USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8-9, 2001

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

XCB: An X Protocol C Binding

Bart Masseg

Jameg Sharp

Computer Science Department
Portland State University
{bart,jamey }@cs.pdx.e du

Septembel9, 2001

Abstract

The standardX Window Systembinding for the C

programminglanguage Xlib, is a very successful
pieceof software acrossa wide rangeof applica-
tions. However, for mary modernuses Xlib is not

anideal fit: its size, complity, difficulty of ex-

tensionand synchronousnterface are particularly
problematic.

The XCB “X ProtocolC Binding”, currentlyunder
development,s aresponsdo theseandothercon-
cerns. XCB is intendedto be a simplerandmore
direct binding of protocol objectsto C functions;
careful designof the XCB API and internal data
structuresandthoroughmodularizationprovidesa
solution that is size and time efficient, maintain-
able,easyto usebothby single-threadedndmulti-
threadedapplicationsand easily extensible. Some
featuresof Xlib have beensacrificedin achieving
thesegoals,notablyil8n supportand convenience
buffering and cachingfeatures,but the cost will
likely be worth it for toolkit developersand for
thoselooking to write specializedapplicationday-
eredatopthe XCB API.

1 Xlib

Perhapghe oldestsoftwarein modernX Window
System[SG84 distributions is Xlib [SG9]: the
oldest files in the current XFree86 distribution
have a 1985 copyright. Xlib hasplayedanimpor
tantrole in thedevelopmentof the X Window Sys-
temin several ways: asthe standardbinding of X

http://xfree86.ay

protocolrequestandresponseto anAPI for theC

programminglanguagelKR78]; asthe repository
of anumberof performanceptimizationsof theC

API, suchascachingandgroupingof requestsas
a basefor GUI toolkit implementationsand as a

focal pointfor corvenienceaoutinesandextensions
necessaryo build functional,internationalizecand
standards-conformingtandalon@rogramswithout

toolkit support.

Unfortunately theseroles have been somevhat
contradictory andthe long history of Xlib hasnot
generallyworkedin its favor. ThecurrentXlib suf-
fersfrom a numberof outrightdefects.

1.1 Xlib Features

Xlib has a numberof notable features,resulting
both from an excellentinitial designand the ma-

turity attainedthroughl15 yearsof large-scaleuse.
Perhapshe mostimportantis its completenesghe

XFree86 Xlib releaseincludessupportfor every

protocol requestprovided by X11R6 andlibraries
for every protocol extensionrequestsupportedby

XFree86.aswell assupportfor arich setof corve-

niencefeatures Amongthesecorveniencdeatures
areautomaticmarshalingof multiple requestgfor

example, combining a seriesof DrawPoint re-

guestsnto a PolyPoint request) automaticde-

compositionof large requestsand tools for auto-
matic input canonicalizationand internationaliza-
tion (i18n) of bothinputandoutput.

The large-scaleusageof Xlib hasalso madeit a
thoroughlyuse-testegieceof software. It hasbeen
carefully maintainedandits reliability is currently
quite high. In particular its codeembodiesnary

clever solutionsto subtle problemsin X protocol
interaction.Sincethe protocolhasco-evolved with
Xlib, bothhave beenadjustedo work well together

The X protocolis bandwidthefficient. Requests,
repliesand eventsare parsimoniousn size. The
simple representationsf the protocol allow most
transactiongo be easily compressedby a general
purposanethodsuchasgzip [Gai93, furtherim-
proving performance. Xlib containsa numberof
optimizationsdesignedo improve this bandwidth
efficiengy. Notableamongtheseare buffered out-
put of requests and a reasonabl@mountof local
cachingof sener state.

The choiceof the C programminganguageasthe
standardindinglanguagdor X clientswasanatu-
ral one,giventhe C senerimplementatiorandthe
efficiengy andaccessibilityof the language.lt has
since proven a fortuitous decision. Becausanost
otherprogramminganguagegrovide aninterface
to C sourceor binaries, Xlib hasbeenusedasa
binding by toolkits and programswritten in lan-
guagegangingfrom C++ andJava to Schemeand
Prolog.

1.2 Xlib AreasFor Impr ovement

While Xlib is highly successfultherearestill areas
that could useimprovement. Xlib is arcane:even
experiencedX programmersnustfrequentlyrefer
to thedocumentatiorn orderto useit successfully
Thisis dueto severalfactors:first, the difficulty of

building atransparenf\Pl in C; secondaccretion;
but third and especiallythe fact that Xlib tries to

be a generalpurposeinterface suitablefor writing

everythingfrom small toolkit componentdo large

applicationdirectly.

Becausef XLib’ sgeneralityandemphasi®n con-
veniencedunctions thelibrary is complex andover-

sized;little of its codeis regularly usedby applica-
tions. Work by Jim Gettys hasrecentlyreduced

2Xlib containsasupportor atimerthatperiodicallyflushes
the outputstreamto reducelateny. While XCB takesthe po-
sitionthatthisis anactwity betterperformecby the API client,
which maybeableto do a betterjob with reduceccompleity,
this mechanisnin ary casedoeshelpcontrolrequestateng.

3personatommunicationJune2001.

this problem,but ultimatelyit seemdifficult to se-
riously shrink Xlib without significantly changing
the API and excising substantiapartsof its func-
tionality.

Becauseof the size, complity and ubiquity of
Xlib, it is quite difficult to maintain,especiallyto
extend. Potentialauthorsof nev X protocolexten-
sionsare oftendeterrednot by the difficulty of the
sener-sidework, but by the difficulty of addingli-
brary supportfor the extension:thereis little sup-
portin Xlib for extensionsso a greatdeal of new
codetypically needdo bewritten ontheclientside.
This maybeamajorfactorin the dearthof new ex-
tensionsover thelast10 yearsor so?

Xlib canalsobedifficult to use.For example,mary
X protocolitemsareXIDs, smallintegers.Unfortu-
nately C providesno way to declareincompatible
typesisomorphicto smallintegers. This occasion-
ally leadsto type errorsin Xlib usagethatarenot
statically detected:passinga window ID wherea
font ID wasrequired,for example. The useof C
structureanduniontypesto “wrap” smallintegers
cansolwe this problem,butin 1985afew C compil-
ersstill hadtroubletreatingstructuresn thelargely
first-classfashionrequiredby the standard:struc-
ture returnwasparticularly problematicandsome
compilerseven had problemswith structurecopy-
ing.

As anotherexample,usermemorymanagementf
Xlib datais complicatedby a couple of factors.
First,becauseheXAlloc() andXFree() inter
facesare usedinsteadof their normalmalloc()
andfree() counterpartstraditional memoryal-
locationdehuggingandleak-detectionoolsaredif-
ficult to useto detectanddiagnoseXlib usageer
rors. This may be oneof the reasonsvhy X appli-
cationsso commonlyleak storage.Anotheris that
Xlib routinesoccasionallyreturnallocatedstorage
containingpointersto otherunallocatedstorage:it
is theresponsibilityof the Xlib userto freetheref-
erentsbeforefreeingthereferencingolock, by call-
ing the appropriatedestructorroutine ratherthan
XFree() . Needlesdo say thisis errorprone,and

“Keith Packard personatommunicationAugust2001.
SOftenthedestructors namecontains‘destrg/” ratherthan
“free”, addingto the confusion.

theresultingerrorsaredifficult to detect.

The designgoalsof Xlib are somevhat contradic-
tory. Moderntoolkits suchas Gtk and Qt eschey

mostof thespeciafeaturesof Xlib, suchasits com-
plicatedinput modelandil8n semanticsand use
justtheprotocolbinding. Thisis not merelywaste-
ful: interferencefrom Xlib alsomalesit difficult

to do certainstylesof toolkit optimization,suchas
lateny hiding andthe useof multiple threads.

While Xlib attemptdo bere-entrantjts compleity
andthe “retrofitted” natureof the reentrang sup-
port make exploiting this featuredifficult. In par
ticular, the Xlib API is not easily suitedto thread-
baseduse. For example,it is difficult to obtainthe
sequenceumberof a requestin a multi-threaded
environment, asthe sequence&ountermay be ad-
vancedby a secondrequestbetweenthe time the
first requestis sentandthe counteris queried. In
addition,mary Xlib callsthatretrieve information,
suchasGetNe&tEvent,comein two basicforms: a
blockingform thatlockscritical datastructuresand
a non-blockingform that is subjectto raceswith
otherthreads.

While Xlib and the protocol are bandwidth-
efficient, Xlib encourages style of programming
that tendsto have high latengy. BecauseXlib re-
guestgequiringareply aregenerallysynchronous,
blocking until the reply is available, Xlib often
blocksfor a full roundtrip time. This is not gen-
erally anissuewhenthe X connections local, and
evenfor remoteconnections roundtrip canoften
be avoideddueto XLib’ s extensve caching.How-
ever, Packards recentcritique of LBX [Pac0] has
shawvn that lateng, ratherthan bandwidth,is the
majorcontrilutor to poorremoteperformancef X
applications,andthat Xlib is a real contritutor to
this excesdateng.

2 XCB

Whenfacedwith multiple conflicting designgoals
andexcessie designcompleity, onegooddesign
solution is often to modularizethe implementa-
tion, separatelyimplementingeachdesiredpiece
of functionality The designof XCB takesthis ap-

proach.XCB is intendedto be a simpleanddirect
binding of X protocoltransactiongo C language
function calls, with the minimum amountof ma-
chinerynecessaryo achieve thisaim.

It is assumedthat the principle clients of XCB
will be of two types: toolkits intendedfor higher
level programimplementationand small libraries
intendedto easethe directuseof XCB. Thus,cer
tain constraintsof the Xlib designdisappear Fea-
turessuchasil8nandmostcachingthatcanbebet-
ter managedat a higherlayer may be eliminated.
Controlling the syntacticdetailsof the API inter
facealsobecomeslightly lesscritical (althoughthe
currentdesignseemsatherpleasantn thisregard).

2.1 XCB Structure

Thebasicstructureof XCB isin two layers,asillus-

tratedin Figurel. A lower layer, XCB_Connection,
supportsthe establishmeniof an X sener con-

nectionand handlesbuffering and batchingof re-

guestsand responses. XCB_Connectionexports
a simple API to the upper XCB_Protocol layer

XCB_Protocol, in turn, provides a quite direct C

API for the core X Protocol. The ability for ex-

tensionclient codeto sit atopXCB_Connectionto-

getherwith the automaticcodegeneratiorfeatures
discussedh Section2.3below, shouldmake adding
extensionsupportquite easy

A key featureof XCB is thethread-safetpf theen-
tire API. Thisisimplementediia thelocking mech-
anismsof POSIX Threads[NBF96]. Specifically
eachconnectionis locked againstconcurrentac-
cesswith apthread _mutex andblockingduring
API callsis supportedby pthread _cond condi-
tion variables.

The XCB API allows (indeed,encouragesa style
of interactionin which onethreadmalkesrequests
and handlesreplies and anotherthread processes
events. The availability of locking mechanisms
for threadsafetywas difficult to ensurel5 years
ago. Now that threadsare widely availableto C
programmersthey should probably be taken ad-
vantageof: the standardwindow systemsin the
Smalltalk and Java ervironments, among others,
have exploited this approachwith notable suc-

Client

[[[riredos] | |

T

,/ ,’ API Requests
L XCB

LTI T T IAT T TTT]

XCB _Protocol

T T T

Lo -

. 1 | InterLayerCommunication
1 1 1

XCB _Connection

l:' ConnectiorQaStructures D
T

T
: X Protocol
\ | ’

Figurel: XCB structureandusage.

cess. The XCB API also permits a more tradi-
tional single-threadedevent loop” style: this en-
ablessingle-threadedsageof XCB, andshouldal-
low re-implementatiorf the Xlib API atopXCB if
desired.

Centralto the XCB API is the useof “reply cook-
ies” to permitlateny hiding. Protocolrequestse-
quiring a reply do not block. Insteadof returning
reply datathatis not yet available, the XCB non-
blockingrequesteturnsareply cookie,thatcanbe
corvertedinto thereply dataon demand blocking
if it is not yet available. This mechanisnmeaseda-
teng/ hiding without greatly distorting expectedC
API calling conventions easinghe X lateng prob-
lemsdescribedn Sectionl.2.

2.2 XCB Data Structures

XCB hasareasonablwimplesetof datastructures
and interfacesthat interactto provide the desired
functionality Figure 2 givesan overviev of these
datastructuresandtheir interaction;therestof this
sectionattemptdo describesomeof themoreinter
estingdetalils.

The fundamentalnit of interactionin XCB is the
sener connection. For threadsafety thereareno
globalvariablesin XCB: all statefor a connection

Connection
Lock

Replylist
-7 Sequence
ReplyRecord
N N CurrentData % ‘
S Stateand
“~_ | Locking
Atom
Cache
Output

Buffer

Figure2: XCB datastructures.

is storedin anopaquelocked connectiorstructure.
Elementf the connectiorstructureinclude

e Theconnectiommutex.
e Thesocletfor theconnection.
e Thecurrentrequessequenceumber

e Therequestqueue,a simple characterbuffer
for outgoingrequests.

e Thereply list, thattracksthe stateof pending
requestsequiringareply.

e Theeventqueuegcontainingprocessedbut un-
consumeavents.

e A dictionaryto cacheinternedatoms. This is
currently the only non-mandatoryclient-side
cachingperformedby XCB: it avoids a com-
moncauseof highlateny andbandwidth,and
is easyto add. (Connectiorstartupdatais also
cachedput thisis essentiallynmandatory)

For user compatibility with Xlib applications,a
coupleof its externalformatsaresupportednamely
the DISPLAY and XAUTHORITY environment
variablesand the .Xauthority file. Nonethe-
less,the XCB notion of a connectioni's someavhat

differentthanthatof Xlib. In particular thereis ex-
pectedto bejust oneconnectiorperdisplay: there
is no specialnotion of a “screen”in XCB outside
of therootwindow concepisupportedy the proto-
col®

The currentXCB implementatiorsupportsT CP/IP
and UNIX-domain soclets: obtaininga soclet is
treatedseparatelyfrom creatinga connection,so
othertypesof file descriptormay be usedaswell,
although some applicationsmay require soclets
with specific capabilities (such as non-blocking
1/0).

The requestqueueis, as noted above, a simple
charactelFIFO usedto hold formattedrequestgor
groupinginto larger paclets via a mechanismof
write batching.(Thisis necessaryjor XCB TCP/IP
soclets, since the Nagle mechanism[Nag84 is
turnedoff: alateng-reducingtechniqueborroved
from Xlib.) Therearethreeconditionsunderwhich
thelower layerwill flushtherequestjueue:

1. The requestqueueis aboutto becomeover
full.

2. The user has requesteda flush via the
XCB_ProtocolAPI.

3. The userhasrequestedhe reply to a request
enqueuedbut notyet delivered.

This third reasonis the mostinteresting reflecting
the factthat, unlike in Xlib, batchingarequestre-
quiring areply doesnotrequireflushingthe current
buffer.

Thereply list of an XCB connectioris areflection
of XCB’s asynchronouseply delivery: repliesar
rive in requestorder but may be accesseaut-of-
order Thereplylist is asimplesingly-linked list of
malloc -edreply records:this datastructuresuf-
fices sinceit is expectedthat a small numberof
replieswill normallybeoutstandingA replyrecord
is createdandplacedn thereplylist whenarequest
requiringareplyis enqueuedThereply recordwill

8In fact, the screenportion of the DISPLAY ervironment
variableis reportedto the client by the XCB conveniencerou-
tine, but is otherwiseignored.

remainonthelist until thereplyis recevedandde-
liveredto theuser atwhich pointit will befreedby
the upperlayer of XCB. Thus, at mostonethread
canreceve thereply to a request(althoughit need
not be the threadfrom which the requestwasis-
sued).Replyrecordsthatareof no furtherinterest
to the XCB usermay (andshould)be discardedyy
sequencaumbervia the XCB_ProtocolAPI.

Eachreply recordcontaingustafew piecesof crit-
ical information:

¢ Thesequenceumberof therequest.

e Anindicationof therequess status.A request
in the list is either pendinga reply, pending
delivery of areply to the XCB user or both.

e A pointer that points to one of two quanti-
ties, dependingon whethera reply hasbeen
receved.

— If areplyis pending,the references to
ablock of request-specifidataallocated
by XCB_Protocol and neededto con-
structtheresultdeliveredto the user(for
example,the addresof a usersupplied
buffer into which a portion of the reply
is to bedelivered).

— Oncethe reply hasbeenreceved, this
pointer will be converted by the upper
layer to a pointer to the reply itself,
awaiting delivery to theuser

e A conditionvariableonwhichatmostoneuser
threadmayblock whenrequestinga resultbe-
fore the reply has beenreceved. The user
threadwill thenbe awakenedwhentheresult
it desireshasbeengeneratedrom areceved

reply.

In addition to requiring careful managemenbf
replies, the asynchrog of reply and event deliv-
ery alsomandateshe implementationof a simple
eventqueue.ln orderto receve aspecificreply de-
siredby the user the lower layer may have to read
pasteventresponsesentby the sener betweerthe
time the requestwas receved and the reply sent.
For a single-threadedXCB client, this presentsa

problem. XCB cannotblock until thereply is read
from the input stream:it may deadlockthe client.
However, asingle-threadeCB client cannotpro-
cessintenening events until control hasbeenre-
turnedto it. While it would be possibleto have the
XCB reply-acces#\PI returnan EWOULDBLOGK
like value,this would complicateboththe APl and
theclient. Instead XCB enqueuesgventsin asim-
ple FIFO limited only by availablememory For a
multi-threadedclient, eventswill be deliveredto a
waiting event-handlinghreadratherthanbeingen-
queued.

Thereply cookiesdescribedn Section2.1 areim-
plementedas transparentstructurescontaining a
single element:the sequenca&umberof the refer
encedrequest.Thereis onesuchstructurefor each
expectedreply type, which helps solwe the type-
compatibility problem describedin Section 1.2.
Becausghesequencaumberof arequests visible
in the reply cookie, the applicationcancorrelatea
sener-side error with the requesthat producedit.
For this reasonaswell asfor uniformity, requests
not requiring a reply also return a reply cookie.
However, thiscookieis of astructuraypefor which
nofurtherprocessings availablein the API. Hence
erroneouslyexpectinga reply to arequesthatwill
not produceoneis anerrorthatshouldbe detected
atcompiletime.

One subtlety of the X protocol is that mary re-
guestsare “pseudo-synchron’. Insteadof re-
turning a reply (and thus requiring a round trip)
with the sener-sidelD of anewly createdesource
suchas a window or font, a numericID, known
asan XID, is createdon the client sideandpassed
to the sener with the request.A careful specifica-
tion of the ID spaceensureghatthelD is globally
uniquefor thesener. Thislateng-hiding optimiza-
tion is concealedy Xlib, whereXID generations
implicit andpseudo-synchromng andsynchronous
API requestsaresyntacticallyindistinguishable.

XIDs are explicitly requesteds part of the XCB
API: a createdXID is wrappedin a structureor
union and mustbe passedvith the correcttype to
the XCB requesfAPI. An interestingype-safetyis-
sueariseshere: someX protocol requestsaccept
“subtyped” requests.For example,someprotocol

typedef struct XCB_Pixmap {
int xid,
} XCB_Pixmap;
typedef struct XCB_Window {
int xid,
} XCB_Window;
typedef union XCB_Drawable {
int xid;
XCB_Pixmap pix;
XCB_Window win;
} XCB_Drawable;

Figure 3: Declarationof the pixmap , win , and
drawable datatypes.

requestsrequirethe XID of a window, somethe
XID of a pixmap and somethe XID of a “draw-
able”, which will denoteeither a window or a
pixmap! Sincethe protocolitself dealswith win-
dow and pixmap typesas XIDs, thereis no type
issuefor the sener, which correctly tracks types
at runtime. The statictyping issueis a bit harder
given the limitations of the C type system. XCB
implementghedravableXID typeasshavnin Fig-
ure 3. The useris requiredto passeitherdraw-
able , drawable.win , or drawable.pix to
the XCB API asappropriate.This providesa stat-
ically type-safeinterface, without greatly incon-
veniencingthe XCB user Note that the ANSI
C [ANS] union semanticsessentiallyguarantee
that the correspondencbetweenthe variousxid
fieldswill hold.

As a generalrule, XCB tries not to provide trans-
parentclient-sidecachingof senerside data: do-
ing sois normally difficult, expensie andof little
benefitto mostapplications.However, onedataset
thatis transparentligachedoy XCB is themapping
from stringsto interned‘atoms”, a globally unique
sener-side mappingwhich is cooperatiely setup
by clients. The atomcacheis very effective in re-
ducinglateny andhaslow overhead.In addition,
becauset wasexplicitly designedo be cachedon

’Similarly, thereis exactly oneX protocolrequesthatac-
ceptseitherafont or a GC—a“fontable”.

the client side, the compleity of correctly main-
tainingaclientsidecacheof theinternedatomtable
is low.

2.3 The XCB API
The XCB API consistof severalkindsof calls:

e Creation functions for suchthingsasconnec-
tionsand XIDs. Thesefunctionsreturntyped
values.

e Non-blocking requests, for example

XCB_Void_Cookie

XCB_DrawPoint(
XCB_Connection c,
XCB_Drawable d,
int x, int y)

e Blocking requests, for example

XCB_Window_Cookie
XCB_GetlnputFoc us(
XCB_Connection ¢)

e Extraction functions for retrieving and con-
vertingreply data,for example

XCB_XID
XCB_GetWindowlID (
XCB_Window_Cookie «¢)

e Response processing calls to support re-
trieving events and errors. The XCB
event-processinginterface is via a call to
XCBWait _Event() : it will block until an
eventis availableandreturnit.

e A numberof miscellaneousprimitives. For
example, single-threadedX applicationsof-
tenneedto be ableto call select() onthe
soclet for a protocolconnectionin orderto be
ableto multiplex their inputscorrectly XCB
thussupportgetrieving the soclet underlying
aconnectionappropriatelymanipulatedo be
suitablefor select()

The connectioncreationinterfaceto XCB consists
of several routines. First, corveniencefunctions
areprovided to obtaina file descriptorattachedo
a sener via TCP/IP or UNIX-domain networking.
Thisfile descriptoror ary otherfile descriptorof a
sener connection,is thenpassedo a secondrou-
tine which takes careof initializing the connection
datastructuresand performingthe initial protocol
handsha&. This approachis convenientfor such
tricks asrunning X directly over a serialline, and
helpsto isolate XCB from long-termchangesn X
andnetworking ervironmentsandcorventions.

A principle goal of XCB is to provide as
lightweighta layer atopthe protocolasreasonably
possible Simply marshalingheapproximatelyl20
request®f the X protocolandtheirunderlyingdata
structuresshouldbe a large enoughjob for a sin-
gle library. The bulk of the XCB implementation
consistsof requestandresponsenarshalingstubs.
Theapproachakenby Xlib to thesestubsis atradi-
tional one: they areindividually hand-codedn C.
XCB takes a metalerel approach:a stub descrip-
tion processolimplementedusing the m4 [KR77]
macropreprocessadranslatesustomstubdescrip-
tionswrittenin aspecializednacrolanguagéento C
codeautomatically This approachhasseveral ad-
vantagesit helpsreducehelik elihoodof defectdn
thestubs allows automaticgeneratiorof documen-
tation andis easierto readand understandhanC
code. Perhapghe mostimportantadwantage how-
ever, is the reducedprogrammerburden: this ap-
proachhasbeenessentiato atimely implementa-
tion of XCB, andshouldmake it mucheasielto im-
plementextensionlibrariesatopXCB_Connection.

2.4 XCB In Action

It is interestingo tracetheflow of aaclientrequest
and responsehroughthe XCB machinery Con-
siderthe caseof aclientrequesto identify thewin-
dow with the currentinput focus. Figure 4 illus-
tratesthe flow of dataand control through XCB.
Thechainsof arravs in thefigure shav theflow of
controlof asinglethread.

First, the client issuesan XCB GetlnputFocus
API requestwith thetamet connectionasan argu-
ment. This API call returnsimmediately deliver-

Clientmakesrequest Clientrequesteturns

Replyrecordis constructed /
\

Requests enqueued

Requests deliveredto sener

Clientusesresult

Clientrequestsesult

Replyarrives

Figure4: Flow of dataandcontrolthroughXCB.

ing areply cookieof type XCBWindow _Cookie
to theclient. The upperlayerof XCB deliversthis
cookieby askingthelower layerto allocateareply
recordwith the currentsequencewumber There-
guestis alsoencodedat this time andplacedin the
lower layer’s outputbuffer for eventualdelivery. Fi-
nally the cookiecontainingthe sequencaumberis
returnedto theclient.

The pendingrequestis eventually shippedto the

X sener, whenthe buffer is flushedas described
in Section2.2. By this time, the sener may have

generate@ndshippedsereralevents whichareen-

gueuedaheadof the senergeneratedeply. When
the usercalls XCB_GetWndowID() with the reply

cookieasanamgument.thelower layerusesthe se-
guencenumberof thereply cookieto index there-

ply list, eventuallyfinding the reply record. It then
notesthat no reply hasyet beenreceved from the

sener. Initiating a blockingreadfrom the senerto

obtainthedata,thelower layerenqueuesheevents
readfrom the connectionthenreadsthereply. The

resultingreply buffer, togethemwith the connection
soclet, is passedip to the XCB upperlayer, which

assembletherequesteavindow ID from thegiven

data. Theresultis placedin the reply cookie and

the blocked requestreturnsto the upperlayer The

upperlayerremovestherelevantreply from there-

ply record freesthis recordandreturnsthewindow

requestedby the XCB_GetWindowID() call.

Alternatively, the reply may be receved before
the resultis requested.In this case,the resultis
nonethelessonstructedas the reply is receved,
anddeliveredto the client asrequested.The reply
recordtracksthe currentstate recordingwhethera
reply hasbeenreceved, and whethera resulthas
beenrequested.

3 Xlib and XCB Compared

Having discussedoth Xlib and XCB in somede-
tail, it is usefulto summarizesomeof the com-
parisonsand contrastshetweenthe two. XCB in-
troducesseveral novel featuresporrovs somenice
featuresfrom Xlib, andforegoessomeXlib func-
tionality.

Principalnew featuresof XCB includelateng hid-
ing throughreply cookies,amenabilityto use by
threadectlientsandbetterstatictypecheckingBe-
causeof its extensive use of structureand union
types XCB interfacesarewell protectechgainspa-
rametermismatches.In general the syntacticand
semanticregularity of XCB, at leastin contrastto
Xlib, shouldgreatlyeasdts use.

A variety of goodideasfrom Xlib were incorpo-
ratedinto XCB. The buffering of outputto form

large pacletsincrease®ffective bandwidthandre-

ducesnetwork load. Similarly, doinglargereadson

connectioninputwhenpossiblemaygreatlyreduce
syscalloverheadin the presencef large numbers
of events.XLib’ s sequenc@umbermanagements

quite clever: in particular the useof a dummyre-

guestrequiringareplyto bothskipasequencaum-

berandestablishasynchronizatiomointis imitated
by XCB in sequenc&@umbermanagementXLib’s

proviso for direct select() accesdo the con-

nectionfile-descriptorhasproven to be important
for single-threade@pplicationsand was included
in XCB for thisreason.

Somefeaturesof Xlib, includingsomequite useful
ones,were droppedon the theory that they could
not carry their own weightin implementatiorsize
and compleity. Notably XCB is a fairly direct
binding to the X protocol: it doesnot sendmulti-
ple requestgor large inputs, directly marshalmul-
tiple results,or cacherequestbor reply information

locally (with the exceptionof theatomcache).The
complicatedinput processingof Xlib is not pro-
vided, noris ary directsupportfor i18nfeatures.

Perhapshe mostnotablefeatureof Xlib missingin
XCB is Xlib compatibility in the API: it would be
nice to be ableto achieve someof the XCB gains
by relinking existing applications. While, for the
reasonglescribedmmediatelyabore this is not a
feasiblegoalfor XCB itself, it is believed thatwith
reasonableffort a lightweight Xlib compatibility
layercouldbe placedatopXCB.

4 Statusand Futur e Work

An XCB codebaseis currentlyunderdevelopment.

Simple exampleswork, but muchwork remainsto
completetheimplementation Oncetheimplemen-
tation of the core protocolis complete,work will

commenceon the implementationof mary of the
X Consortiumand XFree86 extensions. Finally,

the longerterm goal of layering font and render
ing supportatopXCB shouldeventuallyleadto an
Xlib compatibilitylibrary, aredesignedC interface
for standalon@rogramsandatoolkit.

Availability

When complete,the XCB implementationwill be
madefreely available underthe XFree86License.
More information should appearon the web at
http://xcb.cs.p dx.e du in thenearfuture.

Acknowledgments

Theauthorgratefullyacknavledgesthe adviceand
assistancef Keith Packardin the analysisdesign,
andimplementatiorof XCB.

References

[ANS] X3.159-1989.

[Gai93] Jean-loupGailly. Gzp: the data com-
pression program, 1.2.4 edition, July
1993.

[KR77]

[KR78]

[Nag84]

[NBF96]

[Pac01]

[SG86]

[SG92]

Brian W. Kerninghanand Dennis M.
Ritchie. The M4 Macro Processor.
AT&T Bell Laboratories,1977. Unix
Programmes Manual Volume 2, 7th
Edition.

Brian W. Kerninghanand Dennis M.
Ritchie. The C Programming Language.
PrenticeHall, 1978.ISBN 0-13-110163-
3.

JohnNagle. RFC896: Congestioncon-
trol in IP/TCP internetworks. RFC
896, Ford Aerospaceand Communica-
tionsCorporation,1984.

Bradford Nichols, Dick Buttlar, and
JacquelinéProulx Farrell. Pthreads Pro-
gramming, A POS X Sandard for Better
Multiprocessing. O'Reilly & Associates,
Inc., first edition, Septembel 996.

Keith Packard. An LBX postmortem.
http://xfree86 .0rg/ “keithp/
talks/Ibxpost , January2001.

RobertW. ScheiflerandJim Gettys. The
X window system ACM Transactionson
Graphics, 5(2):79-109April 1986.

RobertW. ScheiflerandJamessettys. X
Window System. Digital Pressthird edi-
tion, 1992.

