
Schema and Tuple Trees: An
Intuitive Structure for
Representing Relational Data

Eric H. Herrin, II and Raphael A. Finkel

University of Kentucky

ABSTRACT: Qddb is a publicly available database
suite designed for applications in which the data is
a set of records, each containing hierarchical struc-
ture. For example, a database of patients contains a
record for each patient; each patient record has mul-
tiple copies of visit substructures. Records containing
such nested and replicated attributes are equivalent to
the join of traditional relational tables. Qddb records
therefore allow the data to be recorded in a more natu-
ral fashion than relational tables.

The presentation of data in Qddb is unusual but
intuitive; the user usually views a subset of a full rela-
tional row at any given time.

This paper presents schema and tuple trees, the un-
derlying structures of a Qddb database. Instead of a set
of full relational rows representing the join of several
tables, the tuple tree repnesents the tables in a com-
pressed form. Related data are stored and displayed
together, which allows the application designer to build
an application in a relatively small amount of time.
The algorithms for search and presentation are quite
efficient.

@ 1996 The USENIX Association, Computing Systems, Vol. 9 . No. 2 . Spring 1996 93

l. Introduction

Conventional relational database implementations can be cumbersome to use and

program. A single database often requires many tables of interrelated informâtion.
The relationship between the tables is well-defined but can be difficult to translate

into a usable application. Allowing an arbitrary number of values in a field gener-

ally requires that the field be linked to a separate table built for just that purpose.

The links between tables are often unique identifiers that the user must invent and

that the application must check for uniqueness and consistency across tables. Each
extra table therefore places a burden on the designer, the database prografiìmer,

and the end user.

To avoid a proliferation of tables, designers tend to limit the number of values

in a ûeld (such as the number of addresses an individual may have). The result
can be frustrating to users who need to deal with exceptional cases that do not fit
these limits.

This paper shows how Qddb [Herrin, II & Finkel 1991] alleviates most of the

tedious work involved in designing relational tables that have fields that may have

an arbitrary number of instances. The Qddb technique has other surprising and

helpful characteristics.

We begin with a small example to show how a schema tree can be used to
define a database. Next, we discuss the relationship between schema trees and tu-
ple trees. Finall¡ we concentrate on tuple trees and their characteristics, including
intuitive presentation forms and algorithms for generating those presentations.

2. A Motivating Example

A Qddb schema defines the layout of data tuples in the database. The schema is
in the form of a tree that we call the schema tree. Each individual tuple in the

relation is represented in a corresponding tuple tree.Each branch of the schema

tree may be associated with multiple copies in any given tuple tree. Each duplicate
is called an instance. The leaves of the tuple tree hold the actual data.

Eric H. Herrin, II and Raphael A. Finkel94

To demonstrate these concepts, consider the following three tables in a ftadi-
tional relational database:

Client
Client Id Name Address Home Phone ÏVork Phone

I
2

3

George Goodan

Joan Goodan

Henry Zellerman

123 Hardy Rd
123 Hardy Rd

378 Jaclynne Rd

277-1234

277-1234
262-6432

278-5432
278-5432

268-9678

lnvoice

Client Id Invoice Id Item Id Price

I
I
I
2

1232 $1.20
1233 s2.40
ttzt $7.30
3214 $100.00

Invoice Total
Invoice Id Invoice Total

2

2

2
a
J

1

2

$10.90
$100.00

In traditional relational databases, each table has its own schema. Each client
may participate in multiple invoices; the Client and the Invoice tables are linked
by the Client Id fields. If a client may have an arbitrary number of addresses or
phone numbers, we could build new address or phone number tables and also link
them by the Client Id field.

Presentation of data across tables is constructed by an appropiate join op-
eration. For example, if we want to present a particular invoice, we (1) find the

desired invoice in fhe Invoice table, (2) use the Client Id to flnd the correspond-

ing client in the Client table, (3) use the Invoice Id to find the invoice total in the

Invoice Tbtal table, and (4) present this data in a usable form. These accesses rep-

resent a considerable amount of complex work for the application programmer.

Complex work is both expensive and prone to errors, so we would like to elimi-
nate as much of the complexity as possible.

These three tables shown can be described in Qddb by a single schema tree.

Because trees can be represented in a list form, and programmers are generally

quite familiar with lists, we choose to represent our schema trees as lists. (End

users do not need to see this representation.)

A Qddb schema is a set of attributes, where each attribute may contain other
attributes. Here is the appropriate schema:

Client (Id Nane Address Ho¡oePhone ülorkPhone)
Invoice (Id Item (Id Price)x Total)*

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data 95

96

Figure 1. A sample tuple tree.

This list has two elements, Client and Invoice. Each is an attribute of
the schema. Client is a structured attribute.It has five subattributes, C1ient . Td,

Client . Name, and so forth. These have no subattributes of their own, so they are

leaf attributes and represent slots for data.

The asterisk '*' denotes that an attribute or subattribute is expandnble; in
other words, it may have any number of instancesl. These expandable attributes
are equivalent to the joined tables shown earlier. Expandable attributes may be

sffuctured; their subattributes may themselves be sffuctured and./or expandable.

In our example, Invoice is a structured, expandable attribute, and its subat-

tribute Invoice. Iten is also both structured and expandable. A tuple that obeys

this schema may have many instances of Invoice, each of which may have many
instances of fnvoice. Iten.

In relational terms, the Qddb database contains the data from the three joined
tables. Each Qddb tuple corresponds to exactly one entry in the Clients table. That
client may be associated with an arbitrary number of entries in the Invoices table.
Each invoice contains an arbitrary number of items (each with its price) and a
total.

To access an invoice with a particular identifier, we only need to find the

unique tuple that has an instance of Invoice. Id with the appropriate value.
The associated instance of that tuple's Invoice attribute has all the information
we seek. If we never plan to search invoices, clients, or items by their identiflers,
all Id flelds are extraneous and may be removed.

1. Non-expandable attributes have exactly one instance, although the instance may be empty. The application
prograrnmer can require the user to enter data and can therefore effectively disallow empty instances.

Eric H. Herrin, II and Raphael A. Finkel

Figure I shows a tuple tree for the schema tree presented above. Every branch

of the tuple tree is a copy of a branch in the schema tree with instance nodes in-

serted between each level. If an attribute is expandable, there can be multiple in-

stance nodes (1 ' . .n), each of which heads its own subtree. Leaf attributes also

have instance nodes (not shown) that point to data.

The schema tree presented above is nearly as inflexible as original relational

tables, although it is perhaps clearer. Suppose we want to associate each client

with an unlimited number of addresses and phones. Further, suppose we want to

associate some phone numbers with particular addresses and other phone num-

bers with no address at all (perhaps for mobile phones). The schema tree can be

upgraded to cover these needs:

Client (

ïd
Name

Residence (Address Phonex)*
Phone (DescriPtion Nr¡mber)*

)
rnvoice (rd rten (rd Price)x Total)*

To represent this schema in a tabular form would require six tables, the original

three tables plus two different ones for phones and one for residences. Two new

kinds of unique identifiers would be needed, one for residences and one for no-

address phones. These identifiers would link the tables.

As the number of expandable fields increases, so does the number of tables re-

quired to represent them. For that reason, relational database designers tend to shy

away from such data. The Qddb schema tree, however, allows us to specify the re-

lational tables in an easily conceivable form. The application programmer doesn't

have to worry about building multiple tables and setting up appropriate links be-

tween the tables, so expandable attributes are welcomed if they are appropriate'

3. SchemaTrees

A schema tree descrlbes the structure of tuples in the database. It indicates which

attributes are structured and/or expandable. It also contains type information for

leaf attributes. As shown above, schema trees represent many linked relational

schemas. Schema trees have the following properties.

1. Each node in the schema tree has a unique path name.

2. A subtree of the schema tree headed by any node contains all the attributes

logically associated with that node.

Schema and Tuple Trees: An Intuitive Structure for Represenfing Relntional Data 97

3. By traversing the subtree headed at arry node, we can find all the relational
tables logically associated with that node.

4. By traversing the associated subtree of the tuple tree and collecting values

at leaf nodes, we can build the join of all the associated relational tables.

5. We can traverse the schema tree to build an intuitive user interface showing
the relationship among the attributes.

Subtrees allow us to restrict our attention. For example, suppose we

want to add a new residence to a client's record. To perform this task in a
database using relational tables, we would (1) find the client in the Client ta-

ble, read Client Id, (2) add a new row to the Residence table with Client Id
and a new unique Residence Id, and (3) add one or more phone numbers to
the Phones table, each with the appropriate Residence Id. With schema trees,

however, we only need to find the client and add a new section of the tuple
tree corresponding to the Residence attribute. Multiple phone numbers can

be added to the new instance by creating a new section of the tuple ffee cor-

responding to the Residence . Phones attribute under the same instance of
Residence.

We have demonstrated that a recursively-structured schema tree can describe

a set of relational tables where rows in a subordinate table are related to a single

entity. In database terminology, these are one-many relations.

Tables that are related in more complex ways, such as many-many relation-
ships, can still be described by a set of schema trees. Two schema trees are linked
much in the same way that conventional relational tables are linked. For example,

consider the following two schema ffees linked by the SociatSecurityNunber
field:

Person schema tree
Name (First tast)
SocialSecurityNunber
Address (

Street City State ZipCode
)r.

Conpany schena tree
Conpa:ryName

98 Eric H. Herrin, II and Raphael A. Finkel

ConpanyAddress (

Street City State ZiPCode

)*
Employees (

SocialSecuri.tYNunber
Position
SalaryHistory (

Date
SaIary

)*
)*

These particular relations should not be represented by a single schema tree

because it is a many-many relationship. A person can be an employee of mul-

tiple companies. If you change the Address field of the Company relation,

you want the Address field to charige whenever accessing employees of that

company.

3.1. SchemaTrees as Full Database Descriptors

We have seen how schema trees can be used to describe the relationship between

relational tables and to create new, logically related, entries in those tables. We

now describe how.Qddb uses the schema tree to fully describe a database by es-

tablishing types, verbose ûeld natnes, search options, word descriptions and value

formatting.

Qddb associates a type with each leaf attribute, either a numeric type (real,

integer, or date), or string. Numeric values may be associated with a format for
display (not input) purposes. The string type consists of words interspersed with
separators. Usually, separators are taken to be any non-alphanumeric characters,

but the schema may specify other separators. Strings are of arbitrary length.

Each attribute in the schema may be associated with a verbose (many-word)

name for display purposes. By default, database searches cover values in all leaf

attributes (in relational database parlance, all attributes are indexed), but the de-

signer can exclude individual attributes from the indices to reduce their space

requirements.

The schema itself is maintained in a free-format ASCII file that can be created

by any text editor. Each attribute or subatffibute in the schema is of the form:

AttributeNane ?<options)? ?(<subattributes>)? ?*?

99Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data

'where we use the ?? notation to indicate optional syntax. The <options> may be

any of:

Option Purpose

verbosename "string" Verbose name of attribute
type string Attribute has type string [default]
type date Attribute has type date
type integer Attribute has type integer
type real Attribute has type real
alias AttributeName A unique alias for the attribute
separators "string" Words are separated by one of the characters in "string"
forma! "string" Format the attribute based on "string"
exclude Exclude the attribute from indexing
defaultvalue "string" A default value for each instance

To represent a simple database of potential employees, we might keep their
name, addresses, phone numbers, rank, and date of application. A schema for this
relation could be:

Name (First Middle Last)
Address (

Street exclude type string
City
State
Zip verbosename "Zip Code"

)*
Phones (Desc verbosename "Description" Number)x
Rank

type integer
fornat "%2dtt
verbosename "Prospect ranki-ng"

Date type date fornal "o/oD
n/oT"

verbosename "Date Applied"

Real and integer formats are specified in the standard format for printf) in the

ANSI C standard, and dates are specified in the standard form accepted by the

POSX function sffrtime). All formats pertain to output conventions; input con-

ventions are those accepted by atoi) (integers), atof) (reals), and a wide variety
of forms (dates).

3.2. Enumerating Attributes Wíthin a Schema Tree

It is important to be able to uniquely distinguish attributes in a schema tree. For
this reason, a schema must uniquely name attributes at the top level of each sub-

100 Eric H. Herrin, II and Raphael A. Finkel

tree. Attributes across levels may have identical names. For example, consider this
schema:

A(Bq)*BC

The leaf attributes are A. B, A. C, B, and C. When we refer to B, we are referring to
the leaf attribute B, not A. B.

A depth-frrst traversal of the schema tree generates the set of leaf attributes.

This set, displayed with one column for each leaf attribute, is called a complete

row of the schema. If we wish to elide certain uninteresting parts of the complete

ro% we may ignore the columns comprising those parts, resulting in a partial
row. For example, if we are only interested in the leaf attributes B and C, then we

exclude attribute A and all its leaves from our traversal.

4. Tuple Trees

A tuple tree contains all data for a particular tuple in the database. It represents

data from all the joined relational tables described by the associated schema tree.

Structurally, it is an exact duplicate of the schema tree with a level of instance

nodes placed after each level of attribute nodes (including the leaves).

The tuple tree allows programs to manipulate entire sets of related rows with
simple operations. We can view, add, delete, or modify branches. We can produce

rows relating to a branch by ffaversing only the part of the tree that is of interest.

For example, an application might create a new branch of a tuple tree. Each

attribute is initialized to have a single instance. The application might then build
a new instance for an expandable subtree. Then it might assign values to leaf at-

tributes.

V/e might also want to delete an entire branch of the tuple tree. Suppose we

have the following schema and corresponding tuple:

Schema

Name

Address (Street City State Zip Phonesx)*
Phones (Desc Nr¡mber)*

Tuple
Nane = t'Joe Rohnt'
Address (

Street = rt23 Anyway Dr."
CitY = t'Georgetownt'

State = "Virginia"
ZiP = "4190t"

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data 101

Phones = "(654) Lt!-tt2t"
Phones = "(654) !Lt-L122x

)
Address (

Street = "3t2 Anyway Dr."
CitY = "Georgetown"
State = "Virginia"
ZiP = u41908u

Phones = "(654) ttt-1123"
Phones = "(654) !1t-II24"

)
Phones (

Desc = ttHome"

Nunber = "(654) 234-L232"
)

If we wish to view a table consisting of the Address. Street and

Address . Phones fields on this tuple, we traverse the tuple tree and produce the

following table:

Address.Street Address.Phones
123 Anyway Dr. (654) lll-11.21
123 Anyway Dr. (654) lll-1122
312 Anyway Dr. (654) llI-1123
312 Anyway Dr. (654) lll-1124

If we delete the branch of the tuple tree corresponding to the Address field
containing "3'1.2 Anyway Dr." we also implicitly delete the two phone numbers

"(654) lll-1123" and "(654) lll-1124" associated with that address.

4. 1. Identtlying Leaves

'We must be able to uniquely identify individual leaves in the tuple tree. V/ithout
this ability, we cannot construct the tree from the values nor can we tell which
attribute values are related.

A tuple tree has the following convenient properties: (1) each attribute node

has a unique local name (that distinguishes it from its siblings), and (2) each in-
stance node has a unique local number (that distinguishes it from its siblings).

In Figures I and 2, attribute-node siblings are shown surrounded by a gray box.
'We number all the attribute-node siblings (within a single gray box) L,2,3, and

I02 Eric H. Herrin, II and Raphael A. Finkel

1.1.3.11.r.3.1 2.7.2.1.1.1 2.7.2.1.2.1

Figure 2. Enumerating the leaves of a tuple tree.

so forth. Then we assign each leaf a label formed by the concatenation of the lo-
cal numbers on the path from the root to that leaf, using a dot as a separator, as

shown in Figure 2. The superscripts.in the frgure refer to the attribute number.

Therefore, the first instance of fnvoice. Iten. Id (first item in the seventh in-
voice) is labelled *2.7.2.1.1.1'. We call these leaf labels leaf identifiers. Prefixes

are called path labels.Integers at odd positions in a path label (that is,2,2, l) are

due to attribute numbers; integers at even positions (7, t, l) are due to instance

numbers.

4.2. Expandable Attributes and Their Relation to Tables

We can think of each expandable Qddb attribute A as a separate relational table.

The subattributes of A form the columns of the table. (If A is not structured, the

table has one column.) In addition, the equivalent relational tables must contain

a link column with a unique identifier for joining with other tables. For example,

anattribute A whose schemais A (B C D)* is atable with columns B, C, and D.

A single tuple gives rise to several rows in that table, one for each instance of
attribute A.

Since both structured and non-structured attributes can be expandable, we can

easily describe very complicated relationships between the tables. For example, we

might have the following schema:

Schemq and Tuple Trees: An Intuitive Structure for Representing Relational Døta 103

Location (

Name*

Address (Street City
Phone (Desc AreaCode

)

State Zlp Contact*)*
Number)*

This Qddb example is equivalent to a relational Location table containing
coluÍrns Name, Address, and Phone. The Address column contains unique iden-
tifiers linking it to a separate Address table, which contains, besides the link col-

umn, coluÍtns Street, City, State, Zip, and Contact. The Contact column contains

unique identifiers linking it to a separate Contact table, which contains, besides

the link colurnn, a single data column. Similarly, the Name and Phone columns of
the Location table are links to other tables. In all, there are five tables, interlinked
with a web of unique identifiers.

The tuple tree is a convenient abstraction for manipulating related rows in
possibly many relational tables. Relational rules may be enforced at the appli-

cation level to ensure full compliance with the relational model (for example, to

enforce non-empty fields or indivisible search values.) Any set of tuple trees can

be decomposed into proper relational tables, although unique link fields must be

invented when performing this decomposition. Any set of relational tables may
also be composed into a set of tuple trees; existing link flelds are extraneous and

may be removed.

4.3. Generatíng All Rows

The tuple tree lets us construct all rows pertaining to the tuple without expensive
join operations on large tables. The following algorithm produces all rows from a

given node in a tuple tree:

procedure ProduceAttributes (AttributeNode) : set of ror¡s
anshrer := NULL

for each Inst := instance of AttributeNode do

ansú¡er := union(answer, Producelnsta¡ces(Inst))
return ansïÌer

procedure Producelnstânces (InstanceNode) : set of rows
if leaf (Insta¡ceNode) then

return InstanceNode. Value
else

answer := NULL

for each Attr := attri-bute of Inst¡nceNode do
ânstrer ¡= ç¿¡lsgjan product(answer,

ProduceAttributes (Attr))
return ansl^Ier

I04 Eric H. Herrin, II and Raphael A. Finkel

E
I

upon midn¡ght dreary wh¡lepondered weak over many qua¡nt curious

Figure 3. Traversing a tuple tree.

The union operator returns a table that combines all the rows of its two
operands, which agree on number and type of columns. The cartesian prod.uct
operator returns a table that combines all the columns of its two operands, with as

many rows as the product of the rows of the two operands.
'We

can build all the complete rows of the tuple tree for a given tuple:

Producelnstances (RootNode)

'We
can also build partial rows pertaining to subtrees. For example, we could find

all information about the 7th invoice for a particular tuple as follows:

Producelnstan ces(2.7)

The result is a table with columns:

Invoice.Id Invoice.Itern.Id Invoice.Iten.Price Invoice.Total

The values for the Invoice . Id and Invoice . Total columns are the same for all
rows. We can natrow our focus and consider only items in the 7th invoice:

ProduceAttrib utes(2.1 .2)

The result is a table with columns Invoice. Iten. Id and fnvoice.Iten. price.
Figure 3 depicts a tuple tree for the schema A (S C* D)*. An invocation of

ProduceAttributes (RootNode)

on this tuple tree returns the following table of complete rows:

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Døta 105

A.B A.C A.D

once upon dreary

once midnight dreary

while pondered weak

over many curious

over quaint curious

Now suppose we aren't interested in the A. C attribute. Excluding the unde-

sired attributes from the haversal builds the following table, which accurately

restricts the previous one:

A.B A.D

once dreary

while weak

over curious

4.4. Sparse Data

Many database applications manipulate sparse data; that is, many fields are empty

in any given tuple. One advantage of the tuple tree is that we can reconstruct the

entire tuple tree from only those leaves containing data. Qddb's external repre-

sentation only stores attributes with non-empty data. For example, consider the

following modification of the tuple tree in Figure 3 to include fewer populated

leaves:

l.t.2.l upon

1.t.2.2 midnight
l.2.l.l while
I.3.2.1. many

1.3.2.2 quaint

1.3.3.1 curious

From these leaves, we know there are three instances of attribute A, the first

and third of which contain two instances of A. C. When Qddb reads in these

leaves, it can build an entire internal tuple tree. The algorithm for building tuple

trees from a given set of leaf values (each with a leaf identifier) is as follows:

1. Construct a tuple tree containing one instance for every attribute in the

schema. All leaves start with empty values.

2. For each given leaf value, follow its path label, diving down the tuple tree

according to the label's components.

106 Eric H. Herrin, II and Raphael A. Finkel

(a) If we reach an instance that doesn't exist, create the instance and its entire

subtree, giving all leaves empty values.

(b) When we reach a leaf, set its value to the given value.

The implementation of this algorithm is most efficient when the leaves are

presented in left-to-right order by leaf identifier. The external representation

of Qddb data always maintains order because it is generated from a left-to-right

depth-first traversal of an internal tuple tree.

4.5. Locking

Locking rows in a traditional relational database can be a non-trivial task. A set

of related rows may be spread across many tables, requiring many locks. Locating

the rows to lock may require queries on many tables.

A tuple tree is stored externally as a contiguous list of leaves. The entire con-

tiguous region of the database flle can be locked to achieve a lock on a given

tuple. Qddb does not lock at a finer grain (such as a subtree of the tuple tree),

although subtrees are also stored contiguously, and Qddb therefore could easily

accomplish finer-grained locking. It is straightforward to lock multiple tuple trees

if the need arises.

5. Indexing and Searching

Locators are pointers into data. They contain two components: a tuple identifier
and a leaf identifier. Each tuple in a relation can be located with its tuple identi-

fier. Each leaf within a given tuple is uniquely identiûed by its leaf identifier.

Qddb associates a list of locators with every key,that is, every searchable

value found in the tuples. We call this association the index into a Qddb rela-

tion. The index can be accessed in three ways. The most direct way is by hashing

the given key to flnd the associated locator list. Word-range and numeric-range

searches are performed by binary search in a sorted key or number file, leading

to a contiguous set of entries, each of which points to a locator list in the index.

Regular-expression searches use finite-automaton search through the sorted key

file, leading to a set of matching entries, each of which points to a locator list in
the index.

In all cases, searches yield a list of locators. If only the list of tuples is

needed, this list can be pruned by discarding duplicate locators that have the same

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data 107

tuple identifier. If the search is to be constrained to particular attributes, the list of
locators is pruned by discarding all locators with irrelevant leaf identifiers.

Complex searches are constructed by applying simple searches and combining
the results. We will demonstrate several examples based on this schema tree:

Name (First Last) Address (Street City)*

A sample complex query might be: Find all tuples with the value "Joe" in
the Nane. First field and "Harrison" in the Nane . Last field. In other words, we
want to find tuples that satisfy the following expression:

(Name.First = "Joe") a¡d (Name.Last = "Harrison")

This query requires three steps: (1) Search for all tuples with Name.First con-

taining "Joe", (2) Search for all tuples with Name. Last containing ooHarrison", and

(3) construct a weak intersection of the matching locators. A weak intersection

ignores the leaf identifiers of the locators and uses only the tuple identifiers for
comparisons. Only tuples that match both searches remain after the intersection.

Strong operations on locator lists do not ignore the leaf identifiers. Strong

operations use both the tuple identifler and the leaf identifier for comparison pur-
poses. Two locators are equivalent if both the tuple identifiers and leaf identiflers
are identical. For example, a sffong intersection of sets A and B produces all lo-
cators that reside in both sets; a weak intersection produces all locators with tuple

identifier ú if at least one locator with tuple identifier ú resides in both A and B.
Strong operations generally operate on lists that contain locators associated with a

particular attribute.

We can also do binary union and exclusion operations on locator lists. Binary
union merges two sets of locators. Binary exclusion of two sets A and B produces

all locators that are contained in set A but not in set B. Binary exclusion has both

weak and strong forms. Binary union does not have a weak or strong form be-

cause no comparisons are used in the operation.

Suppose, for example, we want to f,nd all occurrences of "Joe" in the

Na:ne. First field where the Name. Last field is not "Hartison". In other words,

we want

(Nane.First = "Joe") and ((Name.Last = ".x")
ninus (Name.Last = "Harrison"))

The syntax ". *" means 'oany value." The search first builds the locator lists (,4.,

B, and C) for the three subexpressions from left to right; it then performs a strong

exclusion (B - C) and a weak intersection (A n @ - C)) to produce the result.

108 Eric H. Herrin,II and Raphael A. Finkel

5.1. Finding Tuples with Matching Rows

In our previous example, the attributes of interest were not expandable. Expand-

able attributes provide an interesting dilemma: how do we know if two matching

locators belonging to the same tuple are in the same row? To illustrate this prob-

lem, consider the query:

(Address.Street = "Rainbor¡") a:od (Address.City = "Lexington")

A tuple may have the following values for the Address attribute:

Address.Street Address.City
Rainbow

Nichols
Pittsburgh

Lexington

Such a tuple will be produced by the weak intersection of the two expressions, but

is not a proper result, because the two expressions fail to match on the same row.

For two leaves to be in the same row, they must be in the same instance of
their deepest common attribute ancestor. In our case, they must be in the same

instance of Address. (In the previous cases, they must be in the same instance of
Name, but this attribute is not expandable, so all results were in the same row.)

'We can determine whether two leaves are in the same row by (1) comparing

the leaf identifiers of the two leaves from left to right, and (2) noticing the first
position that the attribute numbers (odd positions) or instance numbers (even po-

sitions) differ. If the trst difference is an attribute number, then the two leaves are

in the same row. If the first difference is an instance number, then the two leaves

are not in the same row.

Suppose we perform a query Q that returns a set of locators ,L describing the

results of our query. We want to find all rows that match our query Q. The follow-
ing algorithm accomplishes this task:

1. Let ? be the set of all tuple trees in the relation.

2. Let A represent all attributes in the schema tree that were used in our query

a.
3. Partition the set ,L into a set

^9
of subsets. Each subset s € ,S contains all

locators I e -L describing a single tuple t € T; that is, there is a one-to-one

correspondence from each element s e ,5 to an element t e T.

4. For each s € ,S,

(a) For each attribute a e A, place all locators I e s describing attribute ¿

(regardless of instance) into a set so. A set sa:Ø if and only if there is

no locator I e s describing a match on attribute û,.

Schema and Tuple Trees: An Intuitive Slructure for Representing Relational Data 109

(b) If for any attribute a < A, so : Ø, then the tuple tree ú described by s
does not contain a row that satisfies Q.Let,S : ,9 - s, then continue
with the next s € ,S.

(c) Otherwise, perform the cartesian product R: ØoeAso.
(d) For each r € -R, check to see if all locators in the components of r

are in the same row. If no r e .R satisfies this condition, then the tuple
tree ú described by s does not contain a row matching query Q; let

^9
:

^9 - s and continue with the next s e ^9. Otherwise, do not modify
,5 and continue with the next s €

^9.

At the completion of this algorithm, each remaining s € .9 describes all rows
in a single tuple ú e T that satisfy Q. For each s € ^9, we can find all the tu-
ples that satisfy Q by the tuple identifier contained in any locator I e s. We now
have a set of tuple identifiers completely describing the locations of the tuple trees
satisfying query 8.

This algorithm finds all tuples wifh at least one matching partial row (partial
in that it considers only the atffibutes in the query) without reading the actual
tuple tree data. Each matching row may represent several complete rows; this
expansion can be determined only by reading the data. For most purposes, this is
a very efficient mechanism for determining which tuples match a particular query;
we only need to read the tuples that contain at least one matching row.

5.2. Generating Matching Rows

After applying the algorithm presented in Section 5.1, we have a set ,5 that con-
tains a subset of locators s € ^9

for each tuple ú e ? satisfying our query 8.
Each subset s describes all the locators for each attribute in a paficular tuple
matching our query. We know each tuple is guaranteed to contain at least one
row satisfying our query. We must now read the tuple's leaves from the disk to
build the tuple tree and produce all matching rows. Once we have the tuple in the
form of a tuple tree, we mark all leaves matching our query as good. We mark
bad all leaves of searched attributes that are not marked good, because we know
that these leaves did not match our query. A traversal of the tuple tree will pro-
duce all rows matching the query if we exclude any row containing a leaf that is
marked bad.

For example, suppose we have the tuple-tree shown in Figure 4 and we search
on the attributes A. B and A . C. Suppose we know this.tuple matches because the
algorithm presented in Section 5.1 produces a subset s e ,5 corresponding to this
tuple. Suppose our set s describes the leaves (1.1.1.1 1.1.2.2 I.2.2.t), so we mark

110 Eric H. Herrin,II and Raphael A. Finkel

1.1.2.1 1.1.2.2 1.2.2.1 1.3.2.1 1.3.2

Figure 4. Generating rows in a tuple tree matching a query.

those leaves as good. (Figure 4 shows them with a superscript 'G'.) The searched

attributes are A . B and A. C, so we mark all instances of A. B and A. C that are not

marked good as bad (shown with a superscript 'B'.)
To produce all rows matching the query for this tuple, we use the following

modification of the algorithm presented in Section 4.3:

procedure ProduceAttributes (AttributeNode) : set of ro¡¡s
ânsûer := NULL

for each Inst := instance of AttributeNode do

answer := union(answer, Producelnstances(Inst))
return a¡rslJer

procedure Producelnstances (Insta¡ceNode) : set of
if leaf (Insta¡ceNode) then

if bad(InstanceNode) then
return NULL

else
return InstanceNode.Value

else
anslrer := NULL

for each Attr := attribute of Insta¡ceNode do
answer := cartesi.a¡ product(rtts¡¡er,

ProduceAttributes (Attr))
return ânswer

Using the above algorithm on the tuple shown in Figure 4, we get the follow-
ing single row:

1.1.1.1 1.1.2.2 1.1.3.1

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data 111

1.3.2.1 1.3.2.2

The other rows were eliminated because one or more of their leaves were
marked bad. This algorithm will not generate false matches because each leaf that
represents a searched attribute is marked bad unless a locator is found for that
particular leaf.

5.3. Efficiency

Tuple trees are generally stored contiguously. Each tuple tree contains all the rela-
tional rows logically related to that tuple, so the following tasks are greatly simpli-
fied:

1. Reading-tuple trees can be read in a single flle system read operation, so

all rows related to that tuple are available for processing.

2. Locking-tuple trees can be locked by a single file system lock operation.

3. Writing-tuple trees can be written with a single file system write opera-
tion.

4. Addition-tuple trees (or any sub-tree) can be added with a single operation
on an in-memory tuple tree.

5. Deletion-tuple trees (or any sub-tree) can be deleted with a single opera-
tion on an in-memory tuple tree.

Tuple trees need not store empty attributes, either in memory or in a file, so

sparse tables may be represented in a very compressed form. The main disadvan-
tage of the tuple tree is that leaf identifiers must also be stored with each attribute
value in the tuple. To eliminate much of this overhead, we can enumerate all pos-
sible leaf identifiers with base-36 indices (

o,-z 0-9

) and store the index instead of the full leaf identifier. For example,364
(I,679,616) unique leaf identiûers can be representedby 4 digits (a 4-byte over-
head per attribute). In practice, tuple trees tend to have a high level of leaf identi-
fler replication between different tuple trees, so the number of unique leaf identi-
fiers is typically quite small.

6. Presentation

Tuple trees lend themselves to various representations for different purposes. The
external form used by Qddb in its database files prefaces each value with its leaf
identifier, omitting those attributes that have empty values.

II2 Eric H. Herrin, II and Raphael A. Finkel

The readable form is a textual representation of the tuple tree with attributes

given their local (textual) names and with structured attributes surrounded by

parentheses.

For example, consider the following schema tree: A (Bx C) x D. A simple

readable form of a tuple tree might be:

A(
B = rr1otr

Ç = tt2grt

)
D = u30u

A is a structured attribute containing subattributes B and C. Since the attributes A

and A. B are expandable and values can be empty, tuples can be more complex:

B - il10[

B = rr80rr

C = tt26"

B = rr40rr

)
D = x30rr

Multiple instances of expandable attributes are always adjacent in the readable

form. Attributes with empty values are omitted. Qddb uses the readable form for a

text-editor interface to data.

For the convenience of Tcl prograÍrmers, Qddb supports the tcl form of tu-
ple frees. In this form, a tuple tree is a list of (attribute, value) pairs, where the

attribute is a leaf identifrer and the value is a string.

The newest presentation form of a tuple tree is the graphical form. The graph-

ical form is displayed in a window (in the X Window System [Scheifler & Gec

tys 19861). Given the following schema tree, Qddb tools automatically build the

graphical form of the tuple shown in Figure 5.

Na.ne (First Last)
Address (Street City State Zip Phones (Desc Nunber)x)*
Phones (Desc Nr¡mber)*

A(

)
A(

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data ll3

,*i.,[õi,gùier Ë;*fåtÊ

Itrti¡ ress AdÃrt M *N 2fr4 1.t

lêÊ i:gq[-f:dÉ r .n

ffi4*qiqìi#,#t*
ssf¡Èy¡;iT's::.W&.tÅ:,:itwftjs:*;tt::¡

ffiËÉ¡iit'fÉ¡i*

,sÈr Ç.ð:*l*.¡l: :s9*!riç .[fË#.i l$n4:

iç*t*.

Ë,Fefe{s,r!,Îry+ilf
ã$ti;}*9Ðo,r

Wvttw* 4&tr1s'rryt1r,"t1 DE$çittË:

*tääft**ll'{C.A:l

r+ø¡¡i*s n¡¡¡* I t:asT æf I
¡i¡l,HÊF4rlt:¡lii::l:iiiiiiii¡i:;;iiir::i¡ri iir¡'¡,,rii' "');*,ri*;ü--r,rri,-i,---,--i---,***e
Itumu,iJr.lt606) ??9-1?3.4.. ., , .: .1'::

Figure 5. The graphical form of a tuple tree.

The graphical form looks very similar to the schematree2. At any given time,
the graphical form displays one complete row in a single tuple.

Rows of an expandable attribute associated with the current complete row
are accessible by interactively selecting a "View" button. This button invokes
the ProduceAttributes algorithm intoduced in Section 4.3. For examplen suppose

we are in the 2nd instance of Address and wish to view Address.Phones. The
viewed rows are produced by evaluating:

r = ProduceAttributes(Address.2.Phones)

If we choose to view the Address attribute, the viewed rows are produced
with:

r = ProduceAttributes (Address)

In other words, choosing the Address attribute's "View" button shows

all possible rows beginning at the Address node in the tuple ffee. Choos-
ing the Address.Phones "View" button shows all rows beginning at the
Address . Phones node in the current instance of Address in the tuple tree. All
views are configurable, that is, the user can choose to view only certain columns,
sort by given columns, and order the columns.

The user can add a new instance of an expandable attribute by selecting the
"Add" button. This button adds an entire branch (with initially empty contents or

2. Qddb comes with interactive tools that allow users to modi$ the appearance of this gra.phical form and pro-
gramming tools that allow programmers to make more subst¿ntial modifications.

ll4 Eric H. Herrin, II and Raphael A. Finkel

default values) to the tuple tree. Similarly, the user can delete an entire branch of
the tuple tree by selecting the "Del" button.

The graphical form provides a clean interface for attributed searching. The

user may specify one or more keys for all attributes. If multiple keys are speci-

fred for a particular attribute, each constitutes a search. The results of the searches

within a particular attribute are combined by strong operations. The results of
searches across attributes are then combined using weak intersection, and the re-

sult is pruned by the algorithm presented in Section 5.2.The matching tuples are

then read, and the rows that satisfy the query are constructed and displayed.

7. RelatedWork

Schema and tuple trees are related to nested relations and object-oriented
databases. Nested relations [Makinouchi 1977; Jaeschke & Schek 1982] are re-
lations that have non-atomic attributes, that is, they are not in the First Normal
Form (ll/f'). Nested relations are also called l[f'2 (Non First Normal Form) re-

lations. It has been realized for some time that l[.F'2 relations can be decomposed

into ll[,F relations lKorth & Silberschatz 1.9911.

Other researchers have used the terrn scheme tree in a way different from ours.

For example, they can represent nested relations, where the nodes are pairwise-
disjoint sets of non-nested attributes and the edges represent multivalued depen-

dencies [Ozsoyoglu & Yuan 1987]. Some implementations of nested relations

include AIM-P [Pistor & Dadam 1989], VERSO lSchoil & et a]. 19891, ANDA
[Deshpande & Gucht 1989], and DASDBS [Schek & Scholl 1989]. These imple-
mentations appear to use linked tables as the underlying data structure, although

DASDBS seems to perform some optimization by storing related rows within a

table close together.

Object-oriented databases [Kroha 1993; Korth & Silberschatz l99l] mix
object-oriented programming practices with databases. Typically, objects are

schemas written in a fashion similar to a C++ class containing members such

as constructors, methods, and variables. Objects may be derived from other ob-
jects through inheritance. Since object-oriented databases allow arbitrary recursive

structures, it can be quite difficult to map them into the relational model. Object-

oriented programming techniques can be used without inheritance or extensible

data types in a relational database [Premerlani et al. 1990]. Typically, object-

oriented databases are used for applications that do not fit the relational model

well, such as CAD (computer aided design). Some implementations of object-

oriented databases include Oz [Lecluse et al. 1988] and Gemstone [Maier et

al.19861.

Schema and Tuple Trees: An Intuitive Structure for Representing Relntional Data 115

8. History and Current Status

V/e developed schema and tuple trees in 1989 when we first developed Qddb. At
that time, Qddb was implemented in around 10,000 lines of C code and performed
very basic searches and operations. Qddb was released to the public, but the pre-

sentation utilities were so crude that only a few hundred people bothered to learn

about it. Qddb development stalled until 1994 because of other projects. In 1994,
we began building a generic graphical application based on the schema tree. With
the advent and maturation of Tcl and the Tk toolkit [Ousterhout L994], we have

been able to build a significantly improved interface that interacts with the X Win-
dow System [Scheifler & Gettys 1986].

Today, Qddb sports a fancy graphical user interface allowing users to con-

veniently navigate and search for rows in tuple trees. As a result, the Qddb user

community has grown to thousands of people world-wide. Applications include
'World-V/ide Web (WW-W) servers, inventory management, client-invoice man-

agement, point-of-sale terminals, experimental data analysis, project tracking, bug
reports, journal abstracts, dictionaries, and student records.

Qddb is implemented in around 45,000 lines of C and Tcl code. It runs on any

Unix-based computer. Qddb is always publicly available from:

f tp . ms . uky . edu : pub/unix/qddb/qddb- <vers i on> . t ar . gz

The distribution contains full documentation and source. Sample databases and

applications are also available.

9. Conclusion

Tuple trees provide a convenient and efficient structure for storing conventional
relational rows in a prejoined fashion. Schema trees provide an easy, intuitive way
for programmers (and even non-technical people) to define a database with fairly
complex relationships among the various attributes. Tuple trees have many nice
properties: they are easy to build, easy to manipulate, efficient to store and search,

and easy to view. Since a tuple tree's leaves can be stored contiguously, locking a

set of related rows (one tuple tree) is straightforward.
Since schema and tuple trees are easy to understand, we have found that many

people incapable of defining simple databases with standard relational tools can
now build fairly complex databases in a matter of minutes.

116 Eric H. Herrin, II and Raphael A. Finkel

References

1. A. Deshpande and D. V. Gucht, A Storage Structure for Nested Relational
Databases, in S. Abiteboul, P. Fischer, and H.-J. Schek, editors, Nested Relations
and Complex Objects in Databases, pages 50-68, Springer-Verlag 1989.

2. E. H. Herrin, II and R. A. Finkel, An ASCII Database for Fast Queries of Rela-
tively Stable Data, C omputing Sy stems, 4(2):127 -15 5 (I 99 1).

3. G. Jaeschke and H.-J. Schek, Remarks on the Algebra of Non First Normal Form
Relations, Proceedings of the ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, pages 124-138 (1982).

4. H. F. Korth and A. Silberschatz, Database System Concepts, Computer Science
Series, McGraw-Hill 1991, ISBN 0-07-0447 54-3.

5. P. Kroha, Objects and Datqbas¿s, International Series in Software Engineering,
McGraw-Hill 1993, ISBN 0-07-7077 90-3.

6. C. Lecluse, P. Richard, and F. Velez, 02: An Object-Oriented Data }l{odel, Pro-
ceedings of the ACM International Conference on the Management of Data, pages
424433 (1988).

7. D. Maier, J. Stein, A. Otis, and A. Purdy, Development of an Object-Oriented
DBMS, Proceedings of the International Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 472482 (1986).

8. A. Makinouchi, A Consideration of Normal Form on Not-necessarily Normalized
Relations in the Relational Data Model, Proceedings of the Intemational Confer-
ence on Very lnrge Databases, pages 447453 (1977).

9. J. K. Ousterhotr, Tcl and the Tk Toolkit, Professional Computing Series, Addison-
Wesley 1994, ISBN 0-201-63331 -)(..

10. Z. M. Ozsoyoglu and L.-Y. Yuan, A New Normal Form for Nested Relations,
ACM Transactions on Database Systerns, 12(1):lll-136 (1987).

11. P. Pistor and P. Dadam, The Advanced Information Management Prototype, in
S. Abiteboul, P. Fischer, and H.-J. Schek, editors, Nested Relations and Complex
Objects in Databases, pages 3-26, Springer-Verlag 1989, ISBN 3-540-5lll1l-1.

12. W. J. Premerlani, M. R. Blaha, J. E. Rumbaugh, and T. A. Varwig, An Object-
Oriented Relational Database, Communications of the ACM,33(ll):99-109 (1990).

13. M. A. Roth and H. F. Korth, The Design of -lNF Relational Databases into
Nested Normal Form, Proceedings of the ACM SIGMOD Annual Confereruce,
pages 143-159 (1981).

14. R. Scheifler and J. Gettys, The X Window System, ACM Transactions on Graph-
ics, 5(2):79-109 (1986).

Schema and Tuple Trees: An Intuitive Structure for Representing Relational Data 117

H.-J. Schek and M. H. Scholl, The Two Roles of Nested Relational Databases, in
S. Abiteboul, P. Fischer, and H.-J. Schek, editors, Nested Relations and Complex
Objects in Døtabases, pages 50-68, Springer-Verlag 1989.

M. Schoil, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamerman, D. Plateau, P.

Richard, and A. Verroust, VERSO: A Database Machine Based on Nested Rela-
tions, in S. Abiteboul, P. Fischer, and H.-J. Schek, editors, Nested Relations and
Complex Objects in Databases, pages n49, Springer-Verlag 1989.

15.

16.

118 Eric H. Herrin, II and Raphael A. Finkel

