
Smart Messages: An
Obj e ct - O riented C ommunic ation
Mechanism for Parallel Systems.

Eshrat Arjomandi York University

V/illiam G. O'Farrell Toronto Lab, IBM Canada Ltd.

Gregory V. Wilson Visible Decisions

ABSTRACT: ABC++ is a portable object-oriented
type-safe class library for parallel programming in
C++. It supports active objects, synchronous and asyn-
chronous object interactions, and object-based shared
regions on both shared- and distributed-memory par-
allel computers. ABC++ is written in, and compatible
with, standard C++: no language extensions or pre-
processors are used. This paper focuses on its use of
an object-oriented technique called smart messages to
support object interactions. Smart messages demon-
strate the effectiveness of object-oriented programming
in encapsulating low-level details of concurrency and
in improving software portability.

*This work has been supported by the Centre for Advanced Studies,
IBM Canada, and Natural Sciences and Engineering Resea¡ch Council of
Canada.

@ 1997 The USENIX Association, Computing Systems, Vol. 9 . No. 4 . Fall 1996 313

I. Introduction

While massively-parallel computers and networks of workstations (NOWs) are

now widely available, good programming systems for them are not. Rapid ar-

chitectural change has meant that the levels of code re-use which are taken for
granted in conventional computing environments are still only dreamt of by paral-

lel programmers. Many groups are now trying to insulate users from such changes

using the abstraction and polymorphism facilities of the object-oriented program-

ming (OOP) paradigm.

Language designers have three options in integrating OOP and concurrency:

create a new language, add new features to an existing language, or construct li-
braries to work with an existing language. The first two approaches give much

more freedom to experiment with new ideas, but experience shows that applica-

tion programmers are very reluctant to translate existing codes, or develop new

ones, to make use of a non-standard environment. It is also very diff,cult for any

but the largest ofresearch groups to develop the "boring)'(i.e. sequential) por-
tion of a non-standard language system, and keep its capabilities and performance

competitive with that of standard systems. A library-based approach, on the other

hand, must find a way to accommodate language features which were designed
(or which'Just happened") long before parallelism was an issue. In this approach,

the concurrency constructs are kept outside of the language, the language is kept
small, the progr¿mrmers can work with familiar tools and compilers, the option of
supporting many concurrent models through a variety of libraries is provided, and

usually the task of porting the library to other architectures is eased.

C++ is rapidly replacing C as the language of choice for systems program-
ming, and is starting to be adopted by scientific programmers, who have tradi-
tionally been the largest users of parallel computers. For this reason, numerous

attempts have been made to add concurrency to C++ [AT&T Bell Laboratories

1989; Bershad et al. 1988; Bahr et al.1992; Chandra et al. 1990; Doeppner &
Gebele 1987; Gautron 1991; Gehani & Roome 1988; Grunwald 1991; Kafura &
Lee 19901. Most such systems require extensive compiler extensions and/or pre-

processors. Attempts using purely a class library approach have often not fully
utilized OOP in their design and implementation, or have imposed unreasonable

314 Eshrat Arjomandi, William G. O'Farrell, and Gregory V. Wilson

limitations on the users. For example, some libraries [AT&T Bell Laboratories

1989; Doeppner & Gebele 1987; Gautron 19911 limit the height of the user's

class hierarchy to one, require explicit use of wait and alert roatines for synchro-

nization, or require explicit manipulation of message queues to manage object

interaction.
ABC++ is a class library to support parallel programming in C++. Its initial

implementation [Arjomand; et al. 1995] demonstrated that many of the limitations
listed above can be eliminated without resorting to language extensions or pre-

processors. ABC++'s concuffency model supports active objects----objects which
have their own threads of control, and which can run simultaneously with other

active objects-and remote method invocation for inter-object communication.
However, the first version of ABC++ had several limitations, such as compiler and

architecture dependencies and a lack of type-safety checks.

One of the difficulties in the design and implementation of a concurrent class

library for C++ is constructing a flexible, architecture-independent communica-
tion mechanism for object interaction. For example, while the implementation of
method invocation is straightforward in a sequential environment, it can be prob-
lematic on distributed-memory machines. For the sake of efficiency and simplicity,
most message-passing systems require the data to be sent to occupy a contiguous

block of memory. Since prograÍlmers often want to pass logically-unconnected
values as parameters to a single method invocation, some way to marshal these

values into a contiguous block of bytes must be found. Furthermore, the type of
the class whose method is being invoked, and the name of the invoked method,

must somehow be communicated along with these parameters.

The implementation of object interaction in ABC++ uses the data abstraction,
genericity, and polymorphism facilities of C++ to solve these problems. Based

on active messages [von Eicken et al. 1992], we introduce an object-oriented

communication mechanism, smart nxessages, that captures the required data and

typing information. Active messages is an asynchronous communication model
designed to minimize network latency by allowing communication and com-
putation to be overlapped. In this model, a process sends a message to another

remote process which contains not only data, but also the address of a user-defined

function, called a handler. When the message arrives, this handler is invoked. Its
duty is to extract the message from the network and integrate it with the ongoing
computation.

A smart message is an object which ca:ries not only data, but also the typing
information and all the other functionality provided by its class. This paper shows

how smart messages are used and implemented in ABC++ to provide a portable,

object-oriented solution to active object creation and interaction. Section 2pro-
vides a brief overview of ABC++. Section 3 discusses the implementation of

Smørt Messages: An Object-Oriented Communication Mechanism 315

smart messages. Active object creation and interactions are covered in Sections
4 and 5 respectively. The Appendix discusses issues related to automatic type con-
version during method invocation and object creation.

2. A Brief Overview of ABC++

This section provides a brief introduction to major components of ABC++. For
more detail, see [O'Farrell et al. 1995]

ABC++ is a class library written in standard C++ to support parallel program-
ming in C++. Its run-time system provides portability across uniprocessors,
shared-memory multiprocessors, homogeneous NOWs, and massively paral-

lel machines. It is presently available for IBM RISC System/6000 workstation
networks and SP supercomputers. We believe that ABC++ is suitable for many
application areas. For example, it is suitable for application areas in which ease

of development and maintenance is the primary concern. Application areas such

as client-server, simulation, and monitoring can be among the most suitable for
ABC++. For instance, ABC++ was used by the Parallel Database group at IBM to
implement a tool for monitoring and controlling a parallel database. This applica-
tion extensively used concurrent object-oriented and distributed capabilities of the
ABC++ model. ABC++ allowed this group to save many man-months during the
development stage.

ABC++ supports concurrency through active objects. An active object pos-
sesses its own thread of control and can be created on any processor. To allow
active instances of a class to be created, the class must publically inherit from
class Pabc provided in the header file ABC++.h.

The thread of an active object executes method mainO. Pabc provides a de-

fault nainO, which repeatedly accepts method invocations from other active ob-
jects; classes derived from Pabc may redefrne mainO. An active object terminates
only when the whole program terminates.

An active object can control which of its methods are invocable using the

functions Paccept and Paccept-any. The arguments to Paccept are the names

of methods that the object is willing to serve. The use of Paccept-any signals
that the object is willing to serve any of its public methods. Each call to Paccept
or Paccept-any matches exactly one method invocation. The present implemen-
tation of ABC++ only allows a call to Paccept or Paccept-any from within the
nainO routine of active objects. A call to these functions elsewhere causes an

exception to be thrown.
An active object is created in two steps. First, a handle is declared using the

template Pabc-pointer. This handle is then used to reference the active object.

316 Eshrat Arjomandi, V/illiam G. O'Farrell, and Gregory V. Wilson

class C-Active : public Pabc {
body of active class

t:
Pabc_pointer<C_Act ive> act ive_p ;

Next, the function Pabc-create is called to create an active object and bind a
reference to it to the handle. Pabc-create is in fact a family of overloaded func-
tion templates with varying numbers of arguments. The first (optional) argument
to Pabc-create allows users to specify a particular processor on which the active
object should be created. If this argument is not provided, by default, the ABC++
run-time system determines where to create the new active object. The next argu-
ment is a handle for the active object being created. The remaining zero or more
arguments are arguments to the active object class constructor. For example, the
following code creates an active instance of C-Active. The value L2345 is passed

to C-Active's constructor.

Pabc-create(active-p, 12345) ;

Active objects in ABC++ communicate through remote method invocation
(RMÐ.Both synchronous and asynchronous RMIs are supported. ABC++'s tem-
plate functions Pva1ue and Pvoid perform blocking invocations of methods re-
turning or not returning a value, respectively. For example, the following line of
code invokes the method f oo of the active object bound to active-p, passing the
integer 456 as an argument:

int i = Pvalue(active-p, C-Active::foo, 456);

ABC++ requires the speciûcation of fully qualified method names (as in
C-Active: : f oo) as an argument to Pvalue and other template functions used
in active object communication. This is sometimes tedious; however, since this
argument is a function pointer, there is no interference with the virtual function
mechanism. In particular, if active-p is declared as a base class pointer but is
pointing to an object of a derived class, the f oo method of the "right" class will
be invoked, even if the Pva,] ue call is made using a base class function pointer.

Ppar-void and Ppar-value implement asynchronous RMI. Their arguments
are identical to those taken by Pvoid and Pva1ue. However, neither Ppar-void
nor Ppar-va1ue block the caller. Instead, the calling object proceeds with its
activity as soon as the arguments to the call have been copied to a safe place.
Ppar-void is used for asynchronous invocation of void methods; Ppar_value is
used when a result is expected.

Smørt Messages: An Object-Oriented Communication Mechanism 3I7

Futures lChandra et al. 1990; Halstead 1985; Kafura &Lee 1990] are used to
receive results of asynchronous RMIs. A future is an instance of the Pfuture
class template. When Ppar-value is called, the future is marked as pending.

The future is resolved when a value becomes available for it; any attempt to
read its value before it is resolved blocks its reader. The following code shows

how ABC++ futures are used:

Pfuture<int> iF;
iF = Ppar-vatue(activê-pr C-Active: :foo, 456);
int i = LF; / / btock until result becomes avail-abl-e

The mechanisms presented so far allow for direct communication among ac-

tive objects. ABC++ supports a second model of communication and synchroniza-

tion which allows for indirect object interactions. Parametric shared regions, or
PSRs, are used to provide the illusion of shared memory. A PSR may be any C++
object. ABC++'s run-time system provides copies of PSRs to other processors

when and as they are needed. Consistency of shared regions are guaranteed by
ABC++'s run-time system. Detailed discussions of how PSRs are used and imple-
mented are outside the scope of this paper. For more detail on PSRs see [O'Farrell
et al. 19951.

3. Smart Messages

In order to support the model described in the previous section, ABC++'s run-
time system must provide a flexible, architecture-independent communication
mechanism. For example, a message requesting object creation must carry any

constructor arguments required to create that object, the request to call new, and

the type of the class whose constructor must be called. The arguments to the con-

structor must be automatically marshalled into a contiguous block of memory.

Similarly, RMI must contain some identification of the object whose method is

being invoked, the method itself, and any arguments that method requires.

ABC++ utilizes data abstraction, genericityl, and polymorphism to create a

unified framework called smnrt messages to handle both remote object creation

and remote method invocation. A smart message is an instance of a smart class.

The instance variables of each particular smart class contain the information re-

quired to carry out the desired operation. A designated method of the smart class,

called do, encapsulates the requested operation. For example, if the request is for

1. Provided in C++ by templates.

318 Eshrat Arjomandi, William G. O'Farrell, and Gregory V. Wilson

object creation, ABC++ will automatically create a smart class by template ex-
pansion. This class's instance variables will have the same types as its constructor
arguments; upon instantiation, its instance variables will be initialized by copying
the user-supplied constructor arguments. This class's do method will be deûned to
invoke new using its instance variables. V/hen an instance of this class is received

at a remote processor, that processor will invoke its do method to create an object
of the required class.

Since a request for object creation or method invocation may involve a vary-
ing number of arguments, ABC++ provides a family of smart classes with vary-
ing number of instance variables. Each of these classes has its own unique name.

However, upon the arrival of a smart message at a destination processor, ABC++
must be able to invoke its do method. Polymorphism is used to allow this. All
smart classes inherit from an abstract base class SmartMsg which provides a de-

fened method (called a pure virtual function in C++):

class SmartMsg {
public:
virtual void doo = g;

);
Descendents of this class define do to perform either object creation or method

invocation. The remainder of this section deals with smart classes implementing
remote method invocation; Section 4 covers how smart messages implement re-

mote object creation.

3.1. Marshalling Data

As mentioned ea¡lier, ABC++ must marshal the arguments to remote operations.

Smart messages allow this to be done in a type-safe way. Every smart message

used for an RMI has at least two data members: a pointer to the method to be

invoked, and a pointer to the object which is to execute the method. This pointer
is deflned in the address space of the processor on which that object executes; as

will be seen in Section 4, such a pointer is embedded in an active object handle by
Pabc-create. The remaining instance variables store the arguments to be passed

to the invoked method. The do method of the smart message invokes the desired

method using the values stored in the instance variables.

Smart messages should be able to encode the invocations of methods with
varying numbers of parameters. This is handled by deûning a family of class tem-

plates. The present implementation of ABC++ provides class templates with zero

to 16 parameters. The following segment of code demonstrates the l-parameter
version for a method returning a value.

Smart Messages: An Object-Oriented Communication Mechanism 319

class C-Obj

{
... user-defined object class. . .

);

tenplate(class C-Obj, class C-Ret, class C-Argl>
class SnartMsgl: public SmartMsg

{
public :

C Obi * obi p:
C-Ret (C-0bj: :*neth-P) (C-Argl);
C-Arg1 argl;

SnartMsgl (Pabc-pointer<C-0bj > obj Hndl ,

C-Ret (C-0bj: :xnethod) (C-Argl),
const C-Argl & a1)

: obj-p(objHndl. object),
meth-p(method),
argl (a1)

{}

void doo
{

C-Ret r = (obj-p->xmeth-p) (argl) ;

The data member obj-p caches the object pointer from the active object han-

dle given as a constructor argument. The data member meth-p caches a pointer to
the method being invoked, while argl stores a copy of the argument to be passed

to that invocation. SnartMsgl's do method takes a particular object as an argu-

ment, and calls the specified method on that object with the actual argument. This
method can only be called safely in the address space of the processor on which
the specified active object is running.

The most important aspect of SnartMsgl is its role in encapsulating the nec-

essary information for invoking a method into a single object, so that the data

is guaranteed to be contiguous in memory. Copying sizeof (SnartMsgl) bytes

from &snl (where snl is a particular instance of the smart message class) is there-

fore guaranteed to copy the whole of the smart message.

320 Eshrat Arjomandi, William G. O'Farrell, and Gregory V. Wilson

)
);

3.2. Creating Smart Messages

Smart message classes are used by a series of overloaded function templates to
create smart messages. The following function demonstrates how smart messages
are created from the SnartMsgl class:

template<c1ass C_Obj, class C_Ret, class C_Argl>
C-Ret Pva1ue(Pabc_pointer(C_0bj> & objHndl,

C_Ret (C_Obj: :*method) (C_Argl),
const C_Arg1 & a1)

{
/ / create smart nessage
SmartMsgl<C_0bj, C_Ret, C_Argl>

snartMsg(objHndl, nethod, a1) ;

... send the smart messâge to the desired destination...

C-Ret rt // temporary storage for result
... assign value returned to r...
return r;

Ì

The first statement in this function creates a smart message. This message
is then sent to another processor and the calling object blocks until the result is
returned. The mechanism used for sending the message is discussed in Section 4.

3.3. Remote Invocation

ABC++ provides smart classes in order to accommodate the invocation of meth-
ods taking up to 16 parameters. Therefore on the receiving side, a correct handle
must be used to invoke method do. This is achieved with the help of polymor-
phism. As mentioned earlier, ABC++ provides an abstract base class, snartMsg,
with a single pure virtual function do. All smart classes publicly inherit from this
class. By obtaining a handle to snartMsg on the receiving side, the virtual func-
tion mechanism of c++ will guarantee the invocation of the 'Tght" do method.

Smart Messages: An Object-Oriented Communication Mechanism 321

4. Active Obiect Creøtion

Section 2 presented a brief introduction to how users can create active objects.

In this section we show how smart messages are used in the implementation of
remote active object creation.

As mentioned earlier, the function Pabc-create is called to create active ob-

jects. pabc-create is a family of overloaded function templates with varying

numbers of arguments. The first argument is a handle to the active object being

created. The remaining zero or more arguments are arguments to the active ob-

ject class constructor. A skeletal implementation of Pabc-create for active object

constructors taking one argument is shown below:

ternplate(class C-0bi, class C-Argl>
void Pabc-create (Pabc-pointer<C-0bj> & objHndl'

const C-Arg1 & a1)

{
... check for pointer arguments"'
Proc p = procSet.selectO;
SmartMsg-Createl<C-Obj, C-Argl> smartMsg(a1) ;

P--send(p, &smartMsg, sizeof (snartMsg)) ;
P--createReply<C-Obj > rePIY;
P--recv(&reply, sizeof (reply)) ;
P--abcSetPtr(objHndl, reply. data, p) ;

Ì

The two template arguments to this function are the class of the active object be-

ing created, and the class of the object's constructor argument. The function's

formal parameter is the argument to use when constructing the active object.

SmartMsg-Createl is the smart class version for constructors requiring one ar-

gument. Versions of this function for constructors taking up to 16 arguments are

provided, as are versions which allow a processor to be selected by the user, rather

than by using the automatic load-balancing method of the procSet class.

After some (sequential) code to force the compiler to check that the construc-

tor argument is not a pointer, Pabc-create creates a smart message containing

the constructor argument. The data transfer function P--send is then called to ship

the smart message to a daemon on the designated processor. The actual transport

mechanism may be TCP/IR MPI, or whatever else is convenient.

Next, Pabc-create cfeates a reply buffer, which will be used to store a

pointer to the object generated on the remote processor, and then blocks its

caller until a reply is received. Since inter-object communication can only be

322 Eshrat Arjomandi, V/illiam G. O'Fanell, and Gregory V. Wilson

done through handles, this ensures that an active object never tries to send a re-
quest to another object which has not yet completed its own initialization. The
value in this reply is a pointer to the active object which has just been created.
The final line of Pabc-create extracts this pointer, and stores it in its handle ar-
gument. This pointer can then be exfracted in subsequent RMIs.

section 3.1 showed how smart classes marshal the arguments to a RMI in
a type-safe manner. Smart classes for remote object creation are very similar to
smart classes presented in Section 3.1 for RMI. These classes also inherit from
the abstract base class smartMsg. The instance variables (if any) of these smart
classes store the constructor arguments needed to create the active object. The
definition of the do O method simply calls new using its instance variables as the
constructor arguments. The following code demonstrates the l-argument version:

tenplate<c1ass C_Obj, class C_Argl>
class SnartMsg_Createl : public SnartMsg
{
public:
Proc srcProc;
C_Arg1 argl;
SnartMsg_Createl(const C_Argl & a1) :

argl (al)
{
srcProc = procSet.this O ;

Ì
void doo
{

P__rep1y<C_0bj> reply;
// create active object
reply. data = nerir C_Obj (a1) ;

P__send(srcProc, &reply, sizeof (reply)) ;

5. Data-Based Synchronization Using Futures

As stated in Section 2, ABC++ uses futures to implement data-based synchroniza-
tion of remote method invocations. Futures are implemented by defining a tem-
plate class to hold the results of asynchronous remote method invocations which
return values. Each instance of the class Pfuture holds a reference to the future

Ì
l;

Smart Messøges: An Object-Oriented Communication Mechanism 323

return value of an asynchronous invocation. Type conversion from the future type

to the base type blocks until the return value actually arrives. A future can also

be initialized with an actual object, in which case it acts just like a holder for that

value without blocking. Assignment of futures to each other is well-defined. A
partial signature of Pfuture is:

tenplate<c1ass T>

class Pfuture
{
private:
P--f uture-result(T) * future-result ;

public:
// create futures
PfutureO;
Pfuture(const Pfuture<T>& fut) ;

Pfuture (const T& value) ;

/ / aLias and overwrite futures
Pfuture<T>& operator=(const Pfuture<T>& fut) ;

Pfuture<T>& operator=(const T& value) ;

// ael-ete futures
-PfutureO;
// convert to base type
operator TO const;
// test for completion
int resolvedO const;

Ì;
The class P--future-result contains data and member functions to handle the

future-resolution protocol. The behavior ofinstances ofthis class is independent

of the data type encapsulated in any particular future. The methods of Pfuture
itself allow futures to be created, assigned values, converted to their base type, and

tested for completion.
Given this structure, the template function Ppar-value performs an asyn-

chronous remote method invocation. When invoked, it marks its future argument

as unresolved. Subsequent attempts to access the future's data will block until the

future becomes resolved. As with Pvalue, a smart message is created to carry

argument values and a method function pointer to the remote method whose

operation is being invoked. The following segment of code illustrates the ma-

jor components of Ppar-value. SmartMsgFuturel is the l-argument version of
smart classes defined for future interactions.

324 Eshrat Arjomandi, William G. O'Fanell, and Gregory V. Wilson

template<class C_Obj, class C_Ret, class C_Argl>
Pfuture<C_Ret>
Ppar-value (Pabc_pointer<C_0bj > objIIndI,

C_Ret (C_Obj: :*nethod) (C_Argl),
const C_Argl & a1)

{
.'. check validity of arguments...

// create future token for later reference
Pfuture<C_Ret) token;

/ / create smart message
SnartMsgFuturel<C_0bj, C_Ret, C_Argl>

smartMsg(token, objllndl, method, al) ;

... send messâ8e...

return token;
Ì

The future object, token, created inside this function is a placeholder containing
synchronization conffol information. It is returned to the caller so that references
to it may block or complete, and a pointer to it embedded in the smart message so
that the reply from the remote method invocation will have a way to identify its
future.

6. Conclusion

This paper focused on smart messages, an object-oriented technique in support
of active object interactions in ABC++. We showed how to utilize the data ab-
straction, genericity, and polymorphism facilities of the object-oriented paradigm
to create a uniûed framework to handle both remote object creation and remote
method invocation.

ABC++ provides several commonly-used abstractions of parallelism within
standard C++. It supports type-safe parameter marshalling, remote method invo-
cation, and object-sized distributed shared memory without any pre-processors,
post-processors, or language extensions. As a result, ABC++ is very portable, and
does not require users to commit themselves to non-standard or poorly-supported

Smart Messages: An Object-Oriented Communication Mechanism 325

tools. Future directions for ABC++ may include the incorporation of multiple con-

sistency protocols as exemplified in Munin [Bennett et al. 1990], and support for

group operations in the form of data parallelism, or its higher-level counterpart,

method parallelism.

Acknowledgments

ABC++ was developed at the Center for Advanced Studies at IBM Canada's

Toronto Laboratory, in collaboration with researchers from several universities,

including York, Syracuse, Toronto, and McGill. We wish to thank Frank Eigler

for his work on implementing the current version of ABC++, and Howard Oper-

owsky for his support and suggestions. We also wish to thank Tim Brecht of York

University for his suggestions toward making the implementation of ABC++ more

portable. Finally we thank the many people who contributed to the prototyping

and testing of ABC++, including Young-il Choo, Jagdeep Dhillon, Ali Ghobad-

pour, Stephen Howard, Ivan Kalas, Gita Koblents, Henry Lee, Peter Milley, Fer-

nando Nasser, S. David Pullara, Ilene Seelemann, and Susan Sim'

Appendix: Checking and Converting Argumeü rypes

The templates shown in this paper are unnecessarily restrictive, as they do not

allow type conversion during invocation. For example, because the types of both

the formal argument to the method in Pvalue, and the actual argument given as

PvaIue'S third parameter, are specified as C-Argl, an invocation such as:

Pvalue(tnn¿t, TestClass: :nethodTakinglnt,'a') ;

would fail with a type-matching error.

ABC++ circumvents this with a slightly more convoluted definition of

Pvalue:

template<class C-0bi, class C-Ret,
class C-Formal1, class C-Actuall>

C-Ret Pvalue (Pabc-pointer<C-0bj> & objHndt'
C-Ret (C-Obj : : xneth) (C-Formall),
const C-Actua1l & a1)

{
/ / ctreck legality of type conversion

326 Eshrat Arjomandi, William G. O'Farrell, and Gregory V' Wilson

C-Actuall * actual_p = NIILL;
C_Fornall * formal_p = actual_p;

.'. check for pointer arguments...

...rest of body as before...
Ì

This version of Pvalue takes three class parameters: the object's class, the
type of the formal argument to the method being invoked, and the type of the
actual argument being passed to the invocation. The first line of Pval-ue creates a
NULL pointer of the actual argument type; the second line then tries to assign from
this pointer to a pointer of the formal type. If the actual type cannot be converted
to the formal type, this conversion will fail. A modern optimizing c++ compiler,
such as IBM's CSnr++, can determine that these values are not subsequently used,
and delete them during optimization. This technique therefore has no run-time
cost.

The next statements in this modified Pvalue checks to ensure that the ac-
tual argument being passed is not a pointer. ABC++ does not (presently) allow
pointer arguments to be passed during remote method invocation because there is
no guarantee that the thing pointed to at the receiving end will bear any resem-
blance to the thing pointed to at the sending end. ABC++ forces the compiler to
check for pointer parameters by providing templates that will match all pointer
and non-constant reference arguments, plus one that will match immediate and
constant reference arguments. We begin by noting that if the declared type of a
formal argument is const x& (for some type x), then c-Actuall will be bound to
the whole of const x& and not just to x. If the user attempts to pass a pointer
or reference argument to a remote method invocation, the compiler will find
two ways to unify this attempt with these templates. since this ambiguity is il-
legal, the compiler will generate an error message using the mock argument name
no-pointer-argument -allowed, and fail. These templates are:

template<class T>

void _P_ptr_invalid(
T* no-ptT-arg-a1lowed

){}

tenplate(class T>

void _P_ptr_invalid(
T* const no_ptr_arg_allowed

){}

Sm.art Messøges: An Object-Oriented Communication Mechanism 321

tenplatê<class T>

void -P-ptr-invalid(
const T* no-ptr-arg-a110wed

){}

tenplate(class T>

void -P-ptr-invalid(
const T* const no-ptr-arg-allowed

){}

tenplate<c1ass T>

void -P-ptr-invalid(
const T& no-ptr-arg-allowed

){}

For example, if a program attempts to pass an int* as a parameter to a remote

method invocation, then during oomBilation, the compilef will unify int with T in

the first template, but also uniff int* with T in the last template (trying to create

a function with a const int * & argument).

328 Eshrat Arjomandl William G. O'Farell, and Gregory V. IVilson

1.

J.

4.

References

E. Arjomandi, W. O'Farrell, I. Kalas, G. Koblents, F.C. Eigler, and G. Gao,
ABC++: concurrency by Inheritance in c++, IBM systems Journal 34(r):L2o-
136, (1995).

AT&T c++ Language system Release 2.0: product Reference Manual, Select
Code 307-L46, AT&T Bell Laborarories, Murray Hill, NJ 079j4 (Iggg).
John K. Bennett, John B. Carter, and V/illy Zwaenepoel, Munin: Distributed
shared Memory Based on Type-specific Memory coherence, proceedings of the
1990 Conference on Principles and Practice of Paratlel programming, ACM
Press, 1990.

B. Bershad, E. D. Lazowska and H. M. Levy, pRESTO: A System for Object-
oriented Parallel Programming, soþuare-Practice and Experience lï(g):7 13-
732, (August 1988).

P.A. Buhr, G. Ditchfield, R. A. Stroobosscher, B. M. younger, and C. R. Zarnke,
p,C++i Concurrency in the Object-Oriented Language C++, Soþ,uare-practice
and Exp erience 22(2):137 -17 2, (1992).

R. chandra, A. Gupta, and J. Hennessy, cool: a Language for parallel program-
ming, Languages and compilers for Parallel computing, edited by D. Gelernter,
A. Nicolau, D. Padua, MIT Press (1990).

T.w. Doeppner Jr. and Alan J. Gebele, c++ on a parallel machine, Report cs-97-
26, Department of Computer Science, Brown University (November l9g7).
P. Gautron, Porting and Extending the c++ Task system with the Support of
Lightweight Processes, USENIX C++ Conference proceedings, pp. 135-146,
(1ee1).

N.H. Gehani and \v.D- Roome, concurrent c++: concurrent programming with
Class(es), S ofau are-P rac ti c e and Exp e ri enc e lB(12) :l I 57 -1 1 77, (I 98 8).
D. Grunwald, A user's Guide to AWESIME: An object-oriented parallel pro-
gramming and simulation system, Technical Report cu-cs-552-91, Departmenr
of Computer Science, University of Colorado at Boulder (1991).

R' Halstead, Multilisp: A Language for concurrent symbolic computation, ACM
Transactions on Programming Languages and Systems, October 1985.
D. Kafura and K.H. Lee, ACT++: Building a concurrent c++ with Actors, Jour-
nal of Object-Oriented Programming 3(l):25-37, (1990).
\ùy'. G. O'Farrell, F. Ch. Eigler, L Kalas, and G.V. Wilson, ABC++ User Guide,
An Introduction to the IBM Parallel class Library for c++, ABC++ version 1,
Release 1, IBM Canada, abc++@vnet.ibm.com (1995).

T. von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser, Active Messages: A
Mechanism for Integrated communication and computation, proceedings of the
I9th International symposium on computer Architecture, ACM press, Gold coast,
Australia (May 1992).

6.

7.

8.

9.

10.

t2.

13.

14.

11.

Smart Messages: An Object-Oriented Communication Mechanism 329

