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Abstract

The Java language provides a promising so-
lution to the design of safe programs, with
an application spectrum ranging from Web
services to operating system components.
The well-known tradeo� of Java's portabil-
ity is the ine�ciency of its basic execution
model, which relies on the interpretation of
an object-based virtual machine. Many so-
lutions have been proposed to overcome this
problem, such as just-in-time (JIT) and o�-
line bytecode compilers. However, most com-
pilers trade e�ciency for either portability or
the ability to dynamically load bytecode.

In this paper, we present an approach
which reconciles portability and e�ciency,
and preserves the ability to dynamically load
bytecode. We have designed and imple-
mented an e�cient environment for the ex-
ecution of Java programs, named Harissa1.
Harissa permits the mixing of compiled and
interpreted methods. Harissa's compiler
translates Java bytecode to C, incorporat-
ing aggressive optimizations such as virtual-
method call optimization based on the Class

1This research was supported in part by the Bri-

tany Council.

Hierarchy Analysis. To evaluate the perfor-
mance of Harissa, we have conducted an ex-
tensive experimental study aimed at compar-
ing the various existing alternatives to exe-
cute Java programs. The C code produced
by Harissa's compiler is more e�cient than
all other alternative ways of executing Java
programs (that were available to us): it is up
to 140 times faster than the JDK interpreter,
up to 13 times faster than the Softway Guava
JIT, and 30% faster than the Toba bytecode
to C compiler.
Keywords: Java, C, Bytecode, O�-line com-
pilers, JIT compilers

1 Introduction

The Java language [1, 2] provides a promising
solution to the design of safe programs, with
an application spectrum ranging from Web
services to operating system components [3].
The success of Java is partly due to the fact
that its basic execution model relies on the
interpretation of an object-based virtual ma-
chine which is highly portable. However, the
well-known tradeo� of Java's portability is
the ine�ciency of interpretation. Several so-
lutions have been proposed to overcome this



problem, such as just-in-time (JIT) [4, 5, 6, 7]
and o�-line [8, 9] bytecode compilers.

Just-in-time systems compile code to na-
tive form at runtime on demand. This ap-
proach avoids the overhead of compiling un-
used code, and eliminates the gap between
compile time and execution time. Compiling
during program execution, however, inhibits
aggressive optimizations because compilation
must only incur a small overhead. This is
particularly important in the case of modern
RISC processors for which complex analyses
are required to achieve the best result. More-
over, the quality of the generated code crit-
ically relies on knowledge about the speci�c
features of the target processor. Therefore,
such compilers are not platform independent
and requires a large amount of work to be
ported.

O�-line compilers does not impose critical
bounds on compilation time; optimizing anal-
yses can be run as needed. They can also
be platform independent, if they generate as
output an intermediate language. However,
in the context of Java, many applications dy-
namically load classes (i.e., bytecode) at run-
time that limits applicability of pure o�-line
compilers.

In this paper, we present an approach that
reconciles portability and e�ciency, and pre-
serves the ability to dynamically load byte-
code. We have designed and implemented
an e�cient environment for the execution of
Java programs, named Harissa2. Harissa pro-
vides a bytecode compiler and an interpreter
integrated in the runtime library. Thus, a
compiled program is still able to dynam-
ically load classes and to interpret them.
Harissa's compiler translates Java bytecode
to C and furthermore incorporates aggressive
optimizations.

To evaluate Harissa, we have conducted an
extensive experimental study aimed at com-
paring the various existing alternatives to ex-

2Harissa was previously named Salsa.

ecute Java programs. The contributions of
our work are as follows.

� The C code produced by Harissa's com-
piler is more e�cient than all other alter-
native ways of executing Java programs
(that were available to us): on the Caf-
feine Micro-benchmarks [10], it is 5 to
140 times faster than JDK 1.0.2 inter-
preter, 2 to 13 times faster than the Soft-
way Guava JIT [6] and on average 20%
faster than the Microsoft JIT compiler.
On real application benchmarks, such as
the Javac compiler, it is 5 times faster
than the JDK interpreter and 30% faster
than the Toba [9] bytecode to C com-
piler.

� The compiler statically evaluates the
stack by abstractly interpreting the byte-
code and replaces stack management
with variables. This optimization sup-
presses one of the main sources of ine�-
ciency in Java.

� The compilation process does virtual-
method call optimization based on the
class hierarchy analysis (CHA) [11, 12].
On the set of programs used in our
benchmarks, this analysis permit the re-
placement of up to 40% of virtual meth-
ods calls by simple procedure calls.

� In contrast to existing o�-line compilers,
the runtime system of Harissa includes
an interpreter that preserves the abil-
ity of an application to dynamically load
bytecode.

� Finally, we discuss the bene�ts and lim-
itations of o�-line compilation vs JIT
compilation. Based on our experimen-
tal study, we show that, for frequently
used programs, it is always more advan-
tageous to use o�-line compilation rather
than JIT compilation.



The paper is organized as follows: Section
2 describes existing approaches for optimiz-
ing the execution of Java programs. Sec-
tion 3 presents Harissa. Section 4 presents
related work in class hierarchy analysis and
existing bytecode compilers. Section 5 ana-
lyzes the performance of the code generated
by Harissa's compiler on micro-benchmarks
and real benchmarks, such as the Javac com-
piler and the Javadoc documentation genera-
tor. Section 6 concludes by describing future
work and comparing JIT and o�-line compil-
ers.

2 How to Improve Java

Execution

Several strategies have been presented to op-
timize execution of Java programs. They
range from aggressive compilation schemes
to speci�c hardware processors. Advantages
and drawbacks of these schemes are the fol-
lowing:

� Native Java compilers - Compiling
source code into native code is the most
common way of compiling a language.
But this approach is contrary to the
Java philosophy since all the advan-
tages of having an platform independent
language disappear. For instance, the
source code of Java programs is often not
available. However, this strategy may be
useful to obtain very e�cient target bina-
ries for very speci�c environments. This
approach is implemented in the Vortex
project [12].

� Bytecode compilers - Unlike native
compiler, bytecode compilers take byte-
code as input. One of the interesting
characteristics of Java is that the byte-
code contains nearly the same amount of
information as the source itself. It has
even been shown by Ford [13] and by

Vliet [14] that it is possible to decom-
pile the bytecode of a program and pro-
duce a Java source program similar to
the original one. This is mostly due to
the fact that the signature of the classes
in the program must be kept in the byte-
code to allow classes to be dynamically
loaded at runtime. The only signi�cant
loss of information in the bytecode con-
cerns structured loops, which are trans-
formed into goto statements. Hence, a
bytecode compiler can easily be as e�-
cient as a native compiler. There are
two types of bytecode compilers: those
that generate native code and those that
generate an intermediate language, such
as C. The advantages of these two ap-
proaches are discussed below.

� Just In Time compilers - A just-in-
time compiler di�ers from the a \classi-
cal" o�-line compiler, in that the code
is compiled only when needed at exe-
cution time. The di�erence in perfor-
mance between those approaches is the
time that can be spent during execu-
tion to perform optimizations. Vendors
such as Borland [4], Symantec [5], Soft-
way [6], and others have already released
JIT compilers. The basic scheme is to
compile a method when it is called for
the �rst time, pausing execution while
doing so. Re�nement to this approach
has been recently described by Plezbert
and Cytron [7]. They mix interpretation
and JIT compilation by taking advan-
tage of multi-threading (on a multipro-
cessor)

� Java Processors - A Java processor is
a dedicated processor that implements
the Java Virtual machine and directly
executes the Java bytecode. Such pro-
cessor can be used as the main proces-
sor in a dedicated Java machine (work-
stations, embedded systems) or as a co-
processor in a workstation. Sun and



other manufacturers are already design-
ing such chips. However, their compet-
itiveness has not yet been proved [15].
Since such processors are not currently
available, in this paper we only consider
approaches that do not require speci�c
hardware.

When is an O�-line Bytecode Compiler

the Right Choice?

Although Java was originally designed for
programming embedded applications, it has
recently spread to many domains. Therefore,
to choose the appropriate execution scheme
many factors, such as the frequency of reuse
of the same code or the heterogeneity level of
the set of target machines, have to be con-
sidered. The most frequent situations are the
following:

� Small software components inte-

grated in Web services - These com-
ponents can undergo frequent changes
from one load to another by the same
client. As a result, in this context, a
JIT compiler is the most appropriate so-
lution.

� Platform-independent large soft-

ware - Such programs may or may not
be related to Web services. Java technol-
ogy is used because of its machine inde-
pendence. The Java tools themselves are
examples of such programs (e.g., com-
piler, disassembler, . . . ). These pro-
grams change infrequently and are often
used by many users. Therefore, keeping
a local, optimized version of the compiled
code is advantageous. By comparison to
a JIT, that always get the latest version
of the software, this approaches requires
the management of local optimized ver-
sions. This can be implemented by a re-
vision control system that compiles and
installs new software versions as they are

released, in a automatic and transparent
way.

� Platform-dedicated software - Ex-
amples are operating system compo-
nents [3] and embedded applications.
For these applications, the Java tech-
nology provides safety. These applica-
tions are characterized by very infre-
quent changes. Hence, it is advantageous
to optimize the �nal code for the target
system.

Finally, it should be noticed that even some
statically con�gured tools, such as Javadoc,
dynamically choose and load classes at exe-
cution time. For these applications, it is thus
worthwhile to combine the binary code with
an interpreter or a JIT compiler to allow dy-
namic (over)loading of new features.

Choosing C as a Target Output

As was already stated, there are two types of
o�-line bytecode compilers: native and non-
native. Native compilers produce code that is
directly executable, while non-native compil-
ers produce code in an intermediate language.

Designing a native compiler has two advan-
tages: (i) the generated binary code may be
more e�cient than that resulting from code
written in an intermediate language and (ii)
compilation is fast since it does not require
successive tools. However, this choice has
drawbacks: (i) it is not portable and (ii)
generation of e�cient code requires extensive
knowledge of the features of the target pro-
cessor.

Non-native compilers are more 
exible and
also achieve competitive performance. In par-
ticular, choosing C as an intermediate lan-
guage permits the reuse of extensive compiler
technology that has already been developed.
In fact,

� There are very good C compilers.



� C compilers are available for all ma-
chines. The developer does not have to
address subtle di�erences that exist be-
tween a processor and its successors.

� The development process is safer,
quicker, and in some ways simpler
since optimizations can be done on the
generated C code.

� It is possible to reuse existing, aggres-
sive optimizers such as Suif [16] or par-
tial evaluators for C such as C-mix [17]
or Tempo [18, 19].

These reasons led us to develop a non-native
o�-line compiler for Java bytecode that gen-
erates C programs.

3 Overview of Harissa

Harissa is a Java environment that includes
a compiler from Java bytecode to C and a
Java Virtual Machine integrated in a runtime
library. While Harissa is aimed at applica-
tions that are statically con�gured, such as
the Javac compiler, it is also designed to allow
code to be dynamically loaded in an already
compiled application. This novel feature is
introduced by integrating a bytecode inter-
preter into the runtime library. Data struc-
tures between the Java compiled code and the
interpreter are compatible and data allocated
by the interpreter do not con
ict with data
allocated by the compiled code. Harissa is
written in C and is designed with the pri-
mary goal of providing e�cient and 
exible
execution of Java applications.
Because Harissa is written in C and

its compiler generates C code, it is eas-
ily portable. In fact, current ports include
SunOS, Solaris, Linux, and Dec Alpha. This
allows us to compare the e�ects of optimiza-
tions on di�erent architectures.
Because Harissa's compiler produces C pro-

grams, various compilers and optimizers can

be used. As a result, contrary to JIT compil-
ers, the generated C code does not have to be
heavily optimized, since �nal optimizations
are made by the C compiler. Harissa only
concentrates on ine�ciencies due to the ar-
chitecture of the Java Virtual Machine: stack
and method calls. To do so, several trans-
formations are introduced. First, the stack
is statically evaluated away. This analysis
is described in section 3.3. Second, virtual
method calls are transformed, when possi-
ble, into static (i.e., procedure) calls. For
these virtual calls, type checks are also elim-
inated. This is described in section 3.4. Fi-
nally, Harissa implements several other opti-
mizations for object-oriented languages such
as method inlining, which are not presented.
The following sections describe the system

in more detail.

3.1 Compiling a Java Program

Harissa's compiler takes as input a class C

containing a main method and generates as
output a makefile, a main.c �le, and a
C source �le for each class used in the pro-
gram3(see Figure 1). To determine the set
of classes that depend on the initial class, an
analysis is recursively performed on the byte-
code to search for all the classes referenced
by the main class. Because of the simplicity
of this phase, it is omitted in the paper.
Compilation of a method's bytecode into C

is organized as follows:

� Step 1 - The bytecode of the method is
transformed into an intermediate byte-
code representation (IBR). The purpose
of this phase is to obtain a simpler and
more regular representation. The IBR

3The system also supports separate compilation

to reduce compilation time and the size of generated

code. To do so, the compiler checks if a target class

exits in the library before translating it. Since sep-

arate compilation con
icts with class hierarchy anal-

ysis and method call optimization, it has not been

used in our benchmarks.
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Figure 1: Set of generated C �les given an initial class name C

simpli�es the implementation of the sub-
sequent passes by making explicit more
detailed information than in the original
Java bytecode.

� Step 2 - An analysis determines the value
of the stack pointer before each instruc-
tion and the signature type for instruc-
tions that handle the stack. The result of
this analysis allow the stack to be stati-
cally evaluated.

� Step 3 - A class hierarchy analysis is per-
formed as described in [11]. This anal-
ysis permits the implementation of fur-
ther optimizations on the intermediate
representation. These optimization in-
clude: method inlining, transformation
of virtual method calls into static (non-
virtual) ones, and elimination of type
checking. Method inlining and conver-
sion of virtual method calls into non-
virtual ones are iterated until no oppor-
tunities for further optimizations remain.

� Step 4 - This phase aims at eliminating
bound checking. Checks are eliminated
when it is possible to merge references to
the same index as well as when the array
bound and the index can be statically

determined.4

� Step 5 - The �nal step generates the C
code from the IBR. This phase is divided
into three phases: (i) generation of goto
labels and exception handling, (ii) decla-
ration of local variables for the method,
and (iii) translation of each intermediate
bytecode instruction into C.

The following sections present our interme-
diate bytecode representation and the main
algorithms that have an impact on perfor-
mance. That is, the calculation of the
stack pointer and the types of the stack in-
structions, and the transformation of virtual
method calls into static procedure calls.

3.2 Intermediate Bytecode Rep-

resentation

Our intermediate bytecode representation
has a simpler and more regular syntax, and
contains more detailed information than the
original Java bytecode. The main di�erence
is that, in the IBR, the types of the arguments
of the instructions that handle the stack are

4This phase is not yet implemented in the current

version of Harissa, although the code is conceived to

include this optimization.



made explicit. This information simpli�es
subsequent passes.

The data structures de�ning the IBR are
shown in Figure 2. A method contains in-
formation about its body and the exceptions
that it can raise. Associated with each ex-
ception is the program counter of its handler.
The CodeInfo structure has all the informa-
tion about each instruction. Fields in sig

and out sig represent the instruction's input
and output signature, respectively. This ex-
plicit representation of signature types eases
the subsequent analyses. The analysis de-
scribed in the next section infers the type of
instructions whose type is not explicit in the
Java bytecode.

3.3 Calculation of the Stack

Pointer and Instruction Sig-

nature Types

This analysis statically evaluates the stack
by calculating the value of the stack pointer
and the types of all the bytecode instruc-
tions. Most Java bytecode instructions have
their type already associated with them, ex-
cept those that control the stack. Because
of the constraints enforced by the Java byte-
code veri�er [20], at each program point a
stack instruction can have only one type sig-
nature. For example, when the instruction
dup is used to duplicate an integer, it can
not be used at the same program point to
duplicate a double. Thus, we can straightfor-
wardly infer the types of the stack operations.

The analysis of a method via
CalculateSPandTypes abstractly inter-
prets each instruction with respect to a
Stack structure (see Figure 2), which con-
tains the current stack pointer value and
the type of its items. AnalyseCode and
AnalyseExc interpret the method's body
and the code fragments corresponding to the
method's exception handlers, respectively.
The stack is initially empty. Abstract

interpretation of an instruction can modify
the contents of the stack. If an instruction I

branches to more than one program point,
then each branch is interpreted with respect
to the stack resulting from abstractly inter-
preting I. Note that for the speci�c case of
the jump to subroutine instruction (jsr),
used to implement exceptions, the stack is
assumed to be empty before and after the
execution of the instruction. The jsr and
ret instructions are considered to have the
same control 
ow as a test instruction and
the return instruction, respectively. This
approximation is not correct in terms of
control 
ow information but gives correct
results for stack type information.
Interpretation of an instruction is as fol-

lows: if the type of the instruction is not ex-
plicit in the Java bytecode, then the analy-
sis has to infer it. The input signature is
inferred from the types on the stack (func-
tion infer in sig). The output signature
is inferred by abstractly interpreting the in-
struction with respect to this input signature
(function infer out sig). Once the signa-
ture is known, then the instruction is ab-
stractly interpreted with respect to the stack
and its signature, with functions pop sig and
push sig. The former checks for type con-
sistency between the input signature and the
type of the items it pops o� the stack and the
latter pushes the instruction's output signa-
ture onto the stack.

3.4 Transforming Virtual Calls

into Non-Virtual Calls

Object-oriented programming encourages
both code factoring and di�erential program-
ming. This results in smaller procedures and
more procedure calls. Procedure calls in an
object-oriented language are dynamically
dispatched. There are many analyses tar-
geted at optimizing dynamically dispatched
message sends. The most common are:
intra-procedural static class analysis [11],



struct MethodInfo {

CodeInfo *code;

ExceptionInfo *einfo;

}

struct CodeInfo {

char *in_sig, *out_sig;

char opcode;

list *instr_branch;

}

structure Stack =

int sp;

char *stack_type;

}

struct ExceptionInfo {

ExceptionInfo *next;

int handler_pc;

}

AnalyseCode (CodeInfo *code, int pc,

Stack stk)

{

CodeInfo instr;

instr = get_instr (code, pc);

if (visited? instr)

return;

else

stk = AnalyseInstr (instr, stk);

for each instr_branch do

{

stk' = stk;

if (instr->opcode == JSR)

stk' = empty_stk;

AnalyseCode (code, branch, stk');

}

}

CalculateSPandTypes (MethodInfo *minfo) {

AnalyseCode (minfo->code, 0, empty_stk);

AnalyseExc (minfo, minfo->code);

}

AnalyseInstr (CodeInfo instr, Stack stk) {

char *in_sig, *out_sig;

in_sig = instr->in_sig;

out_sig = instr->out_sig;

if (unknown_sig? instr)

{

in_sig = infer_in_sig (stk);

out_sig = infer_out_sig (in_sig);

}

stk = pop_sig (in_sig, stk);

stk = push_sig (out_sig, stk);

return stk;

}

AnalyseExc (MethodInfo *minfo, CodeInfo *code) {

ExceptionInfo *einfo;

Stack stk;

einfo = minfo->einfo;

while (einfo != NULL)

{

stk = push_item (REF, empty_stk);

AnalyseInstr (code, einfo->handler_pc, stk);

einfo = einfo->next;

}

}

Figure 2: Inferring instruction's type



class hierarchy analysis (CHA) [11], and
pro�le-guided class receiver prediction [21].
In Harissa, we have opted to integrate a class
hierarchy analysis to address this problem.
A class hierarchy analysis is a static anal-

ysis that determines a program's complete
class inheritance graph (CIG) and the set of
methods de�ned in each class. With the CIG,
a speci�c set of possible classes, given that
the receiver is a subclass of the class C, can
be statically inferred and messages sent to
the method's receiver can be optimized. Fur-
ther, if there are no overriding methods in
subclasses, a message sent to the method's
receiver can be replaced with a direct pro-
cedure call and possibly inlined. Inlining of
a method can trigger other opportunities for
converting dynamic method calls into static
ones. Hence, these two transformations are
iterated.

3.5 Generation of C Code

The generation of the C code for a method is
done in three phases. First, the goto labels
and exception handlers are generated. Then,
the local variables of a method are declared
and, �nally, each IBR instruction is trans-
lated to C.
Generation of goto labels and declaration

of local variables are simple and are not dis-
cussed here. The treatment of exceptions
needs some explanation. To ensure porta-
bility, Harissa handles exceptions in a stack-
based manner. In the Java bytecode, each
exception has a region associated to it. As
described in the bytecode veri�er documen-
tation [20], di�erent exception regions are ei-
ther disjoint or nested, but cannot overlap.
When translating the intermediate bytecode
to C, entering of an exception region pushes
the corresponding exception handler onto the
stack, and exit of an exception region pops
the exception handler o� the stack. If a jump
or goto instruction leaves an exception region
or a set of nested exception regions, the cor-

responding exception handlers are popped o�
the stack prior to the jump or goto instruc-
tion.
The actual generation of the C code from

the intermediate bytecode representation is
straightforward. Figure 3-a shows some Java
source code for a method computing a power
function, Figure 3-b shows the corresponding
Java bytecode. Figure 3-c shows the trans-
lated C code. In the C code, the stack has
been statically evaluated: variable names pre-
�xed with \s" are variables that handle the
stack, while variable names pre�xed with \v"
are user-de�ned variables. An assignment to
an s-variable corresponds to pushing a value
on the stack. A use of an s-variable corre-
sponds to popping a value o� the stack. The
s-variables can be eliminated either by a C
compiler or by a C optimizer such as Suif [16].
Figure 3-d shows the optimized code gener-
ated by Suif.

3.6 Method Call Implementa-

tions

The implementation of a class includes a vec-
tor of function pointers that store the ad-
dresses of procedure implementing methods.
Initialisation of this vector is performed when
intantiating the class either at compile-time,
by the compiler, or at run-time when dynam-
ically loading byte-code. After initialisation,
a pointer may refer either to a C procedure
(i.e., method) of the compiled class, to a C
procedure of an inherited compiled class, to
a C native function of the run-time library,
or to a stubc procedure. A stubc procedure
interfaces compiled code with the interpreter:
it allocates a stack for the interpreter, pushes
arguments, calls the intrepreter's entry-point,
and pops the result. Stubc procedures are
generated by the compiler for each method
that might be dynamically overloaded.
Interface calls are implemented using of

a two dimensional sparse vector of function
pointers for each class. The �rst dimension



static int P(int a,int b)

{

int i,r;

r=1;

for(i=0;i<b;i++) r=r*a;

return r;

}

a: Java source code

Method int P(int,int)

0 iconst_1

1 istore_3

2 iconst_0

3 istore_2

4 goto 14

7 iload_3

8 iload_0

9 imul

10 istore_3

11 iinc 2 1

14 iload_2

15 iload_1

16 if_icmplt 7

19 iload_3

20 ireturn

b: Java ByteCode

TINT P(TINT vi0,TINT vi1)

{

TINT si1,si0;

TINT vi2,vi3;

si0=1;

vi3=si0;

si0=0;

vi2=si0;

goto L14;

L7:

si0=vi3;

si1=vi0;

si0*=si1;

vi3=si0;

vi2+=1;

L14:

si0=vi2;

si1=vi1;

if (si0<si1) goto L7;

si0=vi3;

return si0;

}

c: C generated code

extern int P(int vi0, int vi1)

{

int vi2;

int vi3;

vi3 = 1;

vi2 = 0;

goto L14;

L7:

vi3 = vi3 * vi0;

vi2 = vi2 + 1;

L14:

if (vi2 < vi1)

goto L7;

return vi3;

}

d: Suif optimized code

Figure 3: Compilation of the power method



equals to the total number of interfaces ref-
erenced by the program, each interface being
assigned an index at compile time. When a
class is instantiated, if the class implements
a given interface, the corresponding second
dimension of the vector is allocated and is
initialized with C procedures.

3.7 Current Status and Limita-

tions of Harissa

Harissa is provided in two versions, with and
without garbage collection (GC). This allows
us to estimate the in
uence of GC on its per-
formance. The GC version is based on the
Boehm-Demers-Weiser conservative garbage
collector [22]. The non-GC version relies on
malloc, which leads to an increase in swap-
ping and I/O since objects are never deallo-
cated.

At the current time, threads are not imple-
mented. Nevertheless, the system is already
conceived to include them and the generated
C code contains the necessary calls to syn-
chronization functions. Implementation of
synchronization optimizes the single thread
case. As long as no additional threads are
created, synchronization calls point to a null
procedure. Additional threads creation is de-
tected by guards [23] that then plug-in the
multi-thread synchronization function.

For e�ciency, Harissa produces a target C
that relies on some gcc extensions. This is
not a major limitation since gcc is available
on many platforms. We plan to eliminate this
dependency, in order to be able to test vendor
C compilers. Finally, there are some native
libraries, such as the graphic library, that are
not yet supported.

4 Related Work

Other O�-line Compilers

To our knowledge, there are two other com-
pilers from bytecode to C: J2C and Toba5.
Harissa is the only environment that inte-
grates an interpreter. J2C performs no opti-
mizations when generating C code (i.e., stack
evaluation or method call optimization). It
is still immature and fails for many applica-
tions. Toba does a stack analysis similar to
the one included in Harissa and generates C
code from which transient variables have been
eliminated. However, Toba does not do any
method call optimizations. Currently, Toba
is slightly more mature than Harissa since it
supports threads.

Previous Work in CHA

Compilers for other object-oriented languages
have included a CHA to optimize dynamically
dispatched calls. In [24], Vortex, an optimiz-
ing compiler for object-oriented languages is
presented. Vortex di�ers from Harissa in the
following ways. It is a language-independent
compiler with front-ends for Java, Cecil,
C++, and Modula-3. Vortex takes as input
source code. This approach limits its domain
of use in the case of Java since source code
is often not available. The optimizations it
performs range from standard ones, such as
constant propagation, dead code elimination,
and method inlining, to optimizations speci�c
to object-oriented languages, such as intra-
procedural static class analysis, class hierar-
chy analysis [11], and pro�le-guided class re-
ceiver prediction [21]. The Vortex compiler
has been used to study the impact of each
of these optimizations alone and in combina-
tion. In [11], it is shown that class hierarchy
analysis and pro�le-guided class receiver pre-
diction are complementary transformations:

5Harissa and Toba have been developed indepen-

dently at the same time.



the combination of the two produces a com-
pounding e�ect.

Fernandez presents an optimizing linker
that does class hierarchy analysis of Modula-3
programs [25]. Optimizations and code gen-
eration are done at link-time. The problem
with this approach is that further optimiza-
tions that can result from transforming vir-
tual calls into static procedure calls cannot be
done by the compiler. An optimizing source-
to-source C++ compiler is presented in [26].
The number of virtual method calls are re-
duced by performing both type feedback [27]
and class hierarchy analysis. Method inlining
is done as well. The optimized program is
compiled by a native host C++ compiler.

5 Benchmarks

This section analyzes the performance gain
that can be expected from an aggressive byte-
code compiler. We compare execution of
Harissa compiled programs with several in-
dustrial JIT compilers, the J2C and Toba
bytecode compilers, and the JDK 1.0.2 inter-
preter.

Performance of JIT compilers is by nature
sensitive to the target architecture since they
compile into native code. To get more repre-
sentative results, we have run the benchmarks
on two di�erent platforms: a Dell 100Mhz
Pentium PC and a Sun 85 Mhz Sparcstation
5 (SS5). On the Pentium, Harissa is com-
pared with the JIT compilers embedded in
Netscape 3.0 and Microsoft Internet Explorer
3.0. On the Sparc, Harissa is compared with
the Guava JIT compiler from Softway [6].

Three di�erent kinds of benchmarks are
presented: micro-benchmarks, which are used
to evaluate the e�ciency of JIT and o�-
line compilers for pure computations (with-
out I/O); large benchmarks, which are used
to compare JIT and o�-line compilers for
real applications that include I/O; and �nally,
benchmarks to evaluate the e�ectiveness of

the CHA for Java applications.

Summary of results

Figure 4 summarizes our results. The micro-
benchmark tests are made using Ca�eine
2.5 [10]. Each Ca�eine micro-benchmark
tests one feature of the Java machine. On
these tests, Harissa generated code is on av-
erage 50 times faster than JDK, 5 times faster
than Softway Guava JIT [6] and 50% faster
than Microsoft JIT.

On real application benchmarks, results de-
pend mainly on how much pure computation
the program does. On applications domi-
nated by I/O, such as JHLZip and JHLUnzip,
there is not much di�erence between o�-line
and JIT compilers; JDK is only 1.5 slower
that Harissa. On applications such as Javac
and Javadoc which rely on a mixed set of com-
putation and I/O, Harissa is 5 times faster
than JDK, 3 times faster than Softway Guava
JIT and 30% faster than the Toba [9] byte-
code compiler. On pure computation pro-
grams, such as an Othello game [28], Harissa
is 2.6 times faster than Guava, 1.7 faster than
Toba and 44 times faster than JDK. Toba re-
sults are missing when it was not possible to
run it successfully, for reasons described be-
low.

Methodology

Harissa has been con�gured so that during
compilation, only methods with a size smaller
than 100 instructions are inlined. The C code
generated by Harissa and J2C has been com-
piled using gcc with the \-O2" option. The
gcc version used is 2.7.2 on the Sun and 2.7.0
on the PC/Linux. Toba-generated C code
has been compiled using Sun's commercial C
compiler with the \-xO4" option.
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Figure 4: Execution time normalized to Harissa

5.1 Ca�eine Micro-benchmarks

The Ca�eine micro-benchmarks produce
numbers, in Ca�eineMarks (higher is faster),
that allow one to compare heterogeneous
architectures and Java implementations di-
rectly. Among them, we consider those that
are related to the compilation scheme and
that do not rely on graphic computations or
the garbage collector:

� Sieve calculates prime numbers under
2048;

� String2 tests string concatenation and
search;

� Logic executes loops containing decision
trees;

� Loops runs several types of integer loops;

� Floating Point (i.e., FP) simulates the
calculations needed to rotate 50 three di-
mensional points by 90 degrees, 5 degrees
at a time;

� Method tests how fast the VM performs
method calls.

General comments about the results

The results of our evaluation are presented in
Table 1 for the SS5 and in Table 2 for the PC.
The two rightmost columns present Harissa's
results with some further optimizations that
are described below. In general, the PC is
faster than the Sun. On the SS5, JDK and
the interpreter embedded in Netscape achieve
similar results, while the code generated by
Harissa is 5 to 140 times faster than the
JDK interpreter. On the PC, Microsoft's JIT
compiler seems to be slightly faster than the
Netscape's one, except for the tests String2

and FP, which are twice as fast under Mi-
crosoft.

JIT compilers vs Harissa

The relevance of the micro-benchmarks when
comparing JIT compilers and Harissa is to



JDK Netscape Guava Harissa Harissa+Suif Harissa+Loop

Cm Cm Cm Cm ratio Cm ratio Cm ratio

Interp. Interp. JIT Guava Guava Guava

Loop 82 101 1657 11479 6.92 10170 6.13 - -

Logic 95 116 968 9910 10.23 12935 13.36 - -

String2 95 105 480 1390 2.57 1390 2.57 - -

Method 82 75 102 460 4.5 460 4.5 - -

Sieve 95 100 440 514 1.16 910 2.06 955 2.17

FP 83 92 544 970 1.78 1170 2.15 1295 2.38

Table 1: Comparison between JIT and Harissa on a 85Mhz SS5 (in Ca�eineMarks, Cm)

measure the e�ciency of the compilation
scheme. Since the tests loop on the same
code, JIT compilers do not loose time dur-
ing execution waiting for the compilation of
a method. Furthermore, with the exception
of theMethod test, no method calls are made.
Harissa's inter-procedural optimizations such
as CHA and method inlining thus have very
little in
uence on the results. Therefore,
these tests permit to evaluate precisely the
quality of the code that is produced by JIT
compilers.

Our measurements show that the code gen-
erated by Harissa'compiler is basically always
faster than JIT compilers. Nevertheless, the
results are architecture dependent. On the
SS5, Harissa is 1.5 (for Sieve) to 13 (for logic)
times faster than the JIT Guava. On the
PC, results are more balanced and the dif-
ference in performance between Harissa and
Microsoft is smaller than between Harissa and
Guava, with a maximum of 2.5 times faster.
For two tests, Sieve and FP, Harissa is actu-
ally twice as slow.

Improving the performance of the code

generated by Harissa

To understand the reasons for the ine�ciency
of the code generated by Harissa for the tests
Sieve and FP, we have analyzed the assembly
code generated by gcc. For the Sieve test,
it appears that the critical loop is about 20
instructions long. That does not leave much

room for possible optimizations.

We have identi�ed two reasons for ine�-
ciency, which are in fact due to limitations
of the gcc optimizer. As expected, transient
stack variables are eliminated by gcc. But
further optimizations resulting from variable
and constant propagation are not triggered.
For instance, in the Sieve test, stack vari-
able elimination transforms a \divide by i"
into a \divide by 2" that could then be ef-
�ciently transformed into a shift instruction.
To evaluate the impact of this problem, we
have used the Suif C optimizer [16] to sys-
tematically eliminate these variables using a
combination of the \constant/variable prop-
agation" and \dead code elimination" passes.
The e�ect on the PC is dramatic for the FP
and Sieve tests, nearly doubling the perfor-
mance improvement. On the other tests there
is little or no in
uence, which shows that this
situation is not so frequent. On the Sparc,
the in
uence of stack variable elimination is
lower than on the PC. This is because the
relative cost of processor instructions di�ers
signi�cantly between the Sparc and the Pen-
tium.

A second source of ine�ciency is the fact
that loops are compiled into bytecode goto
instructions. Therefore, gcc does not have all
the necessary information to make the best
choice regarding caching of temporary results
in registers. To determine the consequences
of this problem, we have reconstructed loops
by hand for the Sieve and FP benchmarks.



Microsoft Netscape Harissa Harissa+Suif Harissa+loop

Win 95 Win 95 Linux Linux Linux
Cm Cm ratio Cm ratio Cm ratio Cm ratio

Msoft Msoft Msoft Msoft

Loop 7087 7128 1.005 18000 2.53 18000 2.53 - -

Logic 2032 1909 0.93 1930 0.94 2445 1.20 - -

String2 1430 320 0.22 1833 1.28 1850 1.29 - -

Method 2413 2028 0.84 4740 1.96 4790 1.98 - -

Sieve 1370 1320 0.96 730 0.53 1420 1.03 1512 1.1

FP 2420 1306 0.53 1400 0.57 2350 0.97 2600 1.07

Table 2: Comparison between JIT and Harissa on a 100Mhz PC-Pentium (in Ca�eineMarks,

Cm)

On both the Sparc and the PC, there is a
performance increase between 5% to 10%. Fi-
nally, it should be noted that after performing
the optimizations, Harissa's compiled code is
about 10% faster than Microsoft's JIT.

5.2 Real-Sized Benchmarks

These benchmarks are used to estimate the
e�ciency of Harissa in a real environment.
To do so, we have evaluated the execution
time of a set of programs that either do pure
computations, substantial I/O, or a mixture
of both. Pure computation programs are rep-
resented by an Othello game [28]. File han-
dling applications (e.g., I/O) are represented
by JHLZip and JHLUnzip, which insert and
extract �le from an archive without com-
pression. Mixed computation-I/O programs
are represented by two Sun's JDK tools, the
Javac compiler and the javadoc documenta-
tion generator, and by Kawa, a scheme inter-
preter [29].

The benchmarks were made in a single-user
environment to avoid external interferences.
It was not possible to run benchmarks for JIT
compilers embedded in the Web browsers for
security protection reasons. Performance of
tools such Javac and javadoc depends signif-
icantly on their input. To get representative
results, we ran them on a set of large Java
programs that are available on the net:

� Jas generates bytecode from a scheme
based scripting language [30].

� Jax generates tokenizers from regular ex-
pressions [30].

� Jell generates a recursive descent parser
from from a LL(1) grammar [30].

� Kawa is a scheme interpreter [29].

Comparisons are performed on real exe-
cution time, which includes waiting for the
end of I/O, since this corresponds to what
the user observes. For completeness, we have
also detailed user and system CPU time spent
during the execution to measure the e�ciency
of pure computations.

Detailed Javac results

Detailed timing of Javac execution are pre-
sented in Table 3. In comparison with JDK,
Harissa achieves the highest speedup which
is greater than 5. Toba is on average 3.3
times faster than JDK, J2C is about 2.5 times
faster, and Guava is 1.5 times faster. These
results clearly show the bene�ts of the various
optimizations performed in Harissa.
We have also compared Harissa's GC ver-

sion with the non-GC one. The GC version
version is 20% faster than the non-GC one.
This due to the fact that never reclaiming
objects leads to an increase in swapping, I/O,



JDK 1.0.2 Guava 1.0 beta 4 J2C

real user sys real user sys ratio real user sys ratio

cpu cpu cpu cpu cpu cpu

mn sec. sec. mn sec. sec. JDK mn sec. sec. JDK

Jax 0:44 37.2 2.5 0:29 16.5 4 1.5 0:16 7.7 2.6 2.7

Jell 0:47 41 2.5 0:30 18.4 4.4 1.5 0:17 8.9 3.5 2.7

Jas 1:45 69.5 9.0 0:59 37 9 1.8 0:41 15.6 7.6 2.5

Kawa 3:50 134 24 1:59 58 19 1.9 1:41 32 17 2.3

Toba Harissa/no GC Harissa/GC
real user sys ratio real user sys ratio real user sys ratio

cpu cpu cpu cpu cpu cpu

mn sec. sec. JDK mn sec. sec. JDK mn sec. sec. JDK

Jax 0:12 8 2 3.6 0:10 4.7 2.7 4.4 0:09 4 1.9 4.9

Jell 0:14 9.2 2.9 3.3 0:10 5.2 3 4.7 0:09 4.7 1.9 5.2

Jas 0:35 15 5 3 0:25 8.8 5.5 4.2 0:20 7.2 3.8 5.2

Kawa 1:10 28.7 10.5 3.2 0:58 17.6 11.5 3.9 0:44 14.5 8 5.2

Table 3: Compilation time of several Java programs

and in the amount of address space that has
to be allocated by the system to the process.

Detailed Javadoc results

Javadoc is representative of tools that rely on
the dynamic capabilities provided by Java to
load bytecode during execution. Therefore,
it is not possible to execute it with a pure
bytecode to C compiler such as Toba or J2C.
Although dynamically loaded classes are in-
terpreted, most of the execution time is spent
in the compiled code. Thus, Harissa's gener-
ated code is on average 5 times faster than
JDK and 3 times faster than Guava.

Other Benchmarks

JHLZip and JHLUnzip tools [31] insert and
extract �les from an archive. The tested ver-
sion of these tools does not include compres-
sion and therefore, execution is dominated
by I/Os. Our tests have been done using
the JDK 1.0.2 classes.zip �le as input. As
it could be expected, compilers (o�-line and
JIT) achieve the same level of performance.
Finally, JDK is only 1.5 slower than the com-
pilers.

The tested implementation of Othello
game [28] allocates a �nite time to the com-
puter player to solve one move. The depth of
the search depends on the speed of the gen-
erated code. We give the time spent to solve
up to depth 5 on the �rst move.

5.3 CHA Evaluation

The impact of the class hierarchy analysis has
been studied for many object-oriented lan-
guages, including Java. It has been shown
that this analysis can improve program per-
formance between 23% to 89% [11]. Table
6 presents the impact of CHA for the pro-
grams we have benchmarked. It shows that
our CHA implementation allows between 14%
to 40% of the virtual call points to be trans-
formed into procedure calls.

6 Conclusion and Future

Work

The contribution of this work is threefold:
(i) we have designed a hybrid environment
for Java, named Harissa, that permit mixing



JDK 1.0.2 Guava 1.0 beta 4 Harissa

real user sys real user sys ratio real user sys ratio

cpu cpu cpu cpu cpu cpu

mn sec. sec. mn sec. sec. JDK mn sec. sec. JDK

Jax 0:30 24 2.3 0:27 19 3.2 1.1 0:05 2.6 0.9 6

Jell 0:37 30 3 0:28 21 3.3 1.3 0:08 3.7 1 4.6

Jas 0:53 28 3.5 0:26 15 3.8 2 0:11 3.4 1.6 4.8

Kawa 0:34 27 2.7 0:20 14 3.5 1.7 0:06 3.5 0.9 5.6

(codegen)

Table 4: Javadoc execution time

JDK 1.0.2 Guava 1.0 beta 4

real user sys real user sys ratio

cpu cpu cpu cpu

mn sec. sec. mn sec. sec. JDK

JHLUnzip 1:34 21 7.1 1:00 6 8.3 1.5

JHLZip 0:34 20 8.11 0:22 4.7 8.7 1.5

Othello 22 1.5 14.6

Toba 1.0.b4 Harissa

real user sys ratio real user sys ratio

cpu cpu cpu cpu

mn sec. sec. JDK mn sec. sec. JDK

JHLUnzip 0:56 4 6.6 1.7 0:56 3 6 1.7

JHLZip 0:20 5.4 7.2 1.7 0:18 2.3 7 1.8

Othello 0.85 26 0.50 44

Table 5: Other Benchmarks

Javac Javadoc JHLZip JHLUnzip Othello Kawa

Number of classes, interfaces, and arrays 280 281 99 100 103 213

Interfaces 10 10 6 6 4 12

Arrays 25 25 13 13 16 24

Methods containing bytecode 1867 1910 703 696 701 1310

Native methods 104 104 89 89 95 93

Average size of a method (in bytes) 63.8 64.8 48 47.9 41.2 45.6

Virtual call points 4734 4333 863 845 642 2334

Number of optimized calls due to CHA 1828 1689 155 155 92 690

percentage of virtual call points 38% 40% 18% 18% 14% 25%

Table 6: Detailed analysis of method and classes



of interpretation with compiled bytecode, (ii)
we have designed an aggressive bytecode to
C compiler whose generated code is more ef-
�cient than other compilers, and (iii) we have
measured the relative e�ciency of code pro-
duced by o�-line and JIT compilers.

Tradeo�s Between JIT and O�-line

Compilers?

The micro-benchmarks presented in sec-
tion 5.1 clearly show that an optimized o�-
line compiler such as Harissa's is faster than
a JIT compiler. The gap between JIT and
o�-line compilers is greater for the SPARC
than for the Pentium. This is due to the fact
that binary code for modern RISC processors
is complex to optimize and requires analyses
that are hard to run in the short time allo-
cated to on the 
y compilation.

However, the JIT and o�-line strategies
can be made complementary. As shown by
Plezbert and Cytron [7], a compilation pro-
cess can consist of running the unoptimized
code while another process does aggressive
compilation on the background. Once the
optimized code is available, the unoptimized
code is replaced with the optimized one.
Since our system already mixes bytecode in-
terpretation and binary execution, this con-
tinuous compilation scheme can be incorpo-
rated easily in Harissa.

Opportunities for Further Optimiza-

tions

While Harissa generated code is already fast,
our micro-benchmarks show that there are
still opportunities for improvement. In a near
future, we plan to integrate an analysis for
eliminating transient stack variables so as to
be independent from Suif. Furthermore, we
are studying the development of a transfor-
mation phase, based on control 
ow informa-
tion, aimed at rebuilding loop constructs. As
was shown earlier, structured programs are

usually better compiled.

Finally, we also plan to eliminate some type
and bound checks since close examination
of the C code generated has demonstrated
that most of could be evaluated statically by
means of a simple intra-procedural analysis.
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