
The following paper was originally published in the
Proceedings of the Third USENIX Conference on Object-Oriented Technologies and Systems

Portland, Oregon, June 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Using the Strategy Design Pattern to
Compose Reliable Distributed Protocols

Benoit Garbinato, Rachid Guerraoui
Laboratoire de Systemes d’Exploitation

Departement d’Informatique
Ecole Polytechnique Federale de Lausanne, Suisse

Using the Strategy Design Pattern to
Compose Reliable Distributed Protocols�

Benoı̂t Garbinato Rachid Guerraoui

Laboratoire de Systèmes d’Exploitation
Département d’Informatique

École Polytechnique Fédérale de Lausanne, Suisse
e-mail: bast@lse.epfl.ch

Abstract

Reliable distributed systems involve many complex
protocols. In this context, protocol composition is
a central concept, because it allows the reuse of
robust protocol implementations. In this paper, we
describe how the Strategy pattern has been recur-
sively used to support protocol composition in the
BAST framework. We also discuss design alterna-
tives that have been applied in other existing frame-
works.

1 Introduction

This paper presents how the Strategy pattern has
been used to build BAST1, an extensible object-
oriented framework for programming reliable dis-
tributed systems. Protocol composition plays a cen-
tral role in BAST and relies on the notion of protocol
class. In this paper, we focus on the recursive use of
the Strategy pattern to overcome the limitations of
inheritance, when trying to flexibly compose proto-
cols. In a companion paper [6], we have presented
how generic agreement protocol classes can be cus-
tomized to solve atomic commitment [10] and total
order multicast [20], which are central problems
in transactional systems and to group-oriented sys-

�Partially supported by OFES under contract num-
ber 95.0830, as part of the ESPRIT BROADCAST-WG (num-
ber 22455)

1We named BAST after the cat-goddess of the Egyptian
mythology: cats are known to survive several “crashes”.

tems respectively. In [7], we also show how BAST

allows distributed applications to be made fault-
tolerant, by application programmers who are not
necessarily skilled in reliability issues.

The BAST Framework

Building reliable distributed systems is a chal-
lenging task, as one has to deal with many com-
plex issues, e.g., reliable communications, failure
detections2, distributed consensus, replication man-
agement, transactions management, etc. Each of
these issues corresponds to some distributed proto-
col and there are many. In such a protocol “jun-
gle”, programmers have to choose the right proto-
col for the right need. Besides, when more than
one protocol is necessary, the problem of their in-
teractions arises, which further complicates pro-
grammers’ task. The BAST framework aims at
structuring reliable distributed systems by allow-
ing complex distributed protocols to be composed
in a flexible manner. For example, by adequately
composing reliable multicast protocols with trans-
actional protocols, BAST makes it possible to trans-
parently support transactions on groups of repli-
cated objects. It relies heavily on the Strategy pat-
tern, which is recursively used to get around the
limitations of inheritance as far as protocol compo-
sition goes. Our first prototype is written in Small-
talk [8] and is fully operational. It is currently being

2A failure detector is a high-level abstraction that hides the
timeouts commonly used in distributed systems [2].

UMPObject

BMPObject

RMPObject

unreliable message passing

r e l i a b l e m e s s a g e p a s s i n g

reliable

failure detection

u n i f o r m c o n s e n s u s

dynamic terminating multicast

multicast RMCObject

FDTObject

CSSObject

DTMObject

FMPObject

best-effort
message passing

fifo
message passing

Protobject abstract
superclass

(b) protocol class hierarchy(a) protocol dependencies

reliable
message passing

reliable
multicast

unreliable
message passing

failure detection

dynamic
terminating multicast

consensus

Figure 1: Protocols and Protocol Classes in BAST

used for teaching reliable distributed systems and
for prototyping new fault-tolerant distributed pro-
tocols. Adding more and more protocol classes will
help us to further test our approach. BAST has also
been recently ported to the Java [9] programming
environment. Performance is not yet good enough
for practical application development, but we are
currently working on performance evaluations and
code optimization [7].

Overview of the Paper

Section 2 introduces the concept of protocol object
as defined in BAST, and how it helps to structure dis-
tributed systems and to deal with failures. Section 3
discusses why inheritance alone is limited in sup-
porting flexible protocol composition and presents
how we applied the Strategy pattern to break these
limitations. We also show how the Strategy pattern
is transparently used in a recursive manner, and
we present what steps have to be performed in or-
der to extend BAST through protocol composition.
Section 4 discusses various design alternatives, and
compares our approach with other research works
described in the literature. Finally, Section 5 sum-

marizes the contribution of this paper, as well as
some future developments in the BAST framework.

2 Protocol Objects

The BAST framework was designed to help pro-
grammers in building reliable distributed systems,
and is based on protocols as basic structuring com-
ponents. With BAST, a distributed system is com-
posed of protocol objects that have the ability to
remotely designate each other and to participate in
various protocols. A distributed protocol � is a set
of interactions between protocol objects that aim at
solving distributed problem�. We usea�Object
to name a protocol object capable of participating
in protocol �, and we say that �Object is its
protocol class. Each �Object provides a set of
operations that implement interface protocol �, i.e.,
these operations act as entry points to the protocol.
Abstract class Protobject is the root of the pro-
tocol class hierarchy.

With such broad definitions, any interaction be-
tween objects located on distinct network nodes is
a distributed protocol, even a mere point-to-point

communication. For example, class RMPObject
implements a reliable point-to-point communica-
tion protocol and provides operations rSend()
and rDeliver() that enable to reliable sending
and receiving, respectively, of any object3; callback
operation rDeliver() is redefinable and is said
to be triggered by the protocol. Note that such a ho-
mogeneous view of what distributed protocols are
does not contradict the fact that some protocols are
more basic than others. Communication protocols,
for example, are fundamental to almost any other
distributed protocol.

Dealing with Failures. Because failures are part
of the real world, there is the need for reliable dis-
tributed protocols, e.g., consensus, atomic commit-
ment, total order multicast. Reliable distributed
protocols are challenging to implement because
they imply complex relationships with other un-
derlying protocols. For example, both the atomic
commitment and the total order multicast rely on
consensus, while the latter is itself based on failure
detections, on reliable point-to-point communica-
tions, and on reliable multicasts. In turn, reliable
multicasts can be built on top of reliable point-to-
point communications. Figure 1 (a) presents an
overview of some distributed protocol dependen-
cies.

In BAST, protocol classes are organized into a
single inheritance hierarchy which follows protocol
dependencies, as pictured in Figure 1 (b). Each
protocol class implements only one protocol, but
instances of some�Object class can execute any
protocol inherited from �Object’s superclasses.
Protocol objects are able to run several executions
of identical and/or distinct protocols concurrently.

3We mean here any object that is not a protocol object.
Allowing the sending of protocol objects across the network
implies the solving of the distributed object migration problem.
We did not address this issue in our framework yet.

3 Strategy Pattern in BAST

Composing Protocols

With protocol objects, managing protocol depen-
dencies is not only possible during the design and
implementation phases (between protocol classes),
but also at runtime (between protocol objects). This
is partly due to the fact that protocol objects can ex-
ecute more than one protocol at a time. In this
context, trying to compose protocols comes down
to answering the question “How are protocol layers
assembled and how do they cooperate?”.

Figure 2 (a) presents a runtime snapshot of
aCSSObject, some protocol object of class
CSSObject that implements an algorithm for
solving the distributed consensus problem. The
consensus problem is defined on some set � of dis-
tributed objects as follows: all correct objects in
� propose an initial value and must reach agree-
ment on one of the proposed values (the deci-
sion) [3]. Class CSSObject defines operations
propose() and decide(), which mark the be-
ginning and the termination of the protocol re-
spectively [2]. Besides consensus, protocol ob-
ject aCSSObject is also capable of executing
any protocol inherited by its class, e.g., reliable
point-to-point communications and reliable multi-
casts, as well as failure detections. In Figure 2 (a),
aCSSObject is concurrently managing five dif-
ferent protocol stacks for the application layer, and
issuing low-level calls to the transport layer. Focus-
ing on the consensus stack, protocol composition
means here to assemble various layers, each being
necessary to execute the consensus protocol, into
the protocol stack pictured in Figure 2 (b). The
assembling occurs at runtime and creates a new
stack each time the application invokes operation
propose().

Inadequacy of Inheritance Alone. With BAST,
distributed applications are structured according to
their needs in protocols: they are made of protocol
objects, which act as distributed entities capable of
executing various protocols. With this approach, it
all comes down to choosing the right class for the
right problem. We believe that inheritance is an

a p p l i c a t i o n l a y e r

t r a n s p o r t l a y e r

send() recv()

rmcast()

propose()

rSend()

uDeliver() decide()

aCSSObject

doSuspect() propose () decide()

FDT Algo

RMC Algo

RMP Algo

CONSENSUS ALGORITHM

(a) a protocol object in action (b) interacting protocol layers

send() recv()

Figure 2: Protocol Layers and Protocol Objects

appropriate tool to achieve this: by passing appro-
priate arguments to protocol operations and by im-
plementing callback operations, programmers have
the ability to tailor generic protocol classes to their
needs. However, we claim that inheritance alone is
not sufficient as far as protocol composition goes,
because it does not offer enough flexibility. For
example, inheritance does not allow for the easy
implementation of a new algorithm for some ex-
isting protocol, and then to use it in various proto-
col classes that are scattered in the class hierarchy.
Furthermore, inheritance is not appropriate when
it comes to choosing among several protocol algo-
rithms at runtime. These limitations lead us to seek
an alternative solution for flexible protocol compo-
sition.

Protocol Algorithms as Strategies

According to Gamma et al., the intent of the Strat-
egy pattern is to “define a family of algorithms,
encapsulate each one, and make them interchange-
able” [5, page 315]. This is usually achieved by
objectifying the algorithm [4], i.e., by encapsulat-
ing it into a so-called strategy object; the latter is
then used by a so-called context object. Making

each �Object protocol class independent of the
algorithm supporting protocol � is precisely what
we need to be able to compose reliable distributed
protocols in a flexible manner.

In the BAST framework, strategy objects repre-
sent protocol algorithms and they are instances of
subclasses of class ProtoAlgo. A ProtoAlgo
subclass that implements an algorithm for solving
problem � is referred to as class �Algo. In the
Strategy pattern terminology, a protocol algorithm,
instance of some �Algo class, is a strategy, and a
protocol object, instance of some �Object class,
is a context. A strategy and its context are strongly
coupled and the application layer only deals with
instances of �Object classes, i.e., it knows noth-
ing about strategies.

Strategy/Context Interactions. Figure 3 (a)
sketches the way protocol objects and algorithm
objects interact. On the left side, protocol object
a�Object offers the services it inherits from its
superclasses, as well as the new services that are
specific to protocol �. The actual algorithm im-
plementing protocol � is not part of a�Object’s
code; instead, the latter uses services provided by
strategya�Algo (on the right side of Figure 3 (a)).

πObject

inherited services

[Context]

[ContextInterface()]

πAlgo

provided services

[Strategy]

[AlgorithmInterface()]

(b) Context and strategy (classes)

aπObject

inherited services

aπAlgo

provided services (π)

required services

specific services (π) based on

based on

aCSSAlgo

propose () decide()

FDT Algo

RMC Algo

RMP Algo

CONSENSUS ALGORITHM

startMonitor()
stopMonitor ()

rSend ()

rmcast()
rmDeliver ()

rDeliver ()

propose () decide()

doNotSuspect ()
doSuspect ()

isSuspecting ()

(a) Context and strategy (objects)

(c) Strategy as protocol layer

Figure 3: Strategy Pattern in BAST

Whenever an operation related to protocol � is in-
voked on a�Object, the execution of the pro-
tocol is delegated to strategy a�Algo. In turn,
the services required by the strategy to run proto-
col � are based on the inherited services of context
a�Object. Such required services merely iden-
tify entry point operations to underlying protocols
needed to solve problem �.

Each instance of class �Algo represents one
execution of protocol � implemented by that class,
and holds a reference to the context object for
which it is running; any call to the services re-
quired by the strategy will be issued to its context
object. There might be more than one instance of
the same ProtoAlgo’s subclass used simultane-
ously by a�Object. At runtime, the latter main-
tains a table of all strategies that are currently in
execution for it. Each message is tagged to enable
a�Object to identify in which execution of what
protocol that message is involved, and to dispatch it
to the right strategy. Figure 3 (b) presents the rela-
tionship between classes �Object and �Algo,
using a class diagram based on the Object Model-
ing Technique notation [19]. The correspondence
between �Algo strategy objects and layered pro-
tocol stacks is pictured in Figure 3 (c): at runtime,
each strategy object represents a layer in one of the
protocol stacks currently in execution.

Consequences. The context/strategy separation
enables the limitations of inheritance to be over-
come, as far as protocol composition goes. One
could for example optimize the reliable multicast
algorithm and use it in some protocol classes, while
leaving it unchanged in others. Protocol algorithms
could even be dynamically edited and/or chosen,
according to criteria computed at runtime; this fea-
ture is analogous to the dynamic interpositioning
of objects. There is a minor compatibility con-
straint among different protocol algorithms in order
to make them interchangeable: new algorithm class
�Algon can replace default �Algo in protocol
class �Object if and only if �Algon requires a
subset of the services featured by �Object.

This approach also helps protocol programmers
to clearly specify, for each protocol �, its depen-
dencies with other protocols. One drawback of the
Strategy pattern is the overhead due to local interac-
tions between strategies and contexts. In distributed
systems however, this overhead is small compared
to communication delays, especially when fail-
ures and/or complex protocols are involved. More
specifically, the time for a local Smalltalk invo-
cation is normally under 100 �s, whereas a reli-
able multicast communication usually takes more
than 100 ms when three or more protocol objects

transport layer

application layer

RMPAlgo

FDTAlgo

send

CSSAlgo

recv

rSe
nd
rDe

liv
er

rmc
ast
rmD

eli
ver

RMCAlgo

sta
rtM

oni
tor

sto
pMo

nit
or

doS
usp

ect

doN
otS

usp
ect

pro
pos

e

dec
ide

CSSObject

Figure 4: Recursive Use of the Strategy Pattern

are involved4 (without even considering failures).
The gain in flexibility clearly overtakes the local
overhead caused by the use of the Strategy pattern.

Reliable Multicast: an Example

We now present how we implemented reliable mul-
ticast communications using the Strategy pattern.
In BAST, class RMCObject provides primitives
rmcast() and rmDeliver() that enable the
sending and receiving, respectively, of a message m
to a set of protocol objects referenced in destSet,
in a way that enforces reliable multicast properties.
The current implementation of class RMCObject
relies on strategy class RMCAlgo.

Overview of the Protocol. The protocol starts
when operation rmcast() is invoked on some
initiator object aRMCObjecti

, passing it a mes-
sage m and a destination set destSet. In this

4On a 10 Mbits Ethernet connecting Sun SPARCstations 20.

operation, context aRMCObjecti first creates a
strategy aRMCAlgoi

, and then invokes operation
rmcast() on it, with the arguments it just re-
ceived. Strategy aRMCAlgoi builds message m̃,
containing both m and destSet. It then issues
a reliable point-to-point communication with each
protocol object referenced in destSet; in order
to do this, strategy aRMCAlgoi relies on inher-
ited service rSend() of context aRMCObjecti

.
When message m̃ reaches aRMCObjectt , one of
the target objects, operation rDeliver() is trig-
gered by the protocol. Operation rDeliver()
detects that m̃ is a multicast message and forwards
it to aRMCAlgot , the strategy in charge of that
particular execution of the reliable multicast pro-
tocol. When aRMCAlgot receives m̃ for the first
time, it re-issues a reliable point-to-point commu-
nication with each protocol object referenced in
destSet (extracted from m̃), and then invokes
rmDeliver() on its context aRMCObjectt ,
passing it message m (also extracted from m̃). This

retransmission scheme is necessary because of the
agreement property of the reliable multicast prim-
itive, which requires that either all correct objects
in destSet or none receive message m [2].

Recursive Use of the Strategy Pattern

When solving distributed problem �, one can
strictly focus on the interaction between class
�Object and class �Algo, while forgetting
about how other protocols are implemented. In
particular, all protocols needed to support proto-
col � are transparently used through inherited ser-
vices of class �Object. Those services might
also be implemented applying the Strategy pattern,
but this is transparently managed by inherited oper-
ations of �Object. In that sense, BAST uses the
Strategy pattern in a powerful recursive manner.

The recursive use of the Strategy pattern is il-
lustrated in Figure 4. The latter schematically
presents a possible implementation of protocol
class CSSObject presented in Section 3, which
enables the solution of the distributed consensus
problem by providing operations propose() and
decide(). In Figure 4, the gray oval is context
class CSSObject, while inner white circles are
various �Algo strategy classes (� being different
protocols). Arrows show the connections between
provided services (top) and required services (bot-
tom) of each strategy class. Operations provided
by class CSSObject are grouped on the applica-
tion layer side (top). Each strategy class pictured in
Figure 4 is managed by the corresponding context
class in the protocol class hierarchy presented in
Figure 1 (b).

Extending the BAST Framework

Basing the BAST framework on the Strategy pattern
has the advantage of making it easily extensible.
To illustrate this, we now present how we built
DTMObject, a protocol class supporting the Dy-
namic Terminating Multicast (DTM) protocol [11]
from existing contexts and strategies. The DTM
protocol can be understood as a common denomi-
nator of many reliable distributed algorithms [12].

Overview of the Protocol. The protocol starts
by the invocation of operation dtmcast() on
an initiator object, passing it a message m and
a set of protocol object references destSet.
This invocation results in a reliable multicast of
m to the set of participants objects. When mes-
sage m reaches some participant, the protocol
triggers operation dtmReceive(), passing m
as argument. The participant object then com-
putes a reply and returns it. Eventually, opera-
tion dtmInterpret() is triggered by the pro-
tocol on each non-faulty participant object, taking
replySet, a subset of the participants’ replies,
as argument. The protocol insures that all correct
participant objects get the same subset of replies,
i.e., a consensus has been reached on that set.

Methodology for Extending BAST. A five steps
methodology guides programmers in extending the
BAST framework using the Strategy pattern. We
illustrate each of these steps below, by presenting
how the methodology was applied to the design
of class DTMObject. Figure 5 summarizes the
methodology.

1. Establish what services the new protocol
class DTMObject provides, i.e., what op-
erations are given to programmers want-
ing to use DTMObject; those opera-
tions are dtmcast(), dtmReceive() and
dtmInterpret().

2. Choose an algorithm implementing DTM and
determine what services it requires, by decom-
posing it in a way that allows to reuse as many
existing protocols as possible; those services
are: consensus, failure detections, as well as
reliable point-to-point and reliable multicast
communications (see [11] for algorithmic de-
tails).

3. Implement the chosen algorithm in some
DTMAlgo class; all calls to the above required
services are issued to an instance variable rep-
resenting the context object, i.e., an instance
of class DTMObject.

1. Establish theDTMs specification of
protocolDTM. (i.e.,providedservices).

2. Determine the servicesrequired by
the chosen algorithm forDTMs .

3. Implement that algorithm in a
subclass of classProtoAlgo.
(Let’s name itDTMAlgo).

4. Choose a subclass of class
Protobject offeringat least
all services defined by step 2.
(Let’s take classCSSObject).

5. SubclassCSSObject into class
DTMObject . The implementation
merely “connects”providedandrequired
services ofDTMAlgo, tospecific
andinherited services ofDTMObject
respectively.

1.

2.

stopMonitor()

dtmInterpret()

startMonitor()

dtmReceive()
dtmInterpret()

stopMonitor()

rSend()

rmcast()
rmDeliver()

rDeliver()
doNotSuspect()

doSuspect()

isSuspecting()
propose()

decide()

dtmcast()

startMonitor()

doSuspect()
doNotSuspect()
isSuspecting()

rmcast()
rmDeliver()

rSend()
rDeliver()

propose()
decide()

dtmReceive()
dtmcast()

D T M A l g o

stopMonitor()
startMonitor()

doSuspect()
doNotSuspect()
isSuspecting()

rmcast()
rmDeliver()

rSend()
rDeliver()

propose()
decide()

dtmReceive()
dtmInterpret()

stopMonitor()

rSend()

rmcast()
rmDeliver()

rDeliver()
doNotSuspect()

doSuspect()

isSuspecting()

propose()
decide()

dtmcast()

startMonitor()
D T M A l g o

dtmReceive()
dtmInterpret()

stopMonitor()

rSend()

rmcast()
rmDeliver()

rDeliver()
doNotSuspect()

doSuspect()

isSuspecting()

propose()
decide()

dtmcast()

startMonitor()

D T M O b j e c t

CSSObject

3.

4.

5.

2.

3.

4.4.

5.

1.

Figure 5: Extending BAST with Protocol Class DTMObject

4. Choose the protocol class that will be derived
to obtain new class DTMObject; the choice
of class CSSObject is directly inferred from
step 2, since the chosen superclass has to pro-
vide at least all the services required by pro-
tocol DTM.

5. Implement class DTMObject by connecting
services provided by class DTMAlgo to new
DTM-specific services of class DTMObject,
and by connecting services required by class
DTMAlgo to corresponding inherited services
of class DTMObject.

4 Design Alternatives

Our first implementation of BAST was not based
on the Strategy pattern, i.e., distributed algorithms
were not objects, and protocol objects were not
capable of participating in more than one proto-
col execution concurrently. Furthermore, proto-
col composition was only possible through single
inheritance5.

5Remember that we used Smalltalk as implementation lan-
guage for prototyping.

Because protocol objects are the basic address-
able distributed entities in our approach, it is not
possible to guarantee that there will never be more
than one protocol execution involving each proto-
col object at a given time. For example, we cannot
make sure that there will not be two concurrent mul-
ticast communications and/or transactions involv-
ing the same protocol objects. Allowing concur-
rency at this level is an essential feature. Moreover,
as far as protocol composition is concerned, single
inheritance is inadequate for offering a satisfactory
degree of flexibility.

For all these reasons, we made BAST evolve
through a second implementation of which the main
goal was to overcome the limitations mentioned
above. We now discuss some design alternatives
that were considered in the process of implement-
ing this second prototype of BAST, together with
design issues that we studied from other existing
frameworks described in the literature.

Multiple Inheritance and Mixins

Although our prototyping language does not offer
multiple inheritance, assembling the various pro-
tocol layers through this code reuse mechanism is

very appealing6. The idea is to make each pro-
tocol class �Object implement only protocol �,
while accessing all required underlying protocols
through unimplemented operations; each protocol
class is then an abstract class and we usually say
it is a mixin class or simply a mixin. Before being
able to actually instantiate a protocol object, one
first has to build a new class deriving from all the
necessary mixins.

There are three major drawbacks with this ap-
proach. First, protocol classes are not more ready-
to-use components: a fairly complex multiple sub-
classing phase is now required. As consequence,
programmers have to deal with protocol relation-
ships “manually”. Second, protocol layers can only
be assembled through subclassing, and it is thus
difficult if not impossible to compose protocol at
runtime: in several programming languages, e.g.,
C++, classes are only compile-time entities. Third,
we still have to manage concurrent protocol exe-
cutions within the same protocol object, while this
problem is handled nicely as soon as algorithms are
manipulated as objects.

Toolbox Approach

Another possible approach to the reuse of protocol
implementations is to provide programmers with a
toolbox containing reusable components and asso-
ciate them with design patterns. Both ASX [21] and
CONDUITS+ [13] frameworks can be seen as such
toolboxes. The ASX framework provides collabo-
rating C++ components, also known as wrappers,
that help in producing reusable communication
infrastructures. These components are designed
to perform common communication-related tasks,
e.g., event demultiplexing, event handler dispatch-
ing, connection establishment, routing, etc. Several
design patterns, such as the Reactor pattern and
the Acceptor pattern, act as architectural blueprints
that guide programmers in producing reusable and
portable code. In CONDUITS+ [13], two kinds of
objects are basically offered: conduits and infor-

6Ingalls and Borning have shown how reflective facilities of
Smalltalk can be applied to extend the language with multiple
inheritance [14], so we could have used that technique if we
really wanted to.

mation chunks, which can be assembled in order to
create protocol layers and protocol stacks. Various
patterns are also provided to help programmers in
building protocols.

However, there is no such thing as protocol ob-
ject in either of the above frameworks. Since our
main intent is to provide programmers with a pow-
erful unifying concept, the protocol object, we did
not choose a toolbox approach for BAST. Further-
more, ASX does not promote protocol composition,
whereas CONDUITS+ does it in a slightly different
way than BAST, as we discuss below.

Black-box Framework

CONDUITS+ offers basic elements that helps pro-
grammers build protocol layers. The use of design
patterns is motivated by the fact that traditional lay-
ered architectures do not allow code reuse across
layers, which is precisely what CONDUITS+ aims at.
Protocols can then be composed with CONDUIT+,
at lower-level than BAST, through the assembling
of conduits and information chunks, which are el-
ementary blocks used to build protocol layers. In
other words, the CONDUIT+ framework does not
allow the manipulation of protocol layers as ob-
jects, but only the manipulation of pieces of proto-
col layers. Compared to BAST, protocol algorithms
are further decomposed in CONDUIT+: conduits
and information chunks are finer grain objects than
BAST’s strategies. Indeed, strategies represent pro-
tocol layers, while conduits and information chunks
are internal components of protocol layers. CON-
DUIT+ goes one step further in the process of ob-
jectifying protocol algorithms.

This approach makes it easy for CONDUIT+ to
be a pure black-box framework, while BAST com-
bines features of both black-box and white-box
frameworks7. With BAST, we are considering com-
pletely getting rid of inheritance but this issue has
to be carefully studied, because it would have im-
portant consequences on the way BAST can be used
by application programmers, i.e., those who have

7In a black-box framework, reusability is mainly achieved
by assembling instances, whereas in a white-box framework,
it is mainly achieved through inheritance. A black-box frame-
work is easier to use, but harder to design.

very limited skills in fault-tolerant distributed algo-
rithms.

Modeling Communications

Several systems model communications but do not
really address reliability issues, e.g., STREAMS [18]
and the x-Kernel [17]. AVOCA [24] defines the no-
tion of protocol objects, but not in the sense that
BAST does; furthermore, it mainly applies to high-
performance communication subsystems. Other
systems offer reliable distributed communications,
either based on groups as elemental addressing fa-
cilities, e.g., CONSUL [15], ISIS [1] and HORUS [23],
or based on transactions, e.g., ARJUNA [22].

Microprotocols and the x-Kernel

The work done by O’Malley and Peterson [16]
is the closest to BAST that we could find. They
extended the x-Kernel with the notion of micro-
protocol graph, and they described a methodology
for organizing network software into a complex
graph, where each microprotocol encapsulates a
single function. In contrast, conventional ISO and
TCP/IP protocol stacks have much simpler proto-
col graphs, with each layer encapsulating several
related protocol functions. They argue that such a
fine-grain decomposition allows for better tailoring
of communication protocols to application needs;
our conclusion concurs with theirs perfectly on that
point. In their paper, O’Malley and Peterson mainly
apply their approach to RPC communications (with
only one very short discussion of what they call a
fault-tolerant multicast). Compared to BAST, their
approach is very close to what we have done and
is based on the same basic assumption: compos-
ing (micro-)protocols is essential when it comes to
customizing complex distributed applications (and
fault-tolerance implies such complexity). In their
terminology, what we call problem � is referred to
as metaprotocol �.

There are also some important differences, how-
ever. They do not provide ready-to-use protocol
classes to application programmers who are not
skilled at understanding and/or building complex
protocol graphs, whereas this is one of the main

goals of BAST [7]. Moreover, their approach does
not rely on design patterns. Similarly to CONDUIT+,
they go one step further in their decomposition of
protocol algorithms, by defining the notion of vir-
tual protocols. The latter “are not truly protocols in
the traditional sense” [16, page 131] : virtual pro-
tocols are actually used to remove IF-statements
and to place them in the microprotocol graph in-
stead. All those differences can be best understood
by looking at the background domains of the BAST

library and the x-Kernel respectively. The latter
aims at helping system programmers to customize
any communication protocol usually found in mod-
ern operating systems, while the former aims at
providing ready-to-use protocol classes, in order
to help any programmer to build fault-tolerant ap-
plications, and at allowing skilled programmers to
build news fault-tolerant protocols easily.

Composing Protocol Stacks in HORUS

As far as protocol composition is concerned, the
HORUS system enables the building of protocol
stacks from existing layers only in a strictly ver-
tical manner. Furthermore, it is based on groups
as fundamental addressing and communication fa-
cility, and provides no framework and/or pattern
for building new protocols layers. HORUS merely
provides a finite set of ready-to-use protocol lay-
ers, which can only be composed around the group
membership protocol.

With BAST, we have tried to model any kind
of interaction between distributed objects, not only
group communications. This is essential in order to
deal with failures in an extensible way, because re-
liable protocols tend to be much more complex than
normal communications. By making protocol ob-
jects BAST’s basic distributed entities, we can build
both the group model and the transaction model [6].
Furthermore, the Strategy pattern provides a pow-
erful scheme for creating new protocols through
composition.

5 Concluding Remarks

In this paper, we presented how protocol objects
can help in building reliable distributed systems.
We focused on how the Strategy pattern allows the
limitations of inheritance to be overcome, when
trying to compose protocols. As far as we know,
BAST is the only environment to provide both a
set of ready-to-use protocol objects for building
fault-tolerant distributed applications, and a com-
plete framework based on design patterns, for com-
posing new protocols from existing ones. We see it
as our contribution to the design of well-structured
reliable distributed systems.

Our current prototype of BAST is fully opera-
tional and is available for Smalltalk and Java. At the
moment, inheritance is still partly involved when
composing distributed protocols; although a minor
drawback, this does not make protocol composi-
tion as flexible as one might expect. This is due to
the fact that programmers have to know something
about the implementation of the protocol classes
they reuse, namely their inheritance relationships.
This is not surprising, since inheritance is known
to violate encapsulation and to hinder modularity.
Future work will consist of trying to decide if get-
ting rid of inheritance, at least as far as protocol
composition goes, is a good way to achieve even
more flexibility. We are also extending BAST with
new protocol classes, supporting frequently used
protocols in reliable distributed systems, and op-
timizing existing protocol classes to improve per-
formance. Further information about BAST can be
found at http://lsewww.epfl.ch/bast; our public-free
implementation is also available there.

References

[1] K. Birman and R. Van Renesse. Reliable Dis-
tributed Computing with the Isis Toolkit. IEEE
Computer Society Press, 1993.

[2] T.D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal
of the ACM, 34(1):225–267, March 1996.

[3] M. J. Fischer. The consensus problem in unreli-
able distributed systems (a brief survey). Techni-

cal report, Department of Computer Science, Yale
University, June 1983.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlis-
sides. Design patterns: Abstraction and reuse
of object-oriented design. In European Confer-
ence on Object-Oriented Programming Proceed-
ings (ECOOP’93), volume 707 of Lecture Notes in
Computer Science. Springer-Verlag, July 1993.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[6] B. Garbinato, P. Felber, and R. Guerraoui.
Protocol classes for designing reliable dis-
tributed environments. In European Confer-
ence on Object-Oriented Programming Proceed-
ings (ECOOP’96), volume 1098 of Lecture Notes
in Computer Science, Linz (Autriche), July 1996.
Springer Verlag.

[7] B. Garbinato and R. Guerraoui. Flexible protocol
composition in BAST. Technical report, Operat-
ing System Laboratory (Computer Science Depart-
ment) of the Swiss Federal Institute of Technology,
March 1997.

[8] A.J. Goldberg and A.D. Robson. SMALLTALK-80:
The Language and its Implementation. Addison
Wesley, 1983.

[9] J. Gosling and H. McGilton. The Java language
environment: A white paper. Technical report,
Sun Microsystems, Inc., October 1995.

[10] R. Guerraoui. Revisiting the relationship between
non-blocking atomic commitment and consensus.
In J.-M. Hélary and M. Raynal, editors, Distributed
Algorithms - 9th International Workshop on Dis-
tributed Algorithms (WDAG’95), volume 972 of
Lecture Notes in Computer Science, pages 87–100.
Springer Verlag, September 1995.

[11] R. Guerraoui and A. Schiper. Transaction model
vs virtual synchrony model: Bridging the gap. In
Theory and Practice in Distributed Systems, vol-
ume 938 of Lecture Notes in Computer Science,
pages 121–132. Springer Verlag, 1995.

[12] R. Guerraoui and A. Schiper. Consensus service:
A modular approach for building agreement proto-
cols in distributed systems. In Proceedings of the
26th Annual International Symposium on Fault-
Tolerant Computing (FTCS-26), pages 168–177.
IEEE Computer Society Press, June 1996.

[13] H. Hüni, R. Johnson, and R. Engel. A framework
for network protocol software. In Object-Oriented
Programming Systems, Languages and Appli-
cations Conference Proceedings (OOPSLA’95).
ACM Press, 1995. Special Issue of Sigplan No-
tices.

[14] D.H.H. Ingalls and A.H. Borning. Multiple inher-
itance in smalltalk-80. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages
234–237. AAAI, 1982.

[15] S. Mishra, L. Peterson, and R. Schlichting. Experi-
ence with modularity in Consul. Software Practice
and Experience, 23(10):1053–1075,October 1993.

[16] S. W. O’Malley and L. L. Peterson. A Dynamic
Network Architecture. ACM Transactions on Com-
puter Systems, 10(2):110–143, May 1992.

[17] L. Peterson, N. Hutchinson, S. O’Malley, and
M. Abott. Rpc in the x�Kernel: Evaluating
new design techniques. In Proceedings of the
ACM Symposium on Operating Systems Princi-
ples (SOSP’89), pages 91–101, November 1989.

[18] D. Ritchie. A stream input-output system. Bell
Laboratories Technical Journal,63(8):1897–1910,
1984.

[19] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorenson. Object-Oriented Modeling and
Design. Prentice-Hall, 1991.

[20] A. Schiper and R. Guerraoui. Faul-tolerant total
order “multicast” with an unreliable failure detec-
tor. Technical report, Operating System Labora-
tory (Computer Science Department) of the Swiss
Federal Institute of Technology, November 1995.

[21] D.C. Schmidt. ASX: an object-oriented frame-
work for developing distributed applications. In
Proceedings of the 6th USENIX C++ Technical
Conference. USENIX Association, April 1994.

[22] S.K. Shrivastava, G.N. Dixon, and G.D. Parring-
ton. An overview of the Arjuna distributed pro-
gramming system. IEEE Software, 1991.

[23] R. van Renesse, K. Birman, R. Friedman, M. Hay-
den, and D. Karr. A framework for protocol com-
position in Horus. In Proceedings of the ACM
Symposium on Principles of Distributed Comput-
ing (PODC’95), August 1995.

[24] M. Zitterbart, B. Stiller, and A. Tantawy. A Model
for High-Performance Communication Subsys-
tems. IEEE Journal on Selected Areas in Com-
munication, 11(4):507–519, May 1993.

