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ABSTRACT: Distributed object systems provide the
key to building large scale applications that can ex-
ecute on a range of platforms. The Common Object
Request Broker Architecture (CORBA) specification
from OMG attempts to address interoperability and
heterogeneity issues that arise in such systems. Our
goal is to investigate performance issues for distributed
object systems. We claim that object caching is a must
for improved performance and scalability in distributed
object systems. However, this important technique
and implementation issues related to it have not been
widely studied in the context of distributed object
systems and have not been addressed in CORBA spec-
ifications so far. In this paper, we discuss the design
and implementation of Flex, a scalable and flexible
distributed object caching system. Flex is built on
top of Fresco, which uses the CORBA object model.
Fresco runs on the UNIX operating system and our
implementation of Flex exploits the features of object
technology, Fresco, and UNIX. This system allows us
to quantify the performance improvements for object
invocations that are made possible by caching.
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l. Introduction

Distributed object systems provide the key to building large scale distributed ap-

plications that run on a range of platforms. Examples of distributed object systems

include various Common Object Request Broker Architecture (CORBA) [Object
Management Groupl compliant object systems. In distributed object systems, ap-

plications experience communication latency and overhead when invoking meth-

ods on remote objects. This performance penalty can be minimized using object

caching. The benefits of caching are well known and have been demonstrated in
distributed shared memory systems (DSM) and distributed file systems. However,

this important technique and its implementation issues have not been widely stud-

ied in the context of distributed object systems and have not been addressed in
CORBA specifications.

In this paper, we discuss the design issues in object caching and describe the

implementation and measurements of Flexl, a scalable and flexible object caching

system. A goal of this paper is also to contribute towards the discussion about

adding caching as a common object service to CORBA. V/e implemented Flex

on top of Fresco [X Consortium 1994], which is a distributed object system that

uses the CORBA object model. Fresco is readily available as a part of the X11-R6

distribution for UNIX systems. Fresco converts invocations on a remote object to

remote procedure calls to the object server. Flex enhances Fresco by adding object

caching. Measurements of our object caching implementation show the obvious

advantage of caching repeatedly accessed objects.

Design issues in object caching fall into two categories: (1) Issues that are

specific to object-oriented systems; (2) Issues that can be better addressed in
object-oriented systems although they are not unique to objects. Issues in the

trst category identify important differences between object caching and caching

of files and memory pages (as in distributed file systems lNelson et al. 1987; IBM
19941and distributed shared memory systems [Li & Hudak 1989; Kohli et al.

1995; Keleher et al. 19941). These issues from the first category are listed below:

l. Our system is not related to the "fast scanner generator" program [31] which is also called Flex.
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1. The programmer should be able to specify which objects can be cached
because some objects may be only wrappers around some control logic or
device drivers and such objects should not be cached.

2. An object may have references to other objects, and therefore the system
requires flexibility in deciding which of the referenced objects, if any,
should be cached.

3. Objects may have method level access control. While this is true even
of files and memory pages, they support only two elementary types of
accesses-namel¡ read and write. Perforrnance considerations resulting
from these differences have implications in the design and implementation
of object caching.

4. When methods are invoked on an object, it is hard to detect the type of ac-
cess (i.e. whether the state of the object will be changed or not), but the
ability to detect the type of access is invaluable in reducing the cache con-
sistency overhead.

5. Information about objects, such as the methods and superclass identifica-
tion, is accessed more often than the objects themselves. Object caching,
therefore, should be concerned about caching such information, which is
typically stored outside the object itself.

While the design issues in the first category are specific to object-oriented
systems, the problems of maintaining cache consistency are not specific to object-
oriented systems. However, cache consistency issues can be addressed better by
object technology. The performance and functionality of a caching based dis-
tributed object system depends heavily on the level of cache consistency it pro-
vides. Instead of providing a single consistency level to all applications, we take
the approach of providing multiple consistency levels. Such an approach offers
improved performance by allowing a consistency level that is customized for a
given application. In Flex, we find that object technology makes it easy to provide
multiple consistency levels and customization. Flex provides various consistency
classes as a consistency framework and allows class implementors to subclass
from a specific consistency class for customization.

The rest of the paper is organized as follows. Section 2 discusses building
multiple consistency levels for cached objects. Section 3 describes the design
issues that are specific to caching in distributed object systems and possible so-
lutions in the context of Fresco. Section 4 provides an overview of Flex impte-
mentation, and Section 5 presents performance measurements. Section 6 describes
our experiences with a CORBA-based object system running on UNIX. Section 7
concludes the paper.
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2. Building Multiple Consistency Levels

Caching creates multiple copies of an object which introduces the problem of
consistency among the copies. The consistency needs differ signiflcantly across

different application domains. For example, in a document sharing collaborative

environment, changes to documents may not have to be made visible to all users

immediately. On the other hand, in a multi-user interactive simulation, changes to

the state of shared objects must be made visible to all users immediately and in

the same order as the changes were made. Thus, we take the approach of allowing

multiple consistency levels to coexist in an application. This can improve perfor-

mance because of two reasons. Firstly, it allows the use of weaker consistency

levels when applicable. Secondly, weaker consistency levels can be implemented

more efficiently than stronger ones fl-adin et al. I992].In addition to improved

performance, a system that provides multiple consistency levels for shared objects

can facilitate increased functionality.

Strong consistency cannot be provided in systems where clients are tem-

porarily disconnected, which can happen involuntarily or voluntarily in a mobile

environment. This is because communication between nodes, where objects are

cached, may be required before an access can be completed when strong consis-

tency is needed. Thus, even applications requiring strong consistency can benefit

from mechanisms that facilitate a graceful weakening of consistency requirements

in order to be able to make progress. We allow applications to employ multiple

levels of consistency, which can increase functionality and improve performance.

In this section, we briefly explain the mutual consistency mechanism that is used

to implement multiple consistency levels. The idea behind the mechanism is to

keep cached object copies on a node (machine) mutually consistent.

2.1. Mutual Consistency

Informally, copies of two objects are mutually consistent if they could exist to-

gether in an application's view. Consider the following collaboration example.

Scientist I writes a chapter on results (results.old). In this application, each chapter

is written as an object. Scientist II reads the copy of results and writes a discus-

sion chapter (discussion.old) on the results. Scientist I rewrites the chapter on

results (results.new) and also a discussion chapter (discussion.new) on the new set

of results. Now, suppose that a third scientist on a different node tries to read fhe

two chapters. Our definition of mutual consistency specifies that the combination

< results.old, discussion.new > is not mutually consistent. It is based on the ob-

servation that the other three combinations coffespond to possible global system
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states fchaîdy & Lamport 19851 that could have occurred during the execution
of the system. Note that if caching is not employed, combinations of the object
copies accessed by applications in the above example correspond to the possible
global system states. Of course, the specific two copies that the scientist reads will
depend upon the consistency requirements. Thus, a mutually consistent view of a
set of objects should correspond to a global system state that is meaningful with
respect to the desired consistency level.

An underlying theme of the mutual consistency mechanism is to ensure that
caching overhead on a node is proportional to the amount of caching activity
on the node. For example, consider the case in which multiple read-only copies
of a strongly consistent object exist when a client wishes to update its object
copy. In conventional protocols, this would have induced communication with
the other clients that have the read-only copies in order to either invalidate or up-
date them. However, our protocol for strong consistenc¡ which is based on the
mutual consistency mechanism, does not invalidate or update all the read-only
copies. Instead, consistency is maintained by using a novel technique that inval-
idates some of the locally cached object copies at the time a new object copy is
added at the node. In this way, the cached copies are kept mutually consistent.

As we saw in the example above, two object copies are mutually consistent
if the copies and more specificall¡ their corresponding values, coexisted in a
consistent global system state. The more speciûc question in a test for mutual
consistency is whether the "older" object copy is still "valid" in the global system
state (view) corresponding to the "newer" object copy. For example, in the above
application, results.old is not "valid" in the view that includes discussion.new,
since it has been overwritten by results.new. Our implementation of the mutual
consistency mechanism uses the notion of a lifetime for a value of an object. The
lifetime of a certain value of object / is the duration deflned by two logical times:
the time when this value was created (the creation time) and the time until which
the system has been able to establish that this value of the object has not been
overwritten or become invalid (the validation time).

Note that the creation and validation times are assigned differently for differ-
ent consistency levels. For example, suppose that causal consistency is desired for
an object. Causal consistency only makes use of causal orderings to determine if
a cached copy of an object is current. In this case, the creation time assigned to a
copy of the object can be read from a logical clock that respects causal orderings
between events in the system. The creation time would be assigned differently
if in addition to causal consistency, coherency is also desired where coherency
requires that all writes to any given object are totally ordered. We call this con-
sistency level causal coherency.In this case, the creation time would reflect
causally preceding events as before; additionally, the creation time also needs to
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be greater than creation times assigned to all previously created copies of the ob-

ject. Different consistency levels can be implemented using the mutual consistency

mechanism by prescribing rules to assign creation and validation ttmes to object

copies.

The reader is referred to [Kordale & Ahamad 1996] for more details of the

mutual consistency mechanism and the protocols used to ensure causal consis-

tency, causal coherency and strong consistency (SC). SC is related to serializabil-

ity and sequential consistency which are used in databases and shared memory

systems respectively. The current implementation of Flex supports causal and

strong consistency.

3. Issues in Obiect Caching

This section deals with the problems that are independent of consistency levels

that need to be addressed in building an object caching system and the various

possible solutions.

3.1. Control in Caching

We alluded to the issue of conffol in caching in Section 1. Here, we recapitulate

the issues that lead to the necessity of control. Not all objects encapsulate only

data. Some objects are really wrappers around control or hardware devices. Thus,

it is not desirable to cache all kinds of objects. Having decided to cache an object,

the issue of the most appropriate consistency level for the object remains. Ob-

jects have references to other objects. When an object is faulted in, it is not always

clear if all referenced objects should also be faulted in. Control over the above as-

pects of caching can be exercised by one or more of the following entities among

others.

1. Class implementor: This is based on the assumption that the class imple-

mentor knows best how the object should be implemented.

2. Client application: Usage patterns of objects may vary depending upon the

application. In such cases, client application initiated caching and consis-

tency maintenance can be very useful.

3. System: Traditional considerations such as load balancing can be best han-

dled by the underlying system.

Clearly, no single method of conffol is suitable for all purposes. For example,

an implementor of a class may choose to provide caching for objects of that class
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based on the fact that most applications could benefit from caching such objects.
While this benefits applications that need this default behavior, some applications
may have different requirements. For example, they may not choose to cache these
objects. similarly, the system may decide not to cache instances of the class if
the machine on which the client application is executing does not have enough
resoulces. Thus, the above scenario illustrates that while the class implementor
may be able to decide for the general case, client applications and/or the system
may also need control in this regard. In our system, we have implemented class
implementor initiated caching.

The class implementor can choose to inherit (directly or indirectly) from one
of the classes in the consistency framework depending upon the need for caching
and the desired consistency level. Also, one of the classes in the consistency
framework (the cached class) provides two methods (readFronstring and
writeToString) as part of its interface that provide control to the class imple-
mentor regarding the amount of object state that needs to be exchanged between
processes. We describe the consistency framework in Section 4.1.

3.2. Cache Organization

Several issues arise related to the memory pool that constitutes the cache. Firstly,
clients may or may not be allowed to directly access the cache. For example, in
spring lNelson et al.1993], clients do not directly access the cache; instead,
they communicate with a local proxy server which in turn has direct access to
the cache; in other words, objects accessed by clients are actually cached by the
proxy server. Such a proxy server provides better security since all client invo-
cations can be intercepted by the proxy server. However, every client access to
cached objects incurs inter-process communication overhead with this approach.

We chose to allow client processes to have direct access to shared objects
in the present implementation because of the high overhead of inter-address
space cofirmunication in UNIX. In the future, we intend to build a user-level
RPC (uRPc) [Bershad et al. 1991] mechanism to reduce inter-process commu-
nication overhead at which time we will investigate the proxy server approach.

Once we decided to allow clients direct access to cached objects, the second
issue that arises is whether the memory pool used for caching should be shared
across all the clients on a node. We call this scheme per-node caching. The alter-
native is for each client to have its own pool, which we call per-process caching.

The per-node caching scheme has the advantage that object faulting and con-
sistency related actions only need to be done for a single copy at a node even
when several clients access the cached object at the node. However, the mutual
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consistency baséd approach to implementing multiple consistency levels (de-

scribed in Section 2), requires that whenever an object copy is cached in, all

locally cached copies are checked to see if they are mutually consistent with the

incoming object copy. Per-node caching can result in such checks being done

amongst objects that belong to unrelated applications. One simple way to avoid

such checks is to adopt per-process caching. In Section 3.4.1,we will show

another reason why per-process caching is better than per-node caching. In our

implementation, we employ per-process caching.

3.3. Cache Management

As we described before, clients on a node can freely cache in copies of objects to

which they have access. To maintain consistency among the copies, mechanisms

to invalidate or update object copies, and extract state from the object copies are

required. Requests for these actions can come asynchronously with the execution

of a client process. For example, when an object state is updated at a remote node,

the client may receive a message asking it to invalidate its local copy of the ob-

ject. Such requests can be handled in several ways. However, the initial version of
Fresco, on which Flex was built, was layered on top of Sun RPC. Thus, the ob-

ject transport interface was limited by the single-threaded transport runtime of Sun

RPC. Here, we discuss possible solutions in this context.

Our approach is to create a cache manager process that shares the memory

pool used for caching with the client and fields external (consistency) requests

which may require invalidations or updates and sometimes extraction of the

state from an object copy. In our implementation, two processes share memory

by opening a coÍtmon file and memory mapping the file to their respective ad-

dress spaces. We considered two approaches.

In the first approach, one additional cacher process exists per node which pair-

wise shares memory with each of the clients and we call this process fhe node

cacher. This approach has two problems. Firstly, since the node cacher shares

memory with all clients on the node, it needs to open one file per client and may

exceed the limit on the maximum number of file descriptors that can be opened

by a process2. This problem can be solved by managing the open file descriptors

independent of the number of client processes on the node. This can be done by

closing files that are not currently required to be open and re-opening them on de*

mand. V/hile this performance overhead may be acceptable, this approach towards

cache management does not scale well; the node cacher can become a bottleneck

2. Using shared memory segments to implement shared memory between two processes (instead of the mmap

approach) has a similar problem.
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since the transport is single threaded. Thus, we rejected this approach in favor of
the approach described below.

In this approach, one additional cacher process exists per client process and
we call such a process the process cacher. Each client process shares memory
with its process cacher. While this approach scales well, this approach has two
performance overheads that did not exist in the previous approach. Firstly, by dou-
bling the number of processes on a node (one additional process cacher per client),
general degradation in performance can be expected. Also, the cost of maintaining
cache consistency can be higher in cases where more than one client process on a
node, cache the same object. This can be illustrated by the following example. Let
two client processes on a node (say A) have copies of some object (O). Suppose
that a client on another node (say B) wants to access O and the consistency ac-
tions need communication with all the copies (e.g., their invalidations). In order to
communicate with the copies on node A, two remote invocations from B to A are
required instead of one remote invocation in the first approach.

3.4. Object Faulting and Access Detection

A method invocation on an object can be executed locally if the object's state cur-
rently resides in the cache. Thus, to execute a method invocation, it is necessary
to determine if the object state is in the cache. If the object is non-resident, then
it must be brought to the client and made available to the program in memory;
this is called objectfaulting [Hosking & Moss 1993]. Also, concurrent sharing of
cached objects leads to the issue of consistency among the copies. Protocols used
for maintaining consistency of shared objects may require the system to detect
updates to object state.

Many present day operating systems allow user-level programs to exploit vir-
tual memory (VM) mechanisms (e.g., nnap and nprotect calls) to manipulate
page protections. These mechanisms can be used for object faulting. VM mecha-
nisms,to detect access violations, coupled with user defined handlers, can be used
to implement both object faulting and to detect accesses to shared objects.

Several software schemes also exist to facilitate object faulting and access

detection that include tagging to distinguish between references to resident and
non-resident objects [Hosking & Moss 19931. Object oriented programming lan-
guages can exploit the indirection [Edelson 1992] implicit in the method invoca-
tion mechanism to fold residency checks into the overhead of method invocation.
In IBM's SOM, one could use the BeforeAfter metaclass mechanism [Forman et
al. 19941, which allows a beþre method and an after method to be called before
and after (respectively) every method of a class. This way, the metaclass can gain
control before and after an object invocation to handle details of object faulting
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and access detection. In [Zekauskas et al. 1994], the authors present a method for
write detection in a DSM system that relies on the compiler and runtime system.

The VM based scheme induces page faults that have considerable overhead.

Also, large page sizes can create problems with false sharing [Bennett et al. 1990].

However, using VM mechanisms induces caching overhead only on object faults

and some object accesses. Software schemes, on the other hand, require extra in-

structions on every fetch and/or store. In [Hosking & Moss 1993; Zekauskas et

al.l994l, the authors argue that software based schemes out-perform VM based

schemes. However, these arguments are made either in the context of an entry-

consistent DSM system fZekauskas et al. 1994) or in the context of implementing

persistent stores, and garbage collection [Hosking & Moss 1993]. On the other

hand, a previous study [Carey et al. 1994] on the issue of granularity choices

for data transfer in client-server object-oriented data base management sys-

tems (OODBMS) favored page servers (mainly due to the consequent advantages

of object clustering). Thus, previous studies, which dealt mainly with performance

based comparisons, do not indicate a clear choice. In the next section, howevet

we will present an argument in favor of software based implementations of object

faulting.

3.4.1. Advantages of Software Based Obiect Faulting

Our argument favoring software based object faulting falls into two categories-
performance and functionality. Objects in CORBA based distributed applications

have sophisticated method level access and it is customary to allow clients to have

access only to specific methods of an object. While this is true even of files and

memory pages, the important methods that they support are read and write. We

will show below how this difference adversely affects performance of VM based

schemes for object faulting. We will then show situations in which software based

implementation of object faulting elegantly provides more functionality than a VM
based scheme.

3.4.1.1 Performance

In DSM and file systems, per-method access control corresponds to clients hav-

ing either read-only or read-write access to cached objects. Consequently, VM
based faulting schemes are sufficient to efficiently detect access to objects. This is

not true, however, in object-oriented systems. This is due to the mismatch in the

protection provided by a VM based object faulting mechanism and the protection

required by the application. We will illustrate this with an example.

Consider an object O which is an instance of class C. Suppose C supports

methods rm1 and rn2 aÍrcng other methods. Suppose that both these methods up-
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date the state of the object. Suppose client A, which is allowed access to only
z¿1, caches O. If VM based mechanisms are used for object faulting, O should be
cached in read-write mode. In this case, howevel A can freely invoke method m2
on O also. One way to prevent such an illegal access is to cache O in read-only
mode. This way, each time A invokes either method, the fault handler can inter-
cept and disallow illegal access. Clearly, this approach is inefficient since every
invocation results in a page trap. The resulting overhead is much larger than the
per-invocation overhead experienced in software based object faulting.

Software based implementations of object faulting can handle this case ef-
ficiently. Every client (actually, Flex's library which is linked with client code)
maintains the per-class meta-data that specifies what methods the client is allowed
to invoke. This meta-data can be retrieved from the server when the client caches
the first instance of the class. Since every method invocation is intercepted by the
object caching system library, illegal accesses can be detected and disallowed.

3.4.1.2 Functionality

In this section, we will discuss three issues and show that software based imple-
mentations of object faulting provide more functionality than a VM based scheme
in an elegant fashion.

. Access Type Detection: An issue that arises in object faulting is the
difficulty in detecting the type of access-namely, read-only or read-
write-while faulting on an object. When a simple memory object is
faulted (as in DSM systems) using the VM based scheme, the type of
access is readily known since operations are elementary ones (like read
or write). However, objects are accessed using method invocations.
'When 

a method is invoked on an object, the type of access is not ob-
vious. Faulting an object copy in read-only mode only to realize later
during the course of the method invocation that a read-write copy was
needed is ineffrcient. Software based implementations of object fault-
ing can handle this case elegantly. For example, in our implementation,
cacheable objects support a method (setAccessType) to specify the
access type of a method. The constructor code in a user defined class
can invoke this method to specify the access type of each of the meth-
ods in the user defined class. SimilatLy, a method (getAccessType)
to ascertain the access type given the object and the method name is
supported. On every invocation of a user defined class' method, the ac-
cess type is ascertained accurately using the getAccessType method.

Such methods cannot be used in VM based schemes because the handle
to the object that is obtained as a result of a segmentation fault is a pointer
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to an object of type char. Since the pointer is not appropriately typed, the

above specified methods are not accessible.

. Object State Transfer: Object caching requires transferring of object

state between nodes. In our implementation, each cacheable object sup-

ports two methods readFromstring and writeToString. V/e will
explain these methods in detail in the context of the consistency frame-

work described in Section 4.1. For now, it suftces to know that the

writeToString method stringifies the object's state and readFromString
reconstitutes the object using the stringified state. In particular, when

a client A faults on a cacheable object, it requests some other entity

such as a server for the object state. The server returns the stringified

object state, possibly after communicating with one or more clients

and seryers. At this point, ,4 invokes the readFromstring method of
the object to reconstitute the object from the stringified object state.

Software based implementations of object faulting integrate well with
such state transfer mechanisms provided by the object caching system. At
every method invocation, it is checked to see if the required object state is

locally resident. If not, the client receives the object state and reconsisti-

tutes the object as discussed. However, this cannot be handled as elegantly

in systems that employ the VM based scheme due to the following reason.

In a VM based scheme, control is transferred to the specified segmen-

tation fault handler on an object fault. The consistency framework (see

Section 4.1) contains the implementation for the segmentation fault han-

dler which returns with the new state of the object. At this point, the local

object copy needs to be created or updated using the received object state.

However, the handle to the object that is obtained as a result of a segmen-

tation fault is a pointer to an object of type char. Since the reference is

not appropriately typed, the readFromstring method cannot be invoked.

One way to solve this problem is to require that each client process

maintains afunction table that contains the address of the readFromString
method of every type of object for which the client has a reference. When a

client creates an object reference, the constructor of the corresponding class

invokes the constructor of the Causa1 class with one of the arguments be-

ing the address of the readFromstring method. This address is stored in
the function table. Later, when object state is received as a result of an ob-

ject fault, the stored address of the corresponding readFromstring method

can be used to update the local object copy. Clearly, this solution departs

from object technology. This can be avoided if software based mechanisms

were used to implement object faulting.
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Interface Definition of MyClass:
interface MyClass {

void set(in string strPtr);
string getO;

Ì;

C++ mapping of MyClass interface:
class MyCIass {
publíc:

//Constructors ând other required methods

virtual void set(const char* strPtr);
virtual charx getO;

Ì;

Implementation of MyClass class:
class MyClasslnpt: public MyClass {
public:

//Constrtctors and other required nethods

void set(const char* strPtr)
{ nyPtr = ne¡¡ char(strlenlstrPtr] + 1);

strcpy(nyPtr, strPtr) ; )

char* getO { return(nyPtr);}

protected:
chailtgyptr¡;

Ì;

Figure 1. Definition of user-defined class.

. Per-node Caching and Legacy Applications: Another issue in which hard-
ware based implementations encounter problems is while enabling caching
in legacy applications. This problem arises ifthe object caching system
employs per-node caching (see Section 3.2). Consider Figures I and2.
The interface definition for MyClass, its C++ mapping, and the defini-
tion of the corresponding implementation class MyClasslnpt are given.
We will focus here on two client applications A and B. Relevant portions
of code for clients A and B are shown in Figure 2. Suppose that client ap-
plications A and B originally accessed instances of class MyClasslmpl
using remote invocations (i.e. function shipping). In this case, the
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Client A code:

nainO {
MyCIass *obj;
char *soneStr;

obj = new MyClasslnpr(. . . ) ;

obj --+ set (soneStr) ;

//soneStr has been allocated
/ /ata assigned

Ì

Client B code:

nainO {
MyClass *obj;
char *somestr;

obj = new MyClasslnpr(...);
soneStr = obj --+ get O ;

Ì

Figure 2. Per-node Caching and Legacy Applications.

example in Figure 2 would run as expected. A creates obj and sets

myPtr. B then accesses the same object and gets a copy of obj's myPtr.
Now, suppose that caching is enabled for instances of .class MyClassÏnpl.

One way to do this is to detne a new class myNewClass that inherits from
MyClasslnpl and another class that enables caching (such as the Cached

class shown in Figure 3 in the next section¡3. The client application then

creates instances of nyNewClass. Now, A creates obj and caches it. How-

ever, when it invokes the set method on obj, it assigns nyPtr in obj to an

area of memory that is in A's private address space. When B executes, we

assume that it gets the handle to the object (obj) created by A. However,

3. A similar argument can be made if one were to use a scheme that employs runtime inheritance [Mohindra et al.

19951 instead.
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/
,Ã'.qyl

A--> g denotes B is a subclass of A
Figure 3. Caching Framework.

its attempt to dereference someStr results in a segmentation violation
because someStr points to a memory location in lfs private address.

An obvious solution to this problem is to change the implementa-
tion of MyCtasslmpl such that the set method makes nyPtr point to
some area in the shared pool of memory that constitutes the cache. One
way to do this is to redefine myPtr to be a pointer of type newString
such that the allocator for this type allocates memory from a shared
pool instead of the process' private address space. However, chang-
ing (and recompiling) legacy code may not always be a feasible option.
However, this problem is an artifact of using hardware based mech-
anisms for object faulting. Solutions exist if software based mecha-
nisms were used for object faulting. One way to get around this prob-
lem is to route method invocations on shared objects through stub rou-
tines that do the necessary marshalling/unmarshalling of arguments.

As we mentioned in Section 3.2, our system employs per-process
caching. The scenario in Figure 2 does not cause problems in per-process
caching. When B tries to access the shared object (obj), it cannot get a
pointer to A s copy of obj. Instead, the entire state of the object is obtained
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and stored in B's per-process cache, thus precluding the problem of access-

ing memory belonging to another process' address space.

3.5. Object Implementation

So far, we have focused on the issue of managing object state when objects are

cached. A related issue that is important in object caching is that of installing,

finding, and using code that implements an object's methods; we will refer to

the code as the object's implementation. A number of choices exist for dealing

with each of the above activities. For example in Emerald Uul et al. 19881, object

implementations ate stored in concrete type oblects. When a kernel receives an ob-

ject's state, it determines whether a copy of the concrete type object implementing

the received object already exists locally; if it does not, the kernel obtains a copy

from another node using a location algorithm. In [Steensgaard & Jul 1995], code

mobility in Emerald is achieved on heterogeneous computers at the native code

level; migrated code runs at native code speed before and after migration.

In the Common ORB Architecture document (CORBA 2.0) [Object Manage-

ment Group .281, on the other hand, it is stated that the object implementation

information is provided at installation time and is stored in the Implementation

Repository for use during request delivery. Object adapters in CORBA are respon-

sible for the interpretation of object references and mapping object references

to the corresponding object implementations. These functions are performed

with the cooperation of the ORB Core and the implementation skeletons. When

a client invokes a method on an object, the ORB Core, object adapter, and the

implementation skeleton at the server end arrange that a call is made to the ap-

propriate method of the implementation. A similar mechanism can be used at the

client end to find and install implementations of cached objects, possibly with the

aid of a library object adapter linked with clients that cache objects. This may

necessitate that object implementations be installed at each of the sites of use.

This issue concerning object implementation is particularly in the context of
CORBA compliant systems, since an important goal of CORBA is to provide

interoperability between applications on different machines in heterogeneous

distributed environments and to seamlessly interconnect multiple object systems

[Object Management Group .29l.ln our implementation, however, we make the

assumption that the implementation for the cached object is available; in fact, the

application code is either compiled or dynamically linked with the code that im-
plements the shared objects.
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4. Implementation

The universe of objects in Flex can be divided into a set of inherently private and
shared objects. An object may contain any number of references to other objects.
The shared objects can be either passive or active. Active objects are associated
with a dedicated process usually known as an object server. Active objects are
usually large grained and are not cached in our system. Passive objects do not
have a process dedicated to them and can be cached.

The system architecture of Flex is defined by the caching framework shown in
Figure 3, which consists of the important classes that enable caching. As shown in
the figure, the framework consists of three subtrees. The left-most subtree shows
the various styles of accessing distributed objects and this is the framework that is
visible to the users. These classes are distinguished with double lines in the frgure.
Class implementors subclass from one of these classes directly or indirectly while
invoking distributed objects. These classes constitute what we call the consistency
framework. The remaining branches define the classes which are transparent to
the application programmers. These define the code that is executed by the im-
plementation of the object caching system. These classes define what we call the
implementation framework and is described in Section 4.2.

4.1. Consistency Framework

At the root of the consistency framework is the DistributedObject class. Because
an object reference is opaque, it is not a convenient value for storing references
to objects in persistent storage or communicating references by means other
than invocation. The DistributedObject class interface provides methods such
as stringify and objectify to solve the above problem. Actually, the ob-
ject request broker (oRB) interface in the coRBA specification provides more
"heavyweight" methods such as the object-to-string and string-to_object
to solve a similar problem; these methods in the ORB interface additionally help
to convert an ORB dependent distributed object reference to an ORB independent
object reference and vice-versa. We provide these methods in the DistributedOb-
ject class because the implementation of Fresco, that we use, does not support
these methods of the ORB interface.

One of the subclasses of the DistríbutedObject class is the Proxy class. This
reflects the style of access that is specified by CORBA and is generally available
in existing CORBA compliant systems. Basically, when a client tries to access
an object server, it receives a handle to a proxy object [shapiro 19s6]. Any in-
vocation on the proxy object is translated into an invocation at the remote object
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server. Thus, objects that are not intended to be cached (such as wrappers around

hardware devices) are designed to be instances of classes that are descendants of
the Proxy class.

Another subclass of the DistributedObject class is the Cached class. One

of the enabling mechanisms we use to implement caching is to stringify ob-

ject state, pass it over the network and reconstitute the object at the other end.

The writeToString and the readFromstring methods accomplish this. In

writeToString, the relevant object state is linearized and written out as a string.

This string can now be sent out on the wire and the readFromString method on

the other end can read from the string and update the object's state. Note that this

is not the same as the methods we discussed in the context of the Distributed-

Object class. In that class, only the means to access the remote object can be

stringified; in confrast, the methods described here stringify the object state and

make it possible to transfer object state between processes'

An interface similar to that of the Cached class is part of CORBA s

Externalization service proposal. While similar mechanisms can be used to

implement both interfaces, the two interfaces clearly have different functional-

ity and the difference is in the amount of relevant object state that is stringified.

The relevant object state stringified in the Externalization service corresponds

to the state that is required to activate an object from secondary storage. On the

contrary, the relevant object state in the Cached interface corresponds to just the

amount of information that needs to be transferred between object copies to main-

tain consistency.

Our intention is for the class implementors (who wish that instances be cached

and thus inherit from one of the descendants of the Cached class) to have the op-

tion to override the readFronstring and the writeToString methods defined

by default in the Cached class. The advantage of such a provision is that the class

implementor knows a great deal about the class and therefore can provide opti-

mizations. For example, if instances of a cacheable object have a large state and it
is known that the relevant state information that needs to be passed among object

copies is only a small part of the entire state (e.g., only the modifiable parts of the

state), then it is more efficient to stringify only that part of the state instead of the

entire object state. Also, as we pointed out in Section 3, objects have references

to other objects. These two methods allow the class implementor to decide which

of the referenced objects need to be faulted in and which of them will just be sent

as object references. Of course, if the class implementor does not override these

methods, a preprocessor can generate default methods for state transfer automati-

cally.
The subclasses of the Cached class implement the speciflcs related to provid-

ing different consistency guarantees. The caching framework shown in Figure 3
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shows only two subclasses of the Cached class that provide strong and causal con-
sistency guarantees. Ultimately, we intend to provide a richer suite of consistency
classes somewhat similar in flavor to the various session guarantees provided in
Bayou lTerry et al. 1994]. The discussion on the relevance of the different consis-
tency guarantees and their details can be found in [Kordale & Ahamad r996J.

4.2. Implementation Framework

Clients on a node can freely cache in copies of objects to which they have access.
To maintain consistency among the copies, mechanisms to invalidate or update
object copies and extract state from the object copies are required. Requests for
these actions can come asynchronously with the execution of a client process. For
example, when an object state is updated at a remote node, the client may receive
a message asking it to invalidate its local copy of the object. In section 3.3, we
discussed the need for a cacher process per client process which we called the
process cacher.

The process cacher class implements the code that is executed by process
cachers. A process cacher handles the type-independent aspects of caching that
include actions such as maintaining a table of objects that are cached and their
corresponding locations in the cache, invalidating the object cop¡ and invoking
methods on the object reference to extract and restore state. The type-specific as-
pects of object access are implemented partially in the consistency framework and
by the specific class that the object is an instance of.

For example, if an object fault is experienced while trying to access a causally
consistent object, the fault handler that is run is part of the causal class which
comes from the consistency framework. Also, the state of the object is extracted
and restored using the default r¡riteToString and the readFromstring methods
of the Cached class or the overridden definitions of these methods defined in a
class outside the consistency framework.

While the process cacher implements functionality required at the client end,
the Generic server,the causal server and the Strong Server classes implement
functionality at the server end. As the name suggests, the Generic Server class im-
plements the generic and type-independent functionality such as creating objects,
maintaining the logical clock, assigning unique object identifiers (in the context of
the server), etc.

The type-specific functionality at the server end is implemented in the Causal
and Strong Server classes. v/e will illustrate this by the following example sce-
nario. Consider that a client requests a server for an object copy. Depending upon
the consistency requirements of the object, different actions need to be taken. For
example, information about just the creation and validation timestamps of the
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copies of the requested object suffices in the case of a causally consistent object.

However, in the case of a strongly consistent object, more information such as the

access types (read/write) of the other copies of the object and the access type of
the requesting client is required.

In Flex, client processes can create objects locally and at servers. When clients

create cacheable objects locally however, the associated process cacher needs to

implement the functionality of all the four classes in the implementation frame-

work. This is because, other clients may be interested in accessing these objects

and thus the associated process cacher also needs to implement server functional-

ity. Thus, the active entities in Flex are pure clients which are client processes that

create objects only at remote servers, pure servers, andhybrid clients which create

cacheable objects both locally and at remote servers.

4.3. System API

Object caching does result in some changes that need to be exposed to the appli-

cation level. These changes affect the way objects are programmed, created and

used. First, we allow class implementors to specify the desired level of consis-

tency by having the user defined class explicitly inherit (directly or indirectly)
from the appropriate class in the consistency framework shown as part of the

caching framework in Figure 3.

The second aspect of the API that affects the application program is the fol-
lowing. Since memory pointers do not make sense across address spaces, there

needs to be an address-space independent way of accessing a shared object.

We call this an object-id and it consists of the name of the server on which the

object was created and an identifier that uniquely identifies the object in the

context of the server. For example, if the object-id of an object is < sname,

nid >, then this object was created at a server named snarne and nid uniquely

identifies the object within the server process. A client creates a distributed

object on a particular server by specifying the server name and making the

second component zero. When the object is created, its server-unique id is as-

signed by Flex. Thus, the constructor for the object's class takes an additional

argument-the object-id. For example, a client obtains a reference to an ex-

isting object by executing new className (oid, (arguments)) instead of
new className (<arguments)), where oid is the object-id of the shared ob-
ject that the client wishes to access.
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Null Sun RPC 1.22

Null Proxy Invocation 1.85

Table 1. Null RPC and Proxy Invocation Timings (In
Milliseconds).

Creating a cacheable object l.6l
Caching an object 8.3

Method invocation on a cached object 0.48
Validating a cached object 5.2

Table 2. Times (in Milliseconds) for Operations on Cached
Objects.

5. Performance

This section presents measurements of execution times of simple invocations on
the basic RPC system and also on top of Flex. The experiments were done on a
l67MHz Ultra 1 and a 85MHz SPARCstation 5 running Solaris 2.5.The machines
reside on two different l0Mbps ethernet based subnets connected by a router. The
execution times for a single null RPC and a null invocation on a proxy are shown
in Table 1. The set up in the Sun RPC case is straightforward. A server is started
on a node and a client is started on a different node. The client then makes null
RPC calls. The set up in the proxy case is also very similar. An object server4 is
started on a node. Clients obtain a reference to the object which is really a refer-
ence to the object server. The client then makes a "simple" method invocation on
the server. The simple method neither takes any argument nor returns any result
and nothing is done in the method's body. Unlike in the Sun RPC case, the simple
method is invoked on the object reference which adds a small overhead.

Table 2 shows the timings for the various actions related to caching causally
consistent objects. In this case, two hybrid clients executing on the two machines
create objects and access each other's objects. Clearly, invocations on a cached
object are very fast-an invocation on a cached object takes 0.48 milliseconds

4. An object server provides an address space for the distributed object.
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whereas the cost of a "simple" proxy invocation is 1.85 milliseconds. This is to be

expected and we no'w proceed to examine the overheads of caching.

The cost to create a cacheable objects is 1.61 milliseconds. This time is domi-

nated by the time for an inter-process communication (IPC) between the client and

the corresponding process cacher. This permits the process cacher to create meta-

data on the object copy that the process cacher can use while servicing requests

for the object. Validating an object copy takes 5.2 milliseconds. Validating an ob-
ject copy includes acquiring the object's new state from a valid copy elsewhere in
the system. For example, in the experiments conducted, when a client accesses an

invalid copy and determines that validation is necessary, it communicates with the

server 6 on the remote node on which the object was created. When a valid copy

is added to the cache, cached object copies that are found to be mutually inconsis-

tent with the incoming copy are invalidated and the local clock is updated.

Table 2 shows that caching an object copy takes 8.3 milliseconds. The actions

required for caching an object copy are similar to the ones required for validation

except that the client also informs the process cacher about it. Thus, the differ-
ence in the two times is because of the additional IPC and the additional context

switches required to inform the process cacher. Once again, this is because the

process cacher needs to maintain meta-data regarding the object that has been

cached in order to service later requests for the object. Note that invalidations are

local and take an insignificant amount of time.

6. Discussion

We saw in the previous section that caching considerably reduces latency in ac-

cessing shared distributed objects when applications exhibit a reasonable amount

of locality of reference. One of the goals of our system is scalability. There are

many aspects of scalability. V/e believe that by allowing applications to use

weaker consistency models whenever applicable, the overall scalability of the

system is improved. Towards this end, we provide flexible notions of state consis-

tency in our system. Another aspect of scalability that can be of concern is the

size of the logical timestamps that we associate with each object copy. In our

implementation, logical timestamps are implemented using vector timestamps.

Simple implementations of vector timestamps contain a component per process

5. A cacheable object is an instance of a class that is a descendant of the Cached class.

6. Hybrid clients act as both servers and clients.
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that is allowed to update objects. Various efficient implementations that reduce the
space overhead considerably are outlined in [Raynal & Singhal; Torres-Rojas].

6.1. Caching as an Object Service

The Object Management Architecture guide [Object Management Group .29] in-
cludes a reference model that identifies and characterizes the components, inter-
faces, and protocols that compose the OMA. The reference model consists of four
major parts: the object request broker (ORB), object services, common facilities,
and application objects. The ORB enables objects to transparently make and re-
ceive requests and submissions in a distributed environment. Object Services is a
collection of services (interfaces and objects) that support basic functions for us-
ing and implementing objects. Common Facilities is a collection of services that
provide general purpose capabilities useful in many applications while application
objects are objects speciflc to particular end-user applications.

As we pointed out earlier, it is neither desirable nor possible to cache all ob-
jects. Furthermore, different consistency guarantees may be required of cached
copies. Thus, caching should be provided as a Common Object Service and not
as part of the ORB. The consistency framework can serve as the interface of the
object service itself. \iVe discuss below the extensions to CORBA IDL and the
CORBA object model that can be useful in implementing object caching.

6.].1. CORBA IDL

The suggested extensions to IDL result from the need to detect the access

type (read or write) of a user defined class's methods and the need to pass ob-
jects by value. We describe each of these below.

. Detecting access type: As we mentioned earlier in Section 3.4, detecting
whether the access type is a read or write is important to service an ob-
ject fault efficiently. For example, acquiring a read-only copy of an object
on an object fault only to rcalize later that a read-write object copy was
required is inefficient. As we mentioned before, detecting access type is
harder in object caching as opposed to the case in caching flat objects
such as files and memory pages in which case every operation on the
object carries information about the access type. For example, the opera-
tions are either elementary read or write operations or operations such as

opening a file that specifles the mode in which the file should be opened.
In Section 3.4.1, we described how we specify access types of user

deflned class's methods. A more elegant way to solve this problem is to
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specify the access type along with every method declaration in the IDL
definition for the user-defined interface.

. Passing objects by value: CORBA compliant systems have the ad-

vantage over many commercial RPC systems in that they allow ob-

ject references to be manipulated as ûrst-class values in a straight-

forward manner. In particular, an object reference can be sent as an

argument of an invocation on an object server. Thus, CORBA com-

pliant systems provide for network-wide references, and support dis-

tributed object reference semantics. However, this does not always

provide the required semantics. An application might want to pass

an object by value just like pointer structures are passed by value.

For example in Flex, many method invocations in the caching frame-

work take a vector timestamp as one of the arguments. We have deûned a

VectorTimestamp IDL interface and we will call the instances of this class

as vector timestamp objects. Now, suppose that we want to pass the vector

timestamp arguments as references to objects of type VectorTimeStamp
in invocations on the object server. Firstly, we need to activate an object

server to service the vector timestamp object sent as an argument. More-

over, every invocation on such an object reference (argument) would be an

inter-address space invocation, which we clearly want to avoid. Ideally, we

would like to have the choice to pass an object argument by o'value" as in

lBinell et al. 1993: Janssen et al.; Mitchell et al. 1994; Jlu,l et al. 19881. The

object structure should be lineanzed, sent over the wire, reconstructed at

the other end and finally, we should be able to make an object invocation

locally at that end.

6.1.2. CORBA Obiect Model

From our experience, we found that multicasf is an important mechanism that is

useful in consistency maintenance in distributed object systems. For example in

Flex, each time an object copy is validated, the node cacher at the owner node can

potentially contact node cachers on all nodes where clients contain copies of the

object. This is a perfect candidate for exploiting multicast communication. Though

a system level multicast may be available, it cannot be used because the CORBA

object model does not support it. In [Landis & Maffeis 1995], the authors argue

the need for a multicast interface in the context of object groups.

Clearly more issues remain to be explored, particularly in the realm of iden-

tifying interactions with other object services. Our intention in this paper is to

provide a data point in a discussion of issues related to caching in CORBA.
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7. Concluding Remørks

In this paper, we described the design and implementation of Flex, a scalable and
flexible distributed object caching system, on top of a CORBA compliant sys-
tem running on the UNIX operating system. An important feature of Flex is
that it supports flexible notions of object state consistency thus improving sys-
tem performance through the use of weaker consistency levels when applicable.
We presented issues that arise in an object caching system. We also argued how
some of these issues led us to believe that object caching should be provided as

a Common Object Service and not as part of the ORB itself. Our implementation
experience indicates that object caching can considerably reduce latency in access-
ing shared distributed objects when applications exhibit a reasonable amount of
locality.
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