
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Metis: A Thin-Client Application Framework

Deborra J. Zukowski, Apratim Purakayastha,
Ajay Mohindra, Murthy Devarakonda

IBM Thomas J. Watson Research Center
Yorktown Hts, NY



Metis: A Thin-Client Application Framework

Deborra J. Zukowski

Apratim Purakayastha

Ajay Mohindra

Murthy Devarakonda

IBM Thomas J. Watson Research Center,

P. O. Box 704, Yorktown Hts, NY 10598.

Abstract This paper introduces a thin-client pro-
gramming model and then presents an object-
oriented framework for developing applications using
the model. The programming model and the frame-
work have evolved from interactions with developers
and users of commercial applications. The key as-
pects of the thin-client programmingmodel are that
the client downloads application front ends from the
network; that these applications rely only on ser-
vices found on network servers; that the services
are bound as late as possible; and that the appli-
cations interact with each other within the con�nes
of a workspace. We implemented the framework us-
ing Java Beans and JDK 1.1, and developed several
sample applications using the framework.

1 Introduction

Fueled by Java
TM and other Internet technologies,

new re-engineering e�orts are underway to develop
commercial applications using a thin-client program-
ming model. In a thin-client programming model,
the software client would be substantially thinner

in that it contains only the graphical user interface
(GUI) and a small amount of essential application
logic. Most of the application logic runs as services
on various servers throughout the network. The
client software is written using Java so that it can
run on any client hardware. The thin-client model
is distinct from its hardware counterpart, known in
the industry as the Network Computer. However,
the thin-client programming model can be the force
that makes Network Computers widely deployed.

An application development paradigm becomes pop-
ular if appropriate tools are available that enable
developers to leverage its bene�ts easily. While

the Java programming language[1], Java Develop-
ment Kit (JDK) [2], Java component technology
[3], and remote access mechanisms [4, 5] enable
platform-independent programming, they are only
a set of building blocks. Previous work in object-
oriented systems suggests that frameworks [6] can
be a promising way of achieving widespread use and
reuse of software architecture. Therefore, there is a
need for a thin-client application framework that is
capable of bringing together all parts of an applica-
tion (the front-ends running on the client and the
services available on network servers) and support-
ing the whole with system services. Lacking such a
framework, developers may �nd it di�cult to boot-
strap themselves into the new paradigm, and they
might resort to an older and less portable method-
ology such as the Microsoft Windows environment.

Metis, the thin-client application framework pre-
sented in this paper, is a related, inter-operable set of
objects that enable robust application development
in the thin-client paradigm. The goal of Metis is to
create a fully server-managed environment for an ap-
plication, as opposed to the traditional client-server
approach. Towards this end, the framework advo-
cates and supports a thin-client programmingmodel
where an application consists of application front
ends (AFEs) and a collection of backend application-
speci�c services. AFEs rely solely on application-
speci�c services and system services provided by one
or more network servers. Thus, AFEs do not depend
on local operating system functions. AFEs request
services in an abstract manner without specifying
the physical location of a service provider. That is,
a requested service can be any one of the appropri-
ate service instances available in the network. AFEs



bind, on demand, to these network services. The
late binding of services allows server manageability,

exibility, and fault-tolerance.

Metis provides Java classes on the client side for
locating and binding to a service instance and
for switching to an alternate service instance in
case of a failure. In addition, Metis provides a
workspace-based client environment suggested by a
common commercial application characteristic: in-
teracting sub-applications. The Metis workspace
hosts and manages a set of sub-applications; each
sub-application is in the form of an AFE. The work-
space manager provides visual tools to customize the
workspace by adding or deleting AFEs. Workspace
con�guration information is stored on a server.

In the current implementation, the Metis workspace
provides the following object instances for use by the
AFEs, and the list may grow as additional objects
of common applicability are identi�ed:

� Service location and binding object;
� User authentication object;
� Controller objects for accessing and managing
system services such as printing and data stor-
age.

On the server side, the Metis framework depends on
support services including an authorization service
that ensures controlled access to the system, a code
service that maintains a secure repository of trusted
AFEs, and a directory service that presents a search-
able access to services. These support services must
be fault-tolerant and scalable besides using industry
standard protocols. Therefore, Metis uses a direc-
tory service supporting the Light-weight Directory
Access Protocol (LDAP) [7]. Such directory services
are likely to become common place and even more
robust in the future.

In addition to the above mentioned services, Metis
requires printing and data-storage services, and a
mechanism for launching and managing application-
speci�c services on various servers. The latter can be
accomplished, for example, using the servlets mech-
anism [2].

The rest of the paper is organized as follows. Sec-
tion 2 presents the Metis thin-client programming
model, sections 3 and 4 describe the Metis frame-
work and implementation respectively. Section 5
discusses the related work, and Section 6 concludes
the paper.

2 Thin-Client Programming Model

The key aspects of the Metis thin-client program-
ming model are that the client downloads AFEs
from the network; that these AFEs rely only on ser-
vices found on network servers; that the services are
bound as late as possible; and that AFEs interact
with each other within the con�nes of a workspace.
AFEs are securely installed and downloaded using
a code service. They are also made `thin' by imple-
menting most of the application logic as one or more
services. Late binding to these services provides:

� manageability, because services can be moved
across server machines without impacting
AFEs;

� 
exibility, because services can be selected
based on server load; and

� fault-tolerance, because a service can be ob-
tained from an alternate server.

The workspace is a container for AFEs, allowing for
interaction, as well as providing a shared environ-
ment. One important part of that environment is
the authorization information that can be read from
a smart card or provided as part of a logon process
from an authentication service. The authorization
information is used �rst to determine if a user is al-
lowed to use the system, and then to identify the
user's access rights to available AFEs. Afterwards,
this information can be used directly by the AFEs
to authenticate themselves to the service providers.

Figure 1 outlines the various building blocks of the
thin-client programming model. It shows three im-
portant parts { the client workspace, application-
speci�c services, and support services needed to pro-
vide full thin-client functionality.

2.1 Client Workspace

The client workspace provides a combination of func-
tions in Metis. It provides the AFE container func-
tion, some of the conventional desktop functions,
and a virtual environment of network services. These
will be discussed in detail in this section.

Visually, the client workspace has a customizable
layout that can be con�gured on a per-user basis
using con�guration information stored on a server.
When a user logs on, all framework objects are in-
stantiated.

UserPro�le: The user pro�le includes an autho-
rization object that contains user information in-
cluding name and time of logon. The authorization
object is passed with directory and code service re-



Application

Data Controller

Print Controller

User profile Authentication object

Virtual Environment Manager

(VEM)

Code Server

Access Control

Logic

Service Directory

Access Control

Logic

Authentication 

Server

to/from DataStore 
(with Access Control)

to Printer

Application Specific

        Services

Client Workspace Metis Support Services

Application-Specific Service Support

Directory  Client

Service Stub

Loader

1

2

3

AFE Loader/Launcher

Ends

Front

Figure 1: The schematic shows the three important parts of the thin-client application model: the client
workspace, support services, and application-speci�c services. The client workspace contains user pro�le
and authentication objects, objects to �nd and bind to services, and controllers for data and print. AFEs
execute in the context of the client workspace.

quests. These support services recognize the object
and restrict the user to only those AFEs and services
that allow access by the user. Note that as long as
services and AFEs are written to use the authoriza-
tion object, a single logon procedure is possible.

Application Front Ends: The AFEs are down-
loaded to the client from a code server either when
the workspace is initialized (if they were previ-
ously active) or when the user activates one on the
workspace. They can be removed from the work-
space as needed. Interactions among AFEs, such
as data exchange and event noti�cations, are im-
portant especially when the AFEs are implementing
sub-applications. Interactions are supported using
JavaBeans

TM technology.

Virtual Environment Manager: A virtual en-
vironment manager (VEM) is a fundamental client
object provided by Metis. It is the only entity with
which an AFE can request Metis services. Prior to
accepting an AFE's request, the VEM checks the
AFE's signature to ensure that it is allowed access
to the Metis system. As long as the AFE is rec-
ognized, the request is forwarded to one of the fol-
lowing VEM clients that act as delegates to Metis
support services.

1. Directory Client: The VEM has an inter-
nal directory client that communicates with the
Metis Directory Service upon request of a ser-
vice from an AFE or the workspace. The direc-
tory client and Metis Directory Service together



provide late binding of services. At this time,
services can be requested by name and service
attributes though clearly, a higher level proto-
col can be supported. The directory client re-
trieves service stubs. If the service stub is an
object, the directory client instantiates the ob-
ject and passes a reference back to the caller
AFE. If the service stub is a location, the di-
rectory client passes the location back to the
caller AFE. To reduce the possibility of creat-
ing a 
urry of messages, called a network storm,
that can be caused by a failure of a widely-
held service, the directory client retrieves and
caches more than one service stub, when multi-
ple providers of the same service are available.
Should an active service fail, an alternate stub is
fetched, instantiated if necessary, and returned
to the AFE.

2. Service Stub Loader: The VEM has an inter-
nal service stub loader that communicates with
the service providers to download any stub code
that the service might need for providing the
service. The service stub loader is only used if
the service stub returned by the directory needs
to be instantiated.

AFE Loader/Launcher: The Workspace has an
internal object that communicates with the Metis
Code Server to download code and launch AFEs.
The AFE Loader also checks for digital signatures,
uncompresses, and decrypts AFEs as needed. En-
abling a client to download code from a centrally
administered source makes its use attractive for in-
tranet environments where the software distribution
and maintenance on traditional PC clients is expen-
sive. The AFE Launcher runs the AFE when it is
selected by the user.

System Services: AFEs need a common set of
system services such as printing, storage, and er-
ror logging. While application services are private
to each AFE, Metis allows sharing of system ser-
vices. When an AFE requests a system service, an
associated controller object is returned. If a stub to
the requested service does not exist, the controller
creates one by accessing the Metis Directory Ser-
vice to indicate where the stub class is. The class
is downloaded, and instantiated. The controller, in
turn, manages the stub instances. For example, in
Metis a print controller is a single point of access
used by all to 1) create access to speci�c printers
and 2) send information to them. Most of the con-
trollers are provided to support the AFEs. However,
the data controller is also used by the Metis work-

space to access user con�guration.

2.2 Application-Speci�c Services

The Metis design imposes minimal requirements on
service developers. They are free to implement ser-
vices in any language. Communication between the
service and the client-resident service stub can use
any protocol, e.g., IIOP [5], RMI [4], or a private
protocol. The service providers may provide a client-
side stub with a well-known interface for access to its
services, or, may only provide a location for AFEs
to access services using a mutually understood pro-
tocol. The AFEs and service providers may use the
authorization object provided by Metis for authen-
tication purposes.

To better integrate services into the network, Metis
provides a tool that can be used to register the ser-
vices with the Metis Directory Service. For AFEs to
dynamically access services, they must be registered
with the directory. Registering a service makes it
immediately available. Removing a service from the
Metis Directory Service does not impact AFEs cur-
rently using the service. However, when an AFE de-
tects that the service is no longer available, i.e., the
service was removed from the server, it can fail-over
to another service registered in the Metis Directory
Service.

2.3 Metis Support Services

Metis has a number of server components perform-
ing distinct functions. While these services are not
fundamentally part of the Metis thin-client program-
ming model, they are needed to support that model.
For example, the model states that AFEs can bind
to any service available on the network that meets

its requirements. To have the capability to �nd all
such services, a directory service is used.

Metis Directory Service: The Metis Directory
Service accepts queries from the directory client and
sends results back to the client. It does not manage
the physical service directory. Instead, the Metis
Directory Service acts as a client to an LDAP [7]
directory server. LDAP is an emerging standard
in distributed directory services o�ering reliabil-
ity and scalability. Each service in the directory
has a unique service location and a number of at-
tribute/value pairs. Each service must at least have
a name attribute with a non-empty value. Services
can be looked up by a name and a search �lter
composed of a boolean expression of attribute/value
pairs. The Metis Directory Service can also perform
access control via LDAP with the authorization ob-



ject that the directory client supplies. The Metis
Directory Service allows service providers and code-
server administrators to add, modify, or delete ser-
vices in the directory.

The design of the Metis Directory Service simpli-
�es ports to other directory technologies supporting
both current and emerging network directory stan-
dards. It also can be easily enhanced to provide
intelligence to the service selection process. As men-
tioned earlier, AFEs must currently know the given
name of a service and important attributes as well as
their correct values. For example, if an AFE wanted
to access a color printer service, in the present design
it would have to ask for one by name, e.g., ColPrt2.
In the future, it might want to ask for a printing
service that is physically close, e.g., nearby & color.

Metis Code Server: The Metis Code Service is an
AFE repository. It provides central administration
of client code and lends itself to be a tuner for a
third-party code service that uses Marimba [8]. The
Metis Code Server can perform access control using
the authorization object. It can also digitally sign
AFEs to identify them as part of the Metis system.
Like the Metis Directory Service, the Metis Code
Service is independent of the actual code distribu-
tion mechanism.

Metis Authorization Service: The Metis au-
thorization process can either be completely self-
contained, e.g., all authorization information is
present on the user's smart card, or it can use a
standard authorization service such as Kerberos [9].
A reference implementation for the Metis Authoriza-
tion Service is being developed.

System Servers: Controllers provided by Metis act
as the contact points for actual system services avail-
able on the network. In particular, a data-store ser-
vice and printing service must be available on one
or (preferably) more servers, and must be registered
with the Metis Directory Service. These services re-
ceive requests from their associated controllers and
return responses.

3 Metis Framework

The thin-client programmingmodel described in the
previous section recommends a general software ar-
chitecture that allows applications to be written

exibly and to run within a manageable and fault-
tolerant environment. However, to build these ap-
plications from scratch would be very di�cult. The
Metis framework, shown in Figure 2, presents Java
classes and interfaces needed to make programming

these applications easier.

The Metis framework provides instances of the
key objects discussed in the programming model
including the workspace, user pro�le, AFE
loader/launcher, VEM, directory client, service-stub
loader, and controller objects. It also manages AFE
objects. In addition, interfaces are provided to as-
sist the application developer with the task of writ-
ing a thin-client application. These interfaces can
be grouped as follows:

� AFE integration into the workspace
� AFE access to services
� Metis System Services interfaces
� Metis Support Services interfaces

The following subsections discuss the interfaces
shown in Figure 2.

3.1 AFE Integration into the Workspace

One purpose of the workspace is to contain and
launch AFEs. A Metis user indicates which AFEs
the workspace contains by using a \ToolBox" that
provides the user with a list of all AFEs that he is
entitled to use. When the user selects an AFE to add
to the workspace, the Toolbox returns the location
of the AFE class. The workspace passes the location
to the code service client to download the class from
the Metis Code Server. The icon associated with
the class is accessed and added to the workspace
as a button. To launch the AFE, the user double
clicks the button. An AFE can be removed from the
workspace container by removing the button. If it is
active, then the AFE is destroyed. The workspace
con�guration is automatically saved when the user
logs out.

Another purpose of the workspace is to provide re-
sources to all AFEs. These resources include the
user pro�le object and the controllers. To access
these resources, the AFE is required to get a ref-
erence to the workspace object by implementing
AFEInterface. When activating an AFE, the work-
space calls the setWorkspace() method on the AFE,
passing a reference to the workspace object.

3.2 AFE Access to Services

To access services, AFEs use the interface called
the VEMInterface implemented by the workspace
object. The workspace object delegates the VEM-
Interface calls to its member VEM object, that truly
implements the VEMInterface.

To bind to a service, the AFE calls the request-



AFEInterface

java.lang.Object

VEM

DirectoryClient

Workspace

Workspace

setWorkspace()

LEGEND

class

interface

contains

extends

implements

getKey()

MetisSecurityInterface

putObject()

getObject()

DatStoreAPI

checkJob()

printJob()

PrintAPI

ServiceStubLoader

DirectoryInterface

lookUpService()

VEMInterface

requestService()

removeService()

recoverService()

ControllerInterface

getController()

CodeServiceInterface

getCode()

SampleAFE

java.applet.Applet

Authobj

UserProfile

DataController

PrintController

VEM

AFELoaderLauncher

Figure 2: The �gure shows important classes in Metis and their relationships. AFEs acquire a handle
to the Workspace by implementing the AFEInterface. Workspace implements the VEMInterface and the
ControllerInterface, and thus provides the necessary support for AFEs. Workspace uses delegation (to the
VEM object) in implementing the VEMInterface. The workspace object contains VEM, controller, and
UserPro�le objects, and manages AFE instances.



Service() method on its workspace reference. The
requestService() method takes the AFE instance,
the name of the service, and a preferred list of at-
tribute/value pairs as arguments. A Metis object,
called a ServiceInfo, is returned that contains an in-
stance of the service stub or, if desired, the service
location. All information needed to access the ser-
vice is now available to the AFE. Should a service
fail while being used, the AFE can re-request a new
service by calling the recoverService() method on the
workspace, passing a reference to itself and the ac-
tive ServiceInfo object.

3.3 Metis System Services Interfaces

Metis de�nes a generic Controller class for manag-
ing instances of objects that provide shared system
services to all AFEs on the workspace. The Con-
troller class provides a graphical user interface for
adding and removing system-service instances from
the workspace and for allowing the user to select
a speci�c instance to provide the service. Service-
speci�c controllers extend the Controller class and
implement service interfaces to provide the desired
service. The services are explicitly con�gured using
a GUI provided by the Controller. A user can also
setup a speci�c instance of the service provider as a
default for that service.

To access the system services, an AFE calls the get-
Controller() method. For example, should the AFE
need access to the data store, it calls the getCon-
troller() method, passing it the type of system ser-
vice required, e.g., `DATASTORE'. The VEM re-
turns the instance of the appropriate controller for
that service. The AFE then uses the instance when
it needs system services. The Controller in turn, del-
egates the request to the default service provider, or
allows the user to select a service provider from the
list of con�gured providers.

Metis also provides reference APIs for system ser-
vices such as printing and data storage. The printer
API allow an AFE to print, check the status or re-
move a print job. The data storage API allow an
AFE to store and retrieve �les from a data store.

3.4 Metis Support Services Interfaces

The Metis Support Services interfaces are not visi-
ble to the application programmer. They are hidden
within the VEM, controllers, and the user pro�le. At
this time, three key interfaces have been identi�ed.
The DirectoryInterface has been designed and imple-
mented. The CodeServiceInterface and the MetisSe-
curityInterface are being developed.

The directory client uses the DirectoryInterface to
avoid being tied to a single directory protocol. Any
physical directory service can transparently plug
into Metis simply by enhancing the Metis Directory
Server with updated implementations of the Direc-
toryInterface. The interface has been kept small,
containing only one method, to minimize the com-
plexity of directory access. When the VEM client
is requested to access the Metis Directory Server
(e.g., an AFE called the requestService() method),
the VEM calls the lookUpService() method on the
directory client. The authorization object, name,
and attributes passed to the VEM are passed as ar-
guments to the lookUpService() call.

4 Metis Implementation

This section gives the highlights of the implementa-
tion for both the Metis framework and the AFE suite
used to demonstrate it. The discussion of the Metis
framework implementation will be restricted to the
workspace implementation and the service access in-
terfaces, i.e., the VEMInterface and the DirectoryIn-
terface implementations, along with important util-
ity objects that are used. The discussion of the AFE
implementations will center on what speci�cally was
done to integrate the applications into the thin-client
programming model. Overall, the Metis framework
is about 7000 lines of Java code.

4.1 Metis Workspace

The reference Metis implementation supports Java
bean behavior, to allow a natural mechanism for
AFEs to interact within the workspace. The Sun
Microsystems reference implementation of the Bean-
Box is the basis of the Metis workspace. The Bean-
Box provides bean containment, and support for
property sheets, visual manipulation of beans, and
state storage.1

At workspace startup, a logon process veri�es the
user and creates the user pro�le object if the veri�-
cation is successful. This process includes showing a
dialog box for user name and password information
and checking it against an authorized user list. The
user is also allowed to use a \smart card"2 instead of
providing information directly to the logon dialog. If
the user passes veri�cation, the VEM and controller

1Unfortunately, some of these functions (e.g., event inter-
actions, property sheets, and pickling) had to be disabled to
get the base functions working since the version of JDK1.1
(Beta 3) was unstable. These functions will be reintegrated
as JDK1.1 gets more mature.

2A 
oppy drive was used as a place holder to smart card
hardware.



objects are instantiated.

In Metis, the workspace is populated with buttons,
each showing the icon of the AFE. Each button con-
tains the URL of an applet and an appletviewer
instance with a reference to the applet. The ap-
pletviewer has been modi�ed from the JDK imple-
mentation to separate the applet instantiation from
its execution. When a button is selected, the ap-
pletviewer initiates the applet execution. The initial
layout on the workspace is read from the user's con-
�guration �le, accessed from a data store.

The ToolBox has been completely rewritten from the
BeanBox implementation. In our implementation,
the ToolBox queries the directory server to get a list
of AFEs that the user can access. It allows a user to
add an AFE as a button to the workspace, and when
the button is added the AFE loader downloads the
AFE code from the Metis Code Server.

4.2 VEMInterface Implementation

An AFE requests a service by calling the requestSer-
vice() method on its workspace reference. The AFE
passes a reference to itself, the well-known name of
the service, and a special Filter object. Passing the
requester of the service enables the VEM to keep
state on each AFE. It also allows application de-
signers to, in e�ect, build a service providing ob-
ject that gets services on behalf of all AFEs in the
suite. The Filter object was designed to simplify
the attribute/value logic speci�cation. At this time,
only the \AND" function is provided, e.g., a service
must have \attr1=val1" & \attr2=val2". The Filter
class will be enhanced in the future to allow arbi-
trary logic speci�cations. An example code segment
showing service request is:

Filter filter = new Filter();

filter.addElement("height","low");

filter.addElement("speed","slow");

workspace.requestService(this,

"my_service", filter);

The requestService() implementation in the VEM
class does the following list of actions. Note that
not all exception paths are included in the list.

1. If a null �lter was passed in, the VEM
creates one. A special attribute/value pair
(`type'/`Service') is added. The type attribute
was added because the Metis Directory Service
contains both services and AFEs.

2. The VEM checks its internal state to see if the
AFE is a known service user.

3. If the AFE is not a known service user, its au-
thorization is checked to ensure that the AFE
has the credentials needed to use the Metis sys-
tem. If it passes the check, it is added to the
VEM internal state. Otherwise, the requestSer-
vice() throws an exception.

4. The VEM checks its internal state to see if the
AFE has previously asked for the same service.
If so, it returns the associated ServiceInfo ob-
ject.

5. The lookUpService() method is called on the
directory client and the returned list is wrapped
in a ServiceInfo object.

6. The VEM checks the validity of the ServiceInfo
object. The object will be invalid if the direc-
tory search could not �nd any services, e.g., if
the service was unknown or if the user did not
have access to the those registered. An excep-
tion is thrown if the ServiceInfo is invalid. A
timestamp is also added to the new ServiceInfo
object. The ServiceInfo object is then added
to the VEM internal state and returned to the
AFE.

The object class, ServiceInfo, returned by the re-
questService() method maintains the information re-
turned by the directory lookup. For the reference
implementation, the locations of the services are
stored within the ServiceInfo object as URLs. The
class provides accessor methods for AFEs to use.

The AFE uses the ServiceInfo object to get to the
service. During its use, the service could fail. The
AFE, when it detects such an occurrence, can re-
quest a replacement service by calling the recover-
Service() method on its workspace, passing it a ref-
erence to itself, and the ServiceInfo it used to get
the previous service. The workspace delegates the
request to its VEM object. The VEM class's recov-
erService() implementation does the following list of
actions. Again, not all exception paths are included.

1. Add the currently accessed service to the black-
listed services maintained in the ServiceInfo ob-
ject. This blacklist is simply a means of tracking
which of the services returned by the directory
lookup have been used, and failed.

2. See if there is another service known in the Ser-
viceInfo that has not yet been used. If so, setup



that service, make it the current service in the
ServiceInfo object, and return back the same
ServiceInfo object.

3. Otherwise, save the timestamp and the current
blacklist. The timestamp is important in later
steps. The blacklist is needed because more ser-
vices may be available than those returned dur-
ing the previous directory lookup(s). That is,
the blacklist transcends the partitioning done
by the lookup; It is used to capture the AFEs
access to ALL relevant services.

4. Request the directory client to do a new lookup,
passing it the blacklist, and wrapping the return
list in a new ServiceInfo object.

5. If the ServiceInfo object is valid, then there were
other services as yet unused by the AFE that
met its requirements. Copy back the timestamp
and the blacklist. Return the ServiceInfo object
to the AFE.

6. If the ServiceInfo is invalid one of two scenarios
could have happened. First, the current sweep
through all possible services may have �nished.
If so, a new sweep is started by clearing the
blacklist and creating a new timestamp. Sec-
ond, there may be no more services available,
even though they may still be registered with
the directory service. One way for this scenario
to happen is if there is a network partition that
does not a�ect access to the Metis Directory
Service but that interferes with access to the
servers that the services are running on. It is
detected by noting that the time required to
�nish a sweep is less than a pre-con�gured time
determined by the system administrator.

7. If no new services are available, VEM repeats
steps 4 through 6 one more time. If, even after
the retry, it cannot satisfy the request then it
displays an error message.

4.3 ControllerInterface Implementation

Controllers that implement the ControllerInterface
provide AFEs with access to system services. In the
current version, two types of controller classes are
available: PrintController and DataController. The
PrintController provides access to printers while the
DataController provides access to data stores. Note
that there is only one instance of the Controller for
each system service. The interface consists of the
method below.

public Object getController(int type) {

switch (type) {

case ControllerInterface.PRINTER:

return printController;

case ControllerInterface.DATASTORE:

return DataController;

default:

return null;

}

}

4.4 DirectoryInterface Implementation

The DirectoryInterface need only de�ne the follow-
ing method:

public SearchResult

lookUpService(Authobj authobj,

String name, String filter,

URL[] blacklist, int howmany,

String attrlist)

throws java.rmi.RemoteException;

The requestService() method of the VEMInterface
calls this method to access the LDAP directory. The
parameters passed to this method are:

authobj: The authentication object from the
workspace used for access control in the LDAP
directory.

name: The name of the service being looked for.

�lter: A �lter composed of attribute/value
pairs.

blacklist: A list of service locations that the
client speci�cally does not want returned even
if matched.

howmany: A count of matches to be returned.

attrlist: A list of attributes that are to be re-
turned with every match.

The method returns an object containing service
locations and attributes. The implementation of
the lookUpService() method on the Metis Direc-
tory Server is straightforward. The Metis Directory
Server acts an LDAP client. It constructs an LDAP
query, and submits the query to an LDAP server. If
desired, a random subset is chosen from the services
returned by the LDAP server and are returned to
the client. At the present time, the Metis Directory
Server uses an LDAP client API. The use of the Java



Naming and Directory Interface (JNDI) [2] is being
investigated.

The interface is simple but 
exible enough to be used
for various purposes. In addition to looking for ser-
vice names and services with speci�c attributes, it
can also return a list of all services (subject to access
control) when used as:

SearchResult s=lookUpService(authobj,

null, null, null,

ALL_POSSIBLE, null);

where the null values indicate no �ltering and sub-
setting is to be performed; or, can return the count of
all services with the name \LotusNotes" when used
as:

int i=lookUpService(authobj,

"LotusNotes", null, null,

ALL_POSSIBLE, null).getCount();

4.5 AFE Implementations

A number of applications were implemented to
demonstrate the usefulness of the framework, includ-
ing an application (called ViewGlass) that can ac-
cess Lotus Notes servers and a �nancial application
suite. In this section, the AFE/service partitions are
described as well as AFE use of the VEMInterface
to access its service for the ViewGlass application.

4.5.1 ViewGlass Implementation Notes

ViewGlass provides a user with the ability to access
her Notes mailbox (to send, read, and delete mes-
sages), and to read discussion databases. The func-
tional split for this application is that the AFE, writ-
ten in Java, would contain the GUI, rich text brows-
ing support, and a private communication layer that
directly accesses a proxy service. The service, writ-
ten in `C', would accept messages from the GUI, call
the appropriate NotesAPI functions, and return in-
formation back to the GUI. The service runs as a
daemon and contains client-speci�c state.

During the ViewGlass initialization process, the re-
questService() method is called to get the location
of a known Lotus Notes service. The location of the
service is then accessed and a socket connection is
made. This is shown in the code below.

try {

sinfo = workspace.requestService(

(Object)this,"LotusNotes",null);

} catch (Exception e) {

System.out.println(

"LotusNotes service not found");

destroy();

return;

}

URL url = sinfo.getURL();

server_name = url.getHost();

server_port = url.getPort();

Connection failures are noti�ed to the AFE via the
exception mechanism. The AFE calls the reset()
method to recover from failure.

public void reset() {

try {

sinfo = workspace.recoverService(

(Object)this,sinfo);

} catch (Exception e) {

System.out.println(

"LotusNotes service not recovered");

proxy_recv = null;

destroy();

return;

}

URL url = sinfo.getURL();

String server_name = url.getHost();

int server_port = url.getPort();

// ... make the connection

wk_sp_frame.recover();

}

Note that the reset() method ends with a call to the
recover() method. Since some client state is main-
tained in the service, full recovery is not possible
from just the client. However, the state completely
contained in the client is recovered.

5 Related Work

During the last year, many players in the computer
industry have focused attention on alternatives to
the traditional client. One of the design points for
most of the e�orts is to ensure that the users con-
tinue to have access to all resources that they are
accustomed to. One well-investigated system is to
provide access to applications using a browser. In
this system, the application runs mostly on well-
known servers. HTML pages, some enhanced with
small Java applets, are sent back to the client. The
browser relies on an underlying operating system
to get access to �les and printers. The browser
metaphor works well if there are only a few applica-
tions that do not interact much and if each applica-
tion has a restricted amount of user interaction.



The browser system is one possible choice for en-
abling the use of Network Computers as the hard-
ware client for thin-client applications. However, for
environments where an application is composed of
many sub-applications that may interchange data
frequently, the browser metaphor is not su�cient.
The browser metaphor also lacks the integration of
network-based access to system resources. Other al-
ternatives like de�ning Network Computer desktops
or webtops (i.e., the Lotus DeskTop and HotJava
Views) have been investigated as extensions to the
browser metaphor. Also, many vendors are vying
to provide environments for Network Computers to
access system resources commonly found on tradi-
tional desktops, like printing and �le access [10].

During the Metis e�ort, we emphasized enabling
commercial applications for Network Computers.
Many of these business applications are currently
single-system based. Moving to a network (1) in-
troduces unreliability not often found with stand-
alone systems, (2) raises security concerns, and (3)
distributes resources like printers and �les. While
the browsers and Network Computer desktops could
handle the latter two issues in future implementa-
tions, they are not meant to address the �rst. Both
the Lotus DeskTop and HotJava Views could be in-
tegrated with Metis by replacing the workspace used
in the reference implementation, to address all three
issues today. Metis would then also provide a frame-
work for developers to implement robust applica-
tions for browsers and Network Computer desktops.

The previous paragraphs focused on browsers and
desktops that provide access to complex applications
for Network Computers. However, Metis provides a
distributed application technology as well as a user
system. There are several distributed application
technologies for traditional clients and servers that
some developers could use for Network Computers.
These technologies include CORBA and design pat-
terns.

CORBA [11, 12, 13], is a distributed applica-
tion technology speci�ed by OMG that emphasizes
reusable services and facilities. These speci�cations
allow applications to interact with other applica-
tion modules independent of the machine architec-
ture and language the modules have been written
in. OMG's Trading service speci�cation allows an
application to query and identify service names that
match a particular criteria. These service names are
then bound to a particular object as per the Nam-
ing service speci�cation. The combination of the two
services can be used by applications under CORBA

to achieve late binding of a name to an object. Metis
provides similar late binding of service providers to
an AFE using an LDAP directory server. AFEs can
specify service properties through the Filter class.
Results of the match are available to the AFEs for
binding and use.

Design patterns [14, 15] have been proposed as a
technique for application development that also em-
phasize reuse of software architectures, including
those for distributed systems. Design patterns al-
low software developers to write their applications
using high-level models that are independent of lan-
guage and machine architecture. The patterns focus
on key components and their interaction to facili-
tate reuse of software. Design patterns have been
used for writing large scale commercial applications.
The Metis workspace has been written as a design
pattern for desktops on thin clients. The workspace
provides components for locating and binding to ser-
vices, access to system services, and security compo-
nents. The intent is to allow application developers
to use the workspace pattern in developing applica-
tion suites for thin clients.

6 Conclusions

In this paper we presented a thin-client program-
mingmodel where clients download application front
ends that have a presentation layer and some ap-
plication logic, but the bulk of an application is
executed as services on remote servers. We de-
scribed the design and implementation of a frame-
work, called Metis, that enables the thin-client pro-
gramming model, and showed how it can be used in
sample applications.

The design of the Metis framework has an open ar-
chitecture composed of abstract interfaces for var-
ious services so that any implementation can be
plugged in. We implemented both client- and server-
side infrastructure and realized a full end-to-end
framework that provides support for:

� �nding and binding services
� access control and authentication
� system services
� code services

Metis support for late binding makes it possible to
write reliable, 
exible, and manageable thin-client
applications. Moreover, the Metis framework pro-
vides true platform independence beyond the lan-
guage level by virtualizing all system resources as
services. A demonstration of the reference Metis
implementation that includes the Metis classes and



API documentation is available at the IBM alpha-
Works web site (http://www.alphaworks.ibm.com)
as TCAF.

During the course of this work we identi�ed sev-
eral areas of further research which may be bene-
�cial to the thin-client programming model. These
include support for application-speci�c recovery, re-
mote event mechanisms,and improved security and
communications. We plan to explore the above ar-
eas as we enhance Metis to fully realize the bene�ts
of the thin-client programming model.

References

[1] Ken Arnold and James Gosling. The Java Pro-

gramming Language. Addison Wesley, 1996.

[2] Javasoft. Javasoft Home Page. URL = http:
//www. javasoft.com/, 1997.

[3] Javasoft. JavaBeans Component APIs for

Java. URL = http://splash.javasoft.com/
beans, 1997.

[4] Ann Wollrath, Roger Riggs, and Jim Waldo.
A Distributed Object Model for the Java Sys-
tem. In Proceedings of the USENIX Conference

on Object-oriented technologies, pages 219{231,
1996.

[5] OMG. CORBA/IIOP. URL = http://www.
omg.org/corba/corbaiiop.htm, 1997.

[6] R. Johnson and B. Foote. Designing Reusable
Classes. Journal of Object-Oriented Program-

ming, 1(5):22{35, June/July 1988.

[7] Timothy Howes and Mark Smith. A Scalable
Deployable Directory Service for the Internet.
In Proceedings of INET 95, 1995.

[8] Marimba, Inc. Marimba. URL = http:// www.
marimba.com/, 1997.

[9] B. Cli�ord Neuman and Theodore Ts'o. Ker-
beros: An Authentication Service for Computer
Networks. IEEE Communications Magazine,
32(9):33{38, September 1994.

[10] Novera EPIC Release 1.0. Novera Epic Develop-
er's Guide. Technical Report EPICDEV-100-1,
Novera Software, Inc, November 1996.

[11] OMG. The Common Object Request Broker:

Architecture and Speci�cation. OMG, 1995.

[12] OMG. CORBAservices: Common Object Ser-

vices Speci�cation. OMG, 1995.

[13] OMG. CORBAfacilities: Common Facilities

Architecture. OMG, 1995.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design Patterns { Elements of Reusable

Object-Oriented Software. Addison Wesley,
1995.

[15] Douglas C. Schmidt. Using Design Patterns to
Develop Reusable Object-Oriented Communi-
cation Software. Communications of the ACM,
38(10):65{74, October 1995.


