i

The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)
Santa Fe, New Mexico, April 27-30, 1998

Execution Patterns in Object-Oriented Visualization

Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman
IBM T.J. Watson Research Center

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Execution Patternsin Object-Oriented Visualization

Wim De Pauw, David Lorenz; John Vlissides, and Mark Wegman

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 USA
{Wi m | orenz, vlis, wegnan}@vat son. i bm com

Abstract

Execution patternsare anew metaphor for visualiz-
ing execution traces of object-oriented programs.
We present an execution pattern view that lets a
programmer visualize and explore a program’s
execution at varied levels of abstraction. The
view employsvisual, navigational, and analytical
techniques that accommodate lengthy, real-world
traces. By classifying repetitive behavior automat-
ically into high-order execution patterns, we dras-
tically reduce theinformation aprogrammer must
assimilate, with little loss of insight.

1 Introduction

The gap between a program'’s static specification
and its dynamic behavior is particularly large in
object-oriented programs. Experienced develop-
ersmigrating from procedural to object technology
often complain that they can’t discern flow of con-
trol in object-oriented programs. Their complaints
grow louder when they deal with one or more
frameworks. Theinversion of control from which
a framework derives its leverage [22] nonetheless
gives developers feelings of insecurity, because
their understanding of aprogram isbound tightly
to knowledge of control flow. When they can’t
trace the program’slogic, they can’t predict itsbe-
havior, and so they can’t change what it does—
rendering the framew ork useless.

Object-oriented program visualization systems
such as Ovation [9, 10] and Program Explorer [18]
have sought to bridge thisgap. All work in much
thesameway. They instrument thecodeto bevisu-
alized so that it produces atrace as a side-effect of
its execution. The trace contains far too much de-
tail (e.g., every method invocation) to understand
asis. Instead, the visualization system interprets
thetrace and generates one or more animated ren-
ditions of the program’s execution. The renditions

*David Lorenz is currently at Technion, Israel Institute of
Technology (davi d@s. t echnion. ac.il).

use avariety of notations and cognitive devices to
convey information succinctly and comprehensi-
bly. Thevisualization can help humansmakesense
of millions of method invocations on hundreds of
thousands of objects. But to be effective, the visu-
alization system must consolidate and present just
theright information on the screen, in just theright
way. There are many waysto consolidateinforma-
tion, and their effectiveness varies tremendously.

To understand how to present information effec-
tively, consider how tracesbecomelargein thefirst
place. Onereason is sheer complexity. A nontriv-
ial object-oriented program may enlist hundreds
or even thousands of classes to do its job. One
would expect large traces from such programs.

Yet aprogram doesn’t have to be statically com-
plex to yield large traces; even a small program
may produce them if it executes the same code
many times. Programming languages let us spec-
ify repeated executions of (almost) the same sce-
nario through recursion, functional decomposi-
tion, template functions, and a variety of control
structures. These remarkably compact specifica-
tionsproduce patternsof similar if not identical in-
structionsasthe program executes, greatly length-
ening the trace but adding little to its information
content. Hence even a simple program can yield
huge, incomprehensible traces.

Nevertheless, trace data can be comprehended
(2) if it can be summarized into succinct, abstract
nuggetsthat lack extraneousdetail (detailsarepro-
vided on demand, not unsolicited), and (2) if sim-
ilar patternsin the trace can be condensed into a
smaller number of more general patternsthat recur
at specified frequencies.

To this end we introduce a variation of Jacob-
son’sinteraction diagrams|[16] for presenting pat-
terns of execution—an execution pattern view—
that accomplishestwo aims:

1. It lets a programmer observe any part of the
program’sexecution at variouslevelsof detail.
The programmer avoids being overwhelmed
by execution information through careful, se-

lective control of what isdivulged, with detail
presented on demand.

2. It detects and presents generalized patterns
of execution in which one pattern subsumes
many parts of thetrace.

In the next section we describe the elements of
the pattern view. We use a scenario to motivate
the mechanisms for navigation and detail elabo-
ration. Then we discuss generalizations of execu-
tion patterns. We give criteria by which patterns
are automatically considered similar and explain
our choice of color and shape to best convey the
information. Finally, we compare our execution
pattern view to related work and offer concluding
remarks.

2 Execution Pattern Notation

Jacobson’s interaction diagrams are popular be-
cause they depict dynamic behavior clearly and
compactly. Figure 1(a) shows a simple interac-
tion diagram. Vertical lines, or rails, represent ob-
jects. Arrowheaded linesrepresent message sends:
thereisan arrowheaded line between object 4 and
object B for each message A sendsto B, with lines
for later messages appearing below those for ear-
lier ones. Thus time progresses downward. All
method invocations on an object appear as rectan-
gles superimposed on the corresponding rail.

Aninteraction diagram’s layout emphasizesthe
program’s thread of execution. Before interaction
diagramsit wascommon todepict thisinformation
asdirected graphs, with nodesrepresenting objects
and arcs representing message sends. The prob-
lem was scalability. It wasdifficult to depict more
than a few message sends between objects with-
out clutter. By representing time explicitly—that
is, by mapping it to the vertical axis—interaction
diagrams can depict many more message sends
unambiguously.

While interaction diagrams are better than di-
rected graphs at depicting nontrivial interactions,
even these diagrams do not scaleto complete pro-
gram executions. Space is consumed quickly as
execution timeand the number of objectsincrease.
There are ambiguities as well. The order of rails
along the horizontal axis is undefined; often it is
chosento minimizelinelength, crossovers, or both.
Nor is it easy to discern the lifetimes of recursive
calls, sincethey aresubsumed by asinglerectangle.
For example,it’'sunclear in Figure 1(a) whether the

message from A to D is sent within the recursive
call to A. One can make recursion more explicit
by superimposing rectangles, but that approach
quickly getsunwieldy astherecursion deepens.

The execution pattern view addresses these
shortcomings by unfolding the graph into tree
structures like the one shown in Figure 1(b). This
layout emphasizesthe progression of time not the
thread of control. You read the graph left to right
and top to bottom, just asyou would printed Eng-
lish. Later messages appear further to the right
on the same line or further down the screen than
earlier ones.

In addition to these topological improvements,
weusecolor toindicatethe classof object. Figure 2
showsthe execution pattern view at an early point
in aprogram’s execution. The legend in the lower
left indicates that objects of class AA are orange,
objects of class Mare yellow, and objects of class
QQare blue. To theleft of an object isthe sender of
the message it received; to its right, the messages
it sends. Each object in the view isidentified with
a numerical identifier (“1D”) in the upper left of
its colored box. Messages are shown as labeled
arrowheaded lines, the label identifying the name
of the message. In the figure, the message f A is
sent to an object of class AA (ID=2). The object
respondsto this messageby sending amessagef M
tothe MMobject (ID=3) and then sending amessage
f Qto the QQobject (ID=4).

A tree representation simplifies things consid-
erably. Its unidirectionality in both axes makes it
easier to read than an interaction diagram (where
messages may bounce across many rails in ei-
ther direction). It scales better, too. Horizontal
space is mapped not to objects but to the call
sequence, which is uniquely defined and more
tightly bound—several objects may occupy the
same column. Vertical space is used more effi-
ciently aswell (compare Figures 1(a) and 1(b)).

3 Manipulation and Navigation

Theexecution pattern view hasinteractive capabil-
ities that capitalize on the tree structure’s proper-
ties. Supposewewant tounderstand how atypical
Bus- Cbser ver object in a program handles the
updat e message. The user can initiatea search for
execution patternson various criteria, such asthe
involvement of a particular class, object, or mes-
sage name. In this case, the programmer would
specify the class Bus- Cbser ver and possibly the

— >

@

(b)

Figure 1: Simpleinteraction diagram (a) and its corresponding execution pattern (b)

hrAA

L
L

AA
(|

Qg

Figure 2: Smple execution pattern

updat e message. Then he can browse through
views, like Figure 3, depicting the ways different
Bus- Cbser ver objectshandled theupdat e mes-
sage.

In this example, an initial message updat e
is sent to the black Bus-Qobserver object
(ID=762). It responds by sending a message no-
ti fy_pendi ng to the purple ECl assivbdel ob-
ject (ID=761). Next, the Bus- Cbserver objects
sends a Phr ase message to the orange Annobus
object (ID=758). Finally, it sends another message
to the purple ECl assMbdel object (ID=761).

3.1 Collapsingand Expanding Subtrees

Now suppose the programmer wants to explore
the response of this updat e message to the Bus-
oser ver object (ID=762) in moredetail than Fig-

ure3provides. You can seethat thedepiction of the
Annobus object (ID=758) and the lower (i.e., later)
depiction of the ECl assMbdel object (ID=761)
have a beveled border, making them look raised
as opposed to flat. A raised rectangle indicates
that the object reacted to the stimulus by sending
one or more messages.

Clickingon araised object revealsthemessage(s)
that this object sent along with the object(s) that
received the message(s). After clicking on subse-
guent raised objects, we get aview likethe onein
Figure 4. (Notetheself-invocation of the ECl ass-
Model object.) All objects appear flat now, mean-
ing that no hidden messages remain. If we don’t
want to seeapart of theexecution, wecan collapse
part of theview by clicking on aflat object, thereby
hiding its responses. The object will now appear
beveled as before.

Thissimpletechnique of expanding and collaps-
ing is a helpful navigation tool. The programmer
can selectively drill down to any level of detail
without being flooded with information. More-
over, themetaphor isreminiscent of how encapsu-
lation works in object-oriented programs: details
of how an object performs a given task are hidden
unless sought explicitly.

3.2 Changing Context

A programmer islikely to ask two questionsat this
point: “Who sent the initial message updat e to
Bus- Cbserver 7627 and “What wasthe context
of that message? The system can take us up a
level to view the sender of this updat e message.

Ehtpsel) }_I
MosdefalennsPANORhEG

n]

Annobus

.EGI.IEI:IbEEﬂ.-'EF
.EE|E|55 frlcd el

Figure 3: Message updat e sent to Bus- Gbser ver object, and itsresponse

Annabus

Annaphiase

.Busl:lbseruer
.El:lass tiladel

Figure 4: Message updat e sent to Bus- Gbser ver object and itsfully expanded response

mmu.cmﬂ_)_|

snm.sma_)_|
imu—u
ummmn‘.e.umlym

Annobus

BusObserver

.Eclass el

ObsenserList Herator

Figure5: Revealing thesender of theupdat e mes-
sage: an Annobus object

The result is the view in Figure 5, which reveals
that Annobus object 758 sent theupdat e message
to Bus- Gbserver 762. Annobus 758 also sent
messages to several other objectsin responseto a
not i fy messageit received.

3.3 Filtered Expansion

What if the user wantsto see every messagea Bus-
Obser ver receives, filtering out asmany other in-
teractions as possible? That's done by expanding
only those nodes in the tree that lead to a Bus-
oser ver object, collapsing all subtrees not con-
taining Bus- Cbserver. We call this filtered ex-
pansion.

Filtered expansion can be useful for identifying
patterns that entail object instantiation. Object-
oriented programs do nothing if they don’t create

objects, and understanding how they createthem is
often more important than knowing when they do.
To track down such patterns, we can filter out all
messagesthat do not ultimately lead to a creating
(and destroying) message.

3.4 Repetition

Figure 5 shows considerable repetition in the exe-
cution pattern: a series of four patterns (initiated
by nor e, cur , updat e, and next) isrepeated six
times. Indeed, if we were to expand the black
and green colored objects, we would find that the
collapsed portions exhibit the same pattern, too.
While this example has a repetition factor of only
six, often repetition factors are much higher. Visu-
alizations of such repetitive sequences rarely pull
their weight: they take a lot of screen space with-
out adding much information.

The system can automatically detect repetitions
in patterns; the result is shown in Figure 6. The
sequencethat wasrepeated six timesnow appears
raised, indicating the repetition factor in itslower
left corner. This compact representation corre-
spondstoaloop in the source code.

Further, just as loops can be nested in source
code, the system detects and represents loops at
any level of nesting. If wenavigateup afew times,
we get aview that looks like Figure 7. The inner-
most frame indicates six repetitions, the middle
frame two, and the outermost frame 31. Obvi-
ously, this pattern would take a lot more space if
therepetitionswere expanded. Objectswithin the
raised frame may be expanded and collapsed as
before: note how some objectsin Figure 7 are flat
(expanded) and some are raised (collapsed).

This example shows a repetition of an iteration
sequence. Another important kind of repetition
is a recursion sequence. While iterative patterns
repeat in the vertical direction, recursion shows
up as repetition in the horizontal direction. We
can apply the same techniques to make recursion
more compact.

35 Zooming and Panning

The system supports zooming and panning,
two traditional perspective-changing mecha-
nisms. Figure 8 shows a zoomed-out view of the
highest level of the program. Although weare us-
ing the same pattern view, zooming serves other
purposesthanthosewe'vediscussed. At thismag-

Loffn 5 Obseresrlist Meratori
mmu.r.'zn:.’r_}_l

mﬁi‘uunslinau_)
.stu_}_|
undmuﬂuﬂauumlym

Annobus

.Busnbsemer
.Eclass frlcdel 5 X ?

ObsenserList_terator Mﬂ_} I

Lun'.l.mnﬂ_)_l
+I

Figure 6: Raised frameindicates repetition (6X) of the sequence inside

Process() 5 Jker] LY
rd

dnophiesell
.Readmnmn.hﬂnm_)_l
Lofif) > nofifa ; wm
mmu.m.nﬂ_,_l
mﬂ_)_l
ﬂlﬁ:&u—)_l
mmmmﬂym
- —
mmﬂ.mnﬂ_)_l
dnophiesell
Imetenonenst s
Eetlimestomon .
. zammmﬂ.mm

Figure 7: Three nested repetitions

nification level it's impossible to discern individ-
ual messages or objects. (In fact, the view omits
text and other minutiae when they are too small
to read.) What we get here is a general idea of
the different phases in the program. The domi-
nant colors indicate the classes that are prevalent
in each phase. Note also that the width of the pat-
tern reflects the stack depth at a particular phase
of the program.

3.6 Flattening and Underlaying

Sometimes even the stack depth gets overwhelm-
ing. In that case you might have to ignore certain
objects, classes, messages, or combinationsthereof.
You might decide to ignore library classes, for ex-
ample, or private methods. Filtered expansion
(Section 3.3) doesn’t help you here. A collapsed
node encapsulatesthe entireresponseto a message
send. Once collapsed, none of the details are visi-
ble.

The execution pattern view letsanode encapsu-
late a specific outgoing message by collapsing only
the receiver of the message. We call thisflattening
the receiver. Both the message and the receiver’s
identity are hidden; however, the fact that a re-
ceiver existsand itstype are still discernible.

Figure 9illustratesdifferent flattening combina-
tions. In each caseonly anindication of thereceiver
remains after flattening—just enough to reveal its
existence and color (class) but not its label (iden-
tity) or the arrowheaded line (message).

Another elision mechanism removes a node
from the graph even as it highlights the node’'s
encapsulation of its children. Figure 10 shows a
node underlaying the subtreeit encapsulates. The
messages sent by the underlaying node are hid-
den, thereby reducing visual clutter and saving
horizontal space.

Collapsing, flattening, and underlaying differ in
their elision properties. Collapsing achieves the
greatest elision and hence the greatest space sav-
ings, but it leaves no clues about the patterns it
elides. Flattening retains type information in ex-
change for only slightly more real estate, but it
hides object identity. The space savings are least
with underlaying, but it simplifies the view with
minimal information loss: only afew messagesare
hidden.

The execution pattern view lets you mix and
match these techniques to exploit their strengths.
For example, a node underlaying a flattened sub-

-

™"

i

Figure 8: Zoomed-out view of the entire execution

—{o]

HAHBH — (AL o
4, L
I

M T AT R
I '
I —o]

Figure 9: Schematic view of flattening

>]

o—[c]
=
o]

——|

AI:
o]

>]

A

Figure 10: Schematic view of underlaying

tree can be collapsed. In addition, auser can spec-
ify elisions for the system to use on a per-class
basis. (By default, the system automatically flat-
tens associative classes (Section 4.3.7), and it un-
derlays metaclasses in Smalltalk and standard li-
brary classesin C++.) Users can distinguish these
classes at a glance, making the diagrams easier to
assimilateand interpret.

3.7 Chartsas Subtrees

Collapsing and expanding subtrees lets the user
navigate the program execution step by step.
Clicking on raised rectangles one after the other
lets the user explore the execution in increasing
detail. But without a clear destination, the user
is unlikely to uncover specific behavior through
navigation alone.

Searching and filtering areinvaluablein that re-
spect, but wealso providevisual guidancethrough
several alternative renderings (or charts) for col-
lapsed subtrees. For example, a subtree may ap-
pear asaclasslegend (Figure11) showingthekinds
of objectsin that subtree. When thisisinsufficient,
the user can choose amore detailed chart showing
aclasscommunication graph (Figure 12). Not only
can he tell that a particular class of objects partic-
ipate in a given subtree, but he also can see the
classes with which they interact in the immediate
context.

Other chart metaphorsare possible, of course. A
meter showing accumulative CPU time, an inter-
or intra-class call matrix [9], and a histogram of
instances[9] are shown schematically in Figure 13.

Thesereveal subtreeinformationwith varying em-
phases and levels of detail. The pattern view ac-
commodates charts of any size without significant
rearrangement: conventional subtrees need only
be displaced downwards.

4 Generalization

So far we have described some of the interactive
features of the view that let the user expand, elide,
and extract execution information. Theseareall vi-
sual manipulation techniques; the view supports
nonvisual techniques as well. The view can be
searched in several ways, and it can detect, gener-
alize, and saverecurring execution patterns. These
capabilities work synergistically with the visual
manipulation and navigation techniques, giving
the user powerful tools for understanding pro-
gram execution.

4.1 Why bother detecting recurrences?

We've already seen one kind of recurrence in Sec-
tion 3.4, namely iteration. Execution patterns of
iterative behavior rarely justify the spacethey con-
sume. Combining them producessmaller, easier to
understand views—just compare Figures 5 and 6.
In most cases, Figure 5 provides littleinformation
of consequence over Figure 6, yet Figure 6 is con-
siderably easier to assimilate. Not only does it
reduce clutter; it makes the iteration explicit even
asit highlightsthe recurring computation.

The execution patterns that result from itera-
tion and recursion aren’t merely similar; they are

TimeHandle

Annobusiannotelkers Obsensablelir }-

AnnophraseIl) - IRt
<|7 59

759
Figure 11: Class legends
Point
15ize
Push Eutton: Shae
TimeHandle
Annobusianno talkers Obsersablelir) :_:-
Annophrasel)) Init10)
<759 T 59
Figure 12: Class communication graph
— A > B — A > C — A = [A
Bjm | .B
A/ =
A ABC Bc

Figure 13: Other chart metaphors

grouped together. Iterative execution patterns
stack vertically, whilerecursive execution patterns
chain horizontally. But recurrence isn’t limited to
iteration and recursion. Widely separated patterns
may be similar or identical as well (due to para-
meterized types, for example). The more widely
separated they are, themorelikely auser isto miss
the recurrence.

Automatic pattern detection is particularly im-
portant here. The system can attract our attention
tofar-flung yet similar patterns. Looking closely at
thezoomed-out view of Figure 8, for example, you
might noticerecurring splotches of color at distant
intervals. A bird’s-eye view makes it possible to
see these distant recurrences, but it doesn’t make
doing so easy or accurate.

Whenyou seean interesting pattern,you’ll prob-
ably want to find similar occurrences. Conversely,
if you've seen a pattern and never want to see it
again (because you're already familiar with it, or
it does not concern you), then you’d want to hide
its recurrences. The techniques we've described
for filtered expansion (Section 3.3) filter per class
or per method. Filtering per pattern requires auto-
matic recognition of pattern recurrences.

4.2 Why generalize?

Merely spotting recurrencesisof limited useunless
patterns are also generalized—that is, unless we
can identify inexact recurrences among patterns.
Searching for recurrences without generalization
is like searching text without regular expressions:
every match must be exact. Wefound that our first
prototype, which did not generalize, didn’t always
combine patternsaswethought it should, because
it didn’t recognize a repetition of similar but not
identical patterns. Often the differences among
such patternsareimmaterial; they are the samefor
the programmer’sintentsand purposes.

In fact, relatively few execution patterns in
a typical program will be absolutely identical—
involving the same objects, messages, and mes-
sage order. Hencestrict matching istoorestrictive.
Consider again the pattern shown in Figure 5, in
which thesequencenor e, cur ,updat e,and next
appears to recur six times. These recurrences are
not really identical, however, because each repe-
tition involves a different receiver of the updat e
message. Without generalization, these patterns
would not be identified as recurrent (as in Fig-
ure 6).

But generalization promisesmorethan just abet-
ter job of recognizing loops. Measuring the aver-
age performance of just one execution pattern, for
example, isprobably meaninglessfor optimization
purposes. Not much time or space will be saved
by optimizing one pattern. But the opportunities
for improving performance expand considerably
the more patterns recur. Generalization can iden-
tify potentially numerous recurrences that would
otherwise be missed.

4.3 When are patterns the same?

To make generalization effective, we studied the
situations in which two or more patterns might
be deemed equivalent. That led to algorithmsthat
could betuned for different pattern matching crite-
ria. Asaresult, theuser can modulate generaliza-
tion of patternsinto higher-order patterns, thereby
controlling the amount of information displayed.
Seemingly complicated interactions often reduce
to a handful of higher-order patterns, saving the
user the trouble of examining multiple, trivially
differentiated interactions.

Thefollowing are the generalization criteriawe
found to matter most to programmers: identity,
class identity, message structure, depth-limiting,
repetition, polymorphism, associativity, and com-
mutativity. A user can choose one or more criteria
with which to combine patterns automatically.

431 ldentity

The simplest definition of similarity considerstwo
execution patternsidentical if their topologies are
identical and if there is a perfect match for every
object and every message in both patterns. This
is easy to check, but it'stoo strict in general—few
patternsmatch under thisdefinition. Matching on
identity ismost useful for finding exact matches—
that is, when the programmer knows precisely
w hat to look for.

43.2 Classldentity

Often, the same pattern of messages affects differ-
ent setsof objects. If the same message gets sent to
the same class of object, the programmer will in-
terpret the sends as identical behavior. Therefore
it's useful to consider messages sent to different
objectsas part of the same pattern if therest of the
pattern is the same and the receiving objects are
of the same class. We emphasize the similarity of

such patterns visually by associating colors with
class types. Two patterns match with respect to
class identity if they have the same graph struc-
ture and identical coloring.

Consider the execution pattern associated with
instantiating an object in Smalltalk [11] by exe-
cuting Rect angul ar new. The pattern involves
the class object Rect angul ar (of the metaclass
Cl ass) and anewly allocated object of class Rec-
t angul ar. Distinct instantiations do not follow
identical patterns because each involves a particu-
lar instance of Rect angul ar . But tothe program-
mer, these instantiations are almost always iden-
tical conceptually. Thus it's useful to characterize
all of them with a more general pattern, which we
might call the“ Rectangular instantiation” pattern.

More precisely, if two patterns have isomor-
phicinvocation graphs(with messageslabeling the
edgesand typeslabeling the nodes), then they can
be considered instances of the same pattern. Most
programmers will consider such patterns similar
and will prefer to seethegeneralized pattern. Nev-
ertheless, when we present a generalized pattern,
we still allow the user to query the actual object
identity by browsing through different instances
of the pattern in the trace.

This technique is applied, for example, in de-
picting repetitions. If you look at Figure 6 closely
you will notice that the green and black objects
no longer show an object identifier. That’sbecause
they represent multipleinstances, asshownin Fig-
ure5.

4.3.3 Message Structure

In a weakly typed language like Smalltalk, the
type of the message receiver is not always known
a priori. While the Rectangular instantiation pat-
tern matchesinstantiation of different Rect angu-
| ar objects, instantiation of a Rect angul ar and
aCircl e would not be considered the same, even
though both invoke the same method newdefined
in the metaclass Cl ass. We can generalize the
matching by considering two patterns the sameif
their message structure is identical and thereis a
nontrivial® color substitution from one’s coloring
to the other. This resembles the notion of alterna-
tionsin regular expressions.

L An example of a“trivial” color substitution would be one
that maps all colors to black, which has the same effect as
ignoring color altogether.

434 Depth-Limiting

Encapsulation is a key concept in object-oriented
programming. It letsaprogrammer think in terms
of what an object does (i.e., itsinterface), not how it
doesit (itsimplementation). Encapsulation works
at multiple levels, especially in large, layered sys-
tems. Objectsin one layer communicate with ob-
jectsin the layer below them exclusively through
their interfaces.

Such layering provides another criterion for con-
trolling matches. If a program is designed with
good layering and encapsulation, patternsinvolv-
ing lower-level objects should be independent of
thoseinvolving higher-level objects. Thus we can
apply different matching criteriato patternsonthe
basis of message depth. A simple approach ig-
nores matchesto patternsbeyond agiven depth in
the tree.

Continuing our Smalltalk example, the Rectan-
gular instantiation pattern begins with a message
new received by the class object Rect angul ar .
Thisinvokesthemethod newdefined in Cl ass. In
response, Rect angul ar sendsitself new. toallo-
cateanew object, and then it forwardsthe message
newto the new object. That in turn invokes Rec-
t angul ar >>new. Object creation may therefore
span a deep execution graph during itsinitializa-
tion. By limiting the depth of the instantiation
pattern, we can match instantiations comprising
varied initialization patterns.

435 Repetition

Suppose one invocation of aloop executes it 1000
times, and a different invocation executes it only
999 times. (This behavior might be characteristic
of a search algorithm that looks for aword some-
where in a long string, for example.) Most pro-
grammers would consider the overall behavior of
the two invocations to be pretty similar. The loop
would appear as a repeated structure along the
vertical dimension (characteristic of iteration) in
the execution pattern view. An example of repeti-
tioninthehorizontal direction (recursion) could be
an instantiation of object lists, where each object in-
stantiatesits neighbor. A list of six objects should
reflect the same instantiation pattern as would a
list of eight objects.

The matching algorithm can ignore the num-
ber of repetitions in a lower-level pattern when
matching at a higher level. Hence if two patterns
contain invocations of the search algorithm on dif-

ferent words, they may be considered instances of
amore general pattern. This resemblesthe notion
of repetition in regular expressions.

4.3.6 Polymorphism

Consider aprogram that draws a series of shapes,
such as rectangles and circles. This can show up
in an execution pattern asan iteration of polymor-
phic dr aw messages to different Shape objects.
Rather than showing the classes of these objects,
we match all these subclasses according to their
common base class Shape.

Returning once more to the Smalltalk example,
Crcle new and Rect angul ar new generate
polymorphic instantiation patterns provided both
are subclasses of Shape. Of course, matching two
classes when their base class is the same does not
imply that we will match two different method
names. This suggests a more general definition
of polymorphic matching that will match methods
with overloaded namesaswell.

4.3.7 Associativity

What if the colors of two patterns match but their
structures don’t? Structural equivalence can take
into account properties such as associativity of ob-
jects or methods.

If a mathematical function ¢ is associative, then
nested invocations can be flattened by effectively
removing the inner sets of braces: ¢(z, ¢(y, 2)) =
o(p(z,y),2) = ¢(z,y,2). Mathematica [23], for
example, uses this property to get functionsinto a
standard form before matching them to patterns.

Nested lists are a good illustration:
Fl att en[{{C, {D}}, E}] flattensout the sublists
at all levels, resulting in {C, D, E}. In matching
execution patterns, we can treat an “associative”
class A in amanner analogous to the braces of the
nested list above. Consider the leftmost pattern in
Figure 14. Removing theinner callsof A would al-
low it to match therightmost patternin that figure,
wherein thefirst call to A callsC, D, and E directly.
Thiswould let you ignore all private method calls
in class A4, for example, when A’simplementation
of a public service is of no concern. Associativity
thus helps suppress successive self-invocations.

When execution patterns are matched with re-
spect to associativity of classes, method labels
are ignored. Conversely, we can choose to ig-
nore object type and/ or identity and match pat-
terns on associativity of methods exclusively. If a

method isassociative, then asequence of recursive
invocations—even on different objects—matchesa
single call.

Recall (Section 3.6) that the execution pattern
view let the user choose how a class is displayed
based on its attributes. A natural rendering (and
the system’sdefault) for expressing associativity is
flattening, as shown in Figure 14. Note how C, D,
and E are aligned vertically as a result of flatten-
ing A. The depth of the tree no longer represents
physica stack depth but rather a logical one—one
that ignores self-invocations. This example also
demonstrates how we carefully match the elision
techniqgue—flattening in this case—to the need,
namely association.

Figure 14 also reveals a difficulty. Had C and D
(or Dand E, or both) beenthesameclass, flattening
A would make them match based on repetition.

4.3.8 Commutativity

Commutativity meansthat a pattern wherein A4 is
called first and then B matches a pattern wherein
Biscalled first and then A. To avoid comparing
every combination of calls whenever a commuta-
tive match is desired, objects acquire their com-
mutative characteristics from their context: two
subtrees match on commutativity if they involve
instances of the same set of classes. This limits
the possible matchingsto complete subtrees. Thus
if our visualization displays subtrees as orderless
lists of classes as depicted in Figure 11, then two
subtrees that match based on commutativity will
be rendered identically.

5 Implementing Generalization

A tracing tool collects “method enter” and
“method leave” events from the target program
asitruns. Theresulting trace may drive visualiza-
tionsin either real-time or post-mortem.

From the information in the trace, the view
buildsatreestructurerepresenting the sequence of
messages and the objectsthat receive them. Every
nodein thetree structure may represent an execu-
tion pattern. To recognize, classify, and generalize
execution patterns, the view assigns a hash value
to every node in the tree structure. A set of tree
nodes reflecting a generalized pattern will have
identical hash values.

A recursivehash function computesahash value
for each subtreein asingle passover the structure.

— A 4, — A
—la}—=[p] Iy B -[o]

Figure 14: Using flattening to visualize association

The hash value of agiven subtreeisafunction of its
children’s hash values and one or more values in
the subtree’sroot. Which values are used depends
on the matching criterion. If wewant to match on
method names, thevaluesinclude the method and
class names. If we want to match on class names
only, then the method nameis omitted.

Similarly, if we want to match on a particular
object, then that object’s ID must be included. If
we're interested in knowing not the total number
of method callsbut just the methodsthat got called,
we can ignore nodes representing redundant calls
during recursion. If wedon’t care about the order
of calls, we can sort the nodes first.

Using a Universal; class of hash functions [6]
ensures that computing the hash valuerecursively
will produce a good distribution. The chance of
two different patterns producing the same hash
valueisno morethan thedepth of thetreedivided
by the maximum hash value. Most hash values
used in this computation are too large to use as
an index into a table—typically around 232, So
each hash value is masked down to a reasonable
number of bitsfor an index.

The masked hash value is registered in a pat-
tern dictionary, which contains all the hash val-
ues. Each entry in this dictionary corresponds
to a (perhaps trivially) generalized execution pat-
tern. When the system encounters a hash value
that'salready registered, itincrementsoneor more
fields associated with the dictionary entry for that
value—for example, a frequency field recording
the total number of incidences of this pattern.
Other cumulative information such as CPU time
may be stored to help further characterize and dif-
ferentiate the program’s execution patterns.

For good performance, our prototype checks
only that hash values are identical to establish
equivalence. This can create false positives, but
the distribution is good enough to makethisrare,
and performance is considerably improved over
more detailed comparisons.

Sometimes it is impractical to show method
names in graphs due to a lack of space, an un-
workably large number of methods, or both. We
use two tricks to mitigate this problem: zoom-
ing and “flyover.” It's possible to zoom the view
without scaling thefonts, providing moreroom for
method names at higher magnifications. We also
identify the method (and/ or object) directly under
the mouse cursor in separate status panels. When
spaceisat apremium, weomit method namesand
other labeling and let the user examine methods
selectively by “flying over” them with the mouse.

6 Related Work

Our work is a confluence of two research areas:
pattern matching and program visualization. Both
have long histories, but they have been indepen-
dent until recently.

Tree and string matching isone of themost thor-
oughly documented areas of research in computer
science [13, 21, 5, 19, 7, 4, 1]. The algorithms are
many, they are well-understood, and they have
been applied widely—in interpreters for nonpro-
cedural languages; optimizing compilers; alge-
braic computation; sorting, searching, and differ-
encing facilities of all types; and automatic the-
orem proving. We have tailored a few of these
algorithms to the needs of our domain. Pattern
extraction hasin fact been applied to programs be-
fore, but almost exclusively as a static analysis (as
in SCRUPLE [20], for example).

We can classify most object-oriented visual-
ization systems into two categories: macroscopic
and microscopic. Macroscopic systems collect and
present cumulative execution information, while
microscopic systems help you understand the se-
guence of message sends between objects. Our
earlier visualization work is characteristic of the
macroscopic type [9, 10]; the microscopic variety
ismorecommon [17, 12, 8, 2].

Thisdichotomy reflectshow hard it isto present
execution information effectively. Macroscopic
systemscondenseexecutioninformationto makeit
more manageable, much like traditional profiling
tools do—and they discard much information in
the process. Our original visualization system of-
fered several views of message sendsper class, the
overall activity of objects, and resource (CPU and
memory) consumption. These cumulative views
could benavigated to uncover moredetail—for ex-
ample, total message traffic at the method (rather
than class) level. Sill, this didn’t provide much
insight into how the program accomplishes a par-
ticular task, such asinitialization or screen update.
We were discarding execution information at the
object level in the name of scalability.

Microscopic systemsshow the sequence of mes-
sages between objects, potentially yielding deep
insights about small sections of the program. But
microscopic systems have the opposite problem
from their macroscopiccounterparts: too much de-
tail limits scalability. Showing individual objects
sending messagesto each other (typically using a
nodes-and-arcs motif) quickly gets unworkable as
the number of objectsincreases. Not only isthere
a multitude of indistinct objects, but their com-
munication is equally obscure. The messages and
messaging paths are lost in a jumble of lines and
bubbles. Any benefits of visualization are quickly
lost.

Only recently have people tried to narrow
the gulf between these extremes. Program Ex-
plorer [18] is a representative example; it imple-
ments Jacobson’s interaction diagrams nearly ver-
batim to visualize object interaction. The system
employs several filtering techniques to help man-
age large numbers of objects. But since every ob-
ject in the visualization occupies a column from
the top to the bottom of the view, scaling remains
a problem. Moreover, the interaction diagram be-
comes unwieldy when objects communicate with
othersthat were created much later, again because
rails appear in the order of object creation. Hence
when thereis communication betw een objects cre-
ated at distant intervals, the screen fills with long
horizontal lines spanning potentially many screen-
fuls. This problem is not easily solved. Rearrang-
ing the vertical lines that denote objects is highly
disruptive; grouping the objects reintroduces the
shortcomings of macroscopic systems.

Our execution pattern view offers many of the
advantages of both micro- and macroscopic ap-

proaches. It can provide cumulative or global exe-
cution information by collecting and generalizing
patterns throughout the execution trace. It also
lets the user inspect the program at any level of
detail with its navigation (elision and expansion)
features. It is not perfect—accurate pattern gener-
alization being the most challenging aspect—but
it does offer some new choices on the micro-to-
macroscopic visualization spectrum.

7 Conclusion

Execution patternsenhance object-oriented visual-
ization technology in three ways. First, they offer
an intuitive and scalable metaphor for object com-
munication. Our execution pattern view's struc-
ture is based on a natural notation, one that cap-
tures object interaction clearly and lends itself to
interactive manipulation. One can easily navigate
theexecution traceto survey theinteractionsof ob-
jects, classes, and methods. The pattern view dif-
fersfrom previousviewsin that it scales smoothly
to make even lengthy interactions of objectsintel-
ligible. Elision and expansion mechanisms make
the journey from the macroscopic to the micro-
scopic easy for users.

The second enhancement comes from general-
izing similar execution patterns. Generalization
letsusabstract away redundant behavior automat-
ically, even when the redundancy is imprecise or
non-periodic.

Third, execution patterns give us a foothold for
characterizing system complexity. While the de-
finitive complexity metric for execution patterns
is far from obvious, we have found even simple-
minded metrics (e.g,. pattern redundancy) useful
for pinpointing not just any program hotspotsbut
thosethat are most likely to have asimpleremedy.

We have implemented the execution pattern
view and integrated it into Ovation [9, 10], our re-
search prototype for object-oriented program vi-
sualization. The views in this paper were taken
from traces of Ovation itself. The system can
visualize any C++ or Java program using traces
generated from the VisualAge development en-
vironment [14]. Ovation also supports visualiza-
tion of Smalltalk programs. To generate Smalltalk
traces, we added instrumentation to the Little
Smalltalk [3] and VisualAge Smalltalk [15] envi-
ronments.

We have experimented with traces from mid-
size programs such as Ovation itself and truly

large systemssuch as Taligent. We found that the
view and mechanisms described here were help-
ful in uncovering unexpected behavior, in under-
standing unfamiliar code, and in improving per-
formance.

Currently we are making the pattern match-
ing facility more flexible. We are augmenting the
matching criteria with a pattern equivalent of reg-
ular expressions to provide a semiformal way to
express similarity. We are also exploring the po-
tential of visual grammars, especially their synergy
with the current visualizations. Finally, we plan to
report qualitative results of execution pattern vi-
sualization aswelearn through user feedback and
controlled experiments.

Acknowledgments

We are grateful to our colleague Doug Kimelman
for providing us a Smalltalk tracing facility by
instrumenting the VisualAge Smalltalk environ-
ment.

References

[1] A.V.Ahoand M. J Corasick. Efficient string
matching: An aid to bibliographic search.
Communications of the ACM, 18(6):333-340,
1975.

[2] H.Bocker and J Herczeg. Browsing through
program execution. In INTERACT '90, pages
991-996. Elsevier Sci. B.V., 1990.

[3] T. Budd. A LittleSmalltak. Addison-Wesley,
Reading, M assachusetts, 1987.

[4] J Burghardt. A tree pattern matching algo-
rithm with reasonable space requirements. In
Proc. 13th Cdloguium on Tress in Algebra and
Programming, volume 299 of LNCS, pages 1-
15, Mar 1988.

[5] J Cai, R. Paige, and R. Tarjan. More efficient
bottom-up tree pattern matching. In Procesd-
ings of CAAP, pages 72-86, 1990.

[6] L. J Carter and M. N. Wegman. Universal
classes of hash functions. J Comput. Syst. Sci.,
18:143-154, 1979.

[7] D. R. Chase. An improvement to bottom-up
tree pattern matching. In Conference Record

(8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

of the Fourteenth Annua ACM Symposium on
Principles of Programming Languages, pages
168-177, Munich, Germany, Jan. 1987.

W. Cunningham and K. Beck. A diagram
for object-oriented programs. In Procesdings
of thelst Annua Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 361-367, Portland, Oregon, USA,
Sept. 29-Oct. 2 1986. OOPSLA '86, ACM SIG-
PLAN Notices 21(11) Nov. 1986.

W. De Pauw, R. Helm, D. Kimelman, and
J Vlissides. Visualizing the behavior of object-
oriented systems. In Procesdings of the 9th
Annua Conferenceon Object-Oriented Program-
ming Systems, Languages, and Applications,
pages 326-337, Portland, Oregon, USA, Oct.
23-271994. OOPSLA '94, ACM SIGPLAN No-
tices 29(10) Oct. 1994.

W. De Pauw, D. Kimelman, and J. Vlissides.
Modeling object-oriented program execution.
In M. Tokoro and R. Pareschi, editors, Procesd-
ings of the 8th European Conference on Object-
Oriented Programming, number 821 in Lec-
ture Notes in Computer Science, pages 163—
182, Bologna, Italy, July 4-8 1994. ECOOP '94,
Springer Verlag.

A. J Goldberg and D. Robson. Smalltalk-80:
TheLanguageand ItsImplementation. Addison-
Wesley, Reading, MA, 1983.

V. Haarslev and R. Méller. A framework
for visualizing object-oriented systems. In
N. Meyrowitz, editor, Proceadings of the 5th
Annua Conferenceon Object-Oriented Program-
ming Systems, Languages, and Applications,
pages 237-244. OOPSLA/ ECOOP '90, ACM
SIGPLAN Notices 25(10) Oct. 1990, Oct. 21-25
1990.

C. M. Hoffmann and M. J O’'Donnell. Pat-
tern matching in trees. Journa of the ACM,
29(1):68-95, Jan. 1982.

IBM. Visuad AgeC++, http://www.softwarehost-
ing.ibm.com/ad/cset/csetos2/wpl-fam.html.

IBM. VisuaAge for Smalltalk, http://www.soft-
warehosting.ibm.com/software/ad/vastub.html.

I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engi-
negring: A UseCaseDriven Approach. Addison-
Wesley, Reading, M assachusetts, 1992.

[17]

[18]

[19]

[20]

(21]

[22]

(23]

M. F Kleyn and P. C. Gingrich. GraphTrace—
understanding object-oriented systemsusing
concurrently animated views. In N. Mey-
rowitz, editor, Procesdings of the 3rd An-
nua Conference on Object-Oriented Program-
ming Systems, Languages, and Applications,
pages 191-205, San Diego, California, Sept.
25-301988. OOPSLA '88,ACM SIGPLAN No-
tices 23(11) Oct. 1988.

D. B. Lange and Y. Nakamura. Interactive
visualization of design patterns can help in
framework understanding. In Proceedings of
the 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 342-357, Austin, Texas, USA, Oct.
1995. OOPSLA '95, ACM SIGPLAN Notices
30(10) Oct. 1995.

F. Luccio and L. Pagli. Approximate match-
ing for two families of trees. Information and
Computation, 123:111-120, 1995.

S. Paul. SCRUPLE: A reengineer’s tool for
source code search. In Proceadings of the 1992
IBM CAS Conference, pages 329-345, Toronto,
Ontario, Nov. 1992.

R. Ramesh. Nonlinear pattern matching in
trees. Journa of the ACM, 39(2):295-316, Apr.
1992.

R. E. Sweet. The Mesaprogramming environ-
ment. ACM SIGPLAN Natices, 20(7):216-229,
July 1985.

S. Wolfram. The Mathematica Version 3. Wol-
fram Mediaand Cambridge University Press,
third edition, 1996.

