loading new modules to the operating sys-
tem both in kernel and user space. Nevertheless,
a high-level model for operating system recon�gu-
ration is still inexistent. These previous works have
not addressed a number of problems related to fault-
tolerance and dynamic recon�guration. Using the
ComponentCon�gurator framework, our research in-
vestigate answers to the following questions.

� What are the consequences of recon�guring the
operating system?

� When a system module is replaced, which other



modules are a�ected?

� How must those other modules react?

� When (re)con�guring the system, which com-
ponents must be loaded to meet the service de-
mand and the required quality of service?

� If a system component fails, how can the system
detect it and recover gracefully?

We are currently investigating languages for prereq-
uisite speci�cation. They must be able to repre-
sent hardware and quality of service requirements
as well as dependencies on other software compo-
nents. Thus, we believe that an ideal language for
prerequisite speci�cation will build on previous work
on Architecture Description Languages [Cle96] and
QoS Speci�cation Languages [FK98, LBS+98].

Connector-based systems like UniCon [SDZ96] and
software buses like POLYLITH [Pur94] separate
issues concerning component functional behavior
from component interaction. Our model goes one
step further by separating inter-component commu-
nication from inter-component dependence. Con-
nectors and software buses require that applica-
tions be programmed to a particular communica-
tion paradigm. Our framework is independent of
the paradigm for inter-component communication;
it can be used in conjunction with connectors, buses,
local method invocation, CORBA, Java RMI, etc.

Communication and dependence are often inti-
mately related. But, in many cases, the dis-
tinction between inter-component dependence and
inter-component communication is bene�cial. For
example, the quality of service provided by a multi-
media application is greatly in
uenced by the mech-
anisms utilized by underlying services such as vir-
tual memory, scheduling, and memory allocation
(through the new operator). The interaction be-
tween the application and these services is often
implicit, i.e., no direct communication (e.g. library
or system calls) takes place. Yet, if the system in-
frastructure allows developers to establish and ma-
nipulate dependence relationships between the ap-
plication and these services, the application can be
informed of substantial changes in the state and con-
�guration of the services that may a�ect its perfor-
mance.

Di�erently from previous work in this area, our
model does not dictate a particular communication

paradigm like connectors or buses. As shown in sec-
tion 3.1, the model was applied to a legacy system
without requiring any modi�cation to its functional
implementation or to its inter-component commu-
nication mechanisms.

We are particularly interested in investigating the
possibilities of applying results from previous and
ongoing work in dynamic recon�guration [HWP93,
SW98, BBB+98] to standard architectures such as
CORBA and Java Beans.

5 Ongoing and Future Work

The current implementation of the framework in
C++ is being used in dynamicTAO as its dynamic
recon�gurability is enhanced. In addition, the Java
implementation is being used by researchers at the
University of S~ao Paulo to prototype a domain
decomposition manager. This manager has two
demonstration applications: a Distributed Informa-
tion System for Mobile Agents [SGE98] and the
parallelization of an Atmospheric Modeling System
[Bar98].

Work on implementations of the framework in Java
RMI is underway. As discussed in 3.2, the CORBA
implementation of the ComponentCon�gurator will
be used in the 2K operating system to support run-
time architectural awareness as the basis for imple-
menting fault-tolerant recon�gurable systems. The
prerequisites model will be used for QoS-aware re-
source management. This will provide components
with all the hardware and software resources they
need to execute with the desired quality of service.

6 Conclusions

We have presented a model for runtime archi-
tectural awareness in centralized and distributed
component-based systems. We believe that the rei�-
cation of inter-component dependence and compo-
nent prerequisites is fundamental for systems sup-
porting fault-tolerant, recon�gurable components.

The model has been prototyped in Java, C++, and
CORBA. The C++ framework was successfully de-
ployed in dynamicTAO , a legacy system, which was



made aware of its own internal structure.

Future work in the 2K operating system will demon-
strate how the model behaves in a complex, dis-
tributed CORBA-based system.
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ComponentConfigurator .

The source code and detailed documentation for
dynamicTAO can be found at
http://choices.cs.uiuc.edu/2k/dynamicTAO .
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