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ABSTRACT: As computer systems are becoming
increasingly complex, directing tools are gaining in
importance. Directing denotes two classes of activi-
ties, monitoring and controlling. Monitoring is used
for collecting information about the program behav-
ior. Controlling is used to modify the program state in
order to change the program's future behavior. Some
characteristic directing tools are debuggers and perfor-
mance monitors.

Dynascope is a directing platform, which pro-
vides basic monitoring and controlling primitives.
These primitives are used in building advanced di-
recting applications for networked and heterogeneous
environments. Dynascope is integrated with existing
programming tools and uses only generic operating
system and networking primitives. This paper describes
the design and implementation of the directing server,
the central component of Dynascope. Dynascope is
being used in several applications, including relative
debugging, steering agents, and simulator testing.
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l. Introduction

Increasingly complex software requires sophisticated directing tools [Aral
& Gertner 1988, Bihari & Schwan 1991, Bruegge et al. 1993, Elshoff 1988,

Hollingsworth et al. 1994, Joyce et al. 1987, Kishon et al. 1991, Lumpp

et al. 1990, Marzullo et al. 19911. These tools perform activities, which can be

classified as monitoring and controlling. Monitoring is used for sampling of the

program state or tracing of the program execution. During monitoring, information

about the program behavior is collected without changing the program's seman-

tics. Controlling is any activity that changes the program and its future behavior

by modifying the program's state, including its variables and code. An important

application of controlling can be found in program steering, which means control-

ling the execution of long-running, resource-intensive programs [Gu et al. 1994].

Because monitoring and controlling activities are closely related, we can com-

bine them under a single term, directing [Sosið 1992]. Two types of programs are

involved in directing: programs that perform directing and programs being di-

rected. The former are called directors and the later are executors. Directors are

constructed speciflcally to perform a particular directing task. Examples of direc-

tors are debuggers and performance monitors. Any user program can serve as an

executor.

Directors are complex programs, because they depend on all major compo-

nents of computer systems: computer architectures, operating systems, networking,

and existing programming tools. Their complexity is compounded by the hetero-

geneous nature of most computing environments. Significant programming efforts

are spent on reimplementing similar tools on different systems. A system inde-

pendent platform for building directing tools would simplify the tool construction.

Programming resources could be redirected toward building better tools, capable

of operating in heterogeneous environments'

Advanced directing tools are often implemented in environments that provide

interpreted execution [Kiczales & Bobrow 1991, Kishon et al. 1991, Model1979,

Moher 1988, Myers 1983, Shimomura & Isoda 1991, Teitelman & Masinter 1981,

Tolmach & Appel 19901. Tools in these environments utilize the underlying inter-

preter which is extended with specialized support for debugging or performance
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monitoring. Such an interpreter does not exist for compiled programs, which are
directly executed by hardware, so a different approach is required.

Directing applications for compiled programs are normally built by using ded-
icated primitives in the operating system, such as ptrace, prof il, and /proc
[Bach 1986, Graham et al. 1982, Killian 1984]. These primitives are intended for
building traditional directing applications: debuggers and profllers. They provide
execution control and access to the process state. Their main limitations are differ-
ent primitives on different computing systems, a low level and restricted range of
primitives, and no support for networks. Their functionality is often insufficient for
providing advanced directing applications in heterogeneous environments.

Dynascope provides directing primitives for compiled programs. The primi-
tives operate in networked and heterogeneous environments. Dynascope uses only
generic operating system primitives for its implementation. It is compatible with
existing development tools and simple to use. It is being successfully applied in
several applications by programmers with minimal system specifrc knowledge.
Using Dynascope, these programmers built innovative directing tools for heteroge-
neous environments. Some projects include: dynamic tracing and visualization of
program execution; relative debugging which compares execution of multiple pro-
grams in different languages, running on different types of computers; and steering
agents for scientific simulations. This paper concentrates on the design and imple-
mentation of the directing server, which is the central component of Dynascope.

Section 2 gives a short overview of directing primitives. Section 3 describes
the design and implementation of Dynascope. Section 4 describes some applica-
tions of Dynascope: relative debugging, steering agents, and simulator testing.
Performance measurements are presented in Section 5. Section 6 provides a dis-
cussion of the current status of Dynascope. Related work is discussed in Section 7.
Section 8 concludes the paper.

2. Dynascope Primitives

Dynascope provides a set of directing primitives. These primitives are used by
directors to perform monitoring and controlling operations. The primitives operate
across networks. This section provides a summary of Dynascope primitives. A
detailed description and the use of the primitives is given elsewhere [Sosið 1995].

Most elementary are primitives for execution control. These primitives are
used by the director to establish a connection with the executor or to get its atten-
tion. using these primitives, the director can attach to a running progr¿rm, start a
new program, and stop or resume a program's execution.

The Dynøscope Directing Server: Design and Implementation 109



Other primitives are classifled into several groups: state access, breakpoints,

tracing, and dynamic loading and linking. These primitives require that the ex-

ecutor is waiting for directing commands. This requirement guarantees that the

user program is not executing and changing its state, while it is being examined or

modif,ed by the director.

Directing primitives for state access manipulate the executor's state. The di-

rector can obtain or set values in the executor's address space, including data and

processor registers. Additional primitives provide addresses of source lines and

addresses of global symbols to assist in calculating breakpoint locations and vari-

able addresses. Using breakpoint primitives, the director can set up and delete

breakpoints or catch breakpoint execution. Tracing primitives access and man-

age tracing events. Tracing complements breakpoints by providing more powerful

monitoring constructs at a cost in the execution time. Primitives fot dynamic load-

ing and linking provide facilities for dynamically changing program code. The

director can load new object files in the executor's address space. Symbols from

these object files can be linked with the program code.

3. Design and Implementation

3.1. Overview

An overview of Dynascope is shown in Figure l. Dynascope is implemented in

two components, a client library and a directing server. The client library provides

a set of procedures, which are called by directors to perform Dynascope primi-

tives. Procedures in the library send requests to the executor and return the results.

Each executor has its own directing server which accepts and carries out directing

requests for that particular executor.

The implementation of the client library is straightforward. Procedures in the

library pack their arguments, implement the communication protocol with the

directing server, and unpack the results.

The directing server contains most of the Dynascope complexity. It isolates

system dependent features and provides a system independent interface to the

client library. The system independent interface enables the portability of di-

rectors and their operation in heterogeneous environments. Only recompilation

is required to port a director from one platform to another. Directors can direct

simultaneously several executors, each executing on a different machine. As a re-

sult, directors and executors can be arbitrarily mixed on any Dynascope supported

computing platform.

110 Rok Sosið



user program

director executor

Figure 1. Overview of Dynascope.

In order to carry out directing requests, the server must be able to perform
several operations. These operations include: halting and resuming the execution
of the user program; accessing and modifying the address space of the user pro-
gram; and handling of breakpoints and tracing primitives. Two approaches can be
used to implement the directing server. one approach uses operating system primi-
tives, such as ptrace and /proc [Bach 1986, Killian 1984]. The second approach
uses only generic operating system primitives and avoids the use of special debug-
ging primitives. Each approach has its advantages and disadvantages. The main
advantage of the operating system primitives is a relatively simple implementa-
tion of the directing server. Disadvantages involve limited functionality. Operating
system primitives might not support functionality that is required by the direct-
ing server or the primitives might be too limited in their scope. For example, in
some operating systems primitives can be applied only to children processes or
they can access only one word in the user program at the time. Both limitations
would greatly restrict the applicability of directing servers. If operating system
primitives are replaced by a user level implementation, disadvantages and advan-
tages are exchanged. Although the initial implementation of the directing server
is more complex, it is easier to incorporate extensions. An additional advantage
of the second approach is that the directing server can be placed directly in the
address space of the user program. This arrangement eliminates expensive process
switches between the directing server and the user program, so the servicing of
directing commands can be faster.

Dynascope uses the second approach. Each executor is a single process, con-
sisting of a user program to be directed and its directing server. The directing
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server is implemented as a distinguished thread running in the executor's ad-

dress space. Because consistency problems can arise otherwise, the server and

the user program never execute concurrently. As a result, if no directing is being

performed, the server does not impose any overhead, except for occupying the

address space. The directing server is activated by directing requests. When a di-
recting request is received, the user program is interrupted and the server thread is

started. The intemrption is transparent to the user program, because there are no

direct calls from the user program to the directing server. The server continues ser-

vicing directing requests, until a continuation of the user program is requested. At
that point, the server thread returns control to the user program which continues

executing.
The directing server is implemented entirely at the user level. It requires only

generic operating system primitives, which are used for interprocess communica-

tion, remote execution, and signal handling. To build directors and executors, user

programs are linked with the client library or the directing server, respectively.

Main issues in implementing Dynascope are the activation of the directing

server, the managing of a directing session, and the implementation of directing

primitives. These issues are discussed in the following sections.

3.2. Actívating the Directing Server

The directing server is implemented as a distinguished thread in the executor,

sharing the address space and control with the user program. The server can

be activated externally or internally. An external activation is done by a director

through issuing a directing request. An internal activation is performed when the

user program executes a breakpoint. Each server activation performs a context

switch from the user program to the directing server. The server exits by restoring

the context of the user program.

The activation and exit from the directing server are performed through signal

handlers [Cormack 1988]. An asynchronous signal from the director activates the

entry signal handler. The signal handler saves a partial state ofthe user program

and redirects the execution to the server prolog. The server prolog completes the

saving of the user state and replaces the user stack with the server stack. A sepa-

rate server stack simplifres tracing of the user program. The server prolog passes

the execution to the server entry point.

The server entry point is the server's main loop. If requested, a communi-

cation channel is established with the director before the loop is entered. The

server's loop reads directing requests and services them. When the director re-

quests the continuation of the user program, the server performs a context switch

back to the user program. The server calls the server epilog, which restores the
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user state and generates the exit signal. The exit signal handler returns control to
the user program, which continues without being aware of the intemrption.

signal handlers, which perform context switches between the user program
and the directing server, allow a relatively portable and simple implementation. In
older versions of Dynascope, the directing server used only user level code to exit
from the directing server. These user level implementations were complex, highly
system dependent, and unreliable. The exit from the server is a critical section,
because another directing request might be issued before the exit is completed. In
existing versions of Dynascope, the server always exits through a signal handler,
which guarantees atomic execution of the exit code, free from signal intemrptions.
This implementation has proved to be simple and reliable. It has a system inde-
pendent high level logic, which improves its portability.

The directing server must be initialized, before the user program starts execut-
ing. The initialization can be done by a special start-up code which replaces the
system supplied code. The special code can be inserted in the executor during the
linking of the user program or by directly modifying the executable. The start-up
code sets up relevant signal handlers, interprets the command line, and initializes
server's variables. Because the command line is shared between the user program
and the directing server, a dedicated marker is used to distinguish server's argu-
ments from user's arguments. The marker is specified by a sequence of characters
which is unlikely to occur in the user command line. After being processed by the
server, the server's arguments are removed from the command line, so that they
are invisible to the user program. The most important server's argument activates
the directing server before the user program is started. This argument enables the
director to manipulate the user program before it starts executing. Other server
arguments are used mostly for testing purposes.

3.3. Dírecting Session

A directing session is established when a director attaches to an executor. The
session is active until the director detaches itself. At most one director can be
attached to an executor at the same time, but each director can be attached to sev-
eral executors. The restriction to one director at the time prevents the interference
between several directors, modifying a single executor.

During a directing session, Dynascope maintains a communication connection
between the director and the executor. The connection transmits directing requests
to the executor and returns results to the director. Although the director is logically
a client of the directing server, it acts as the connection server. In a previous im-
plementation, the executor was the connection server. This arrangement required a
complex protocol in the directing server for dealing with faulty directors and for
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resolving the race problems among directors, trying to connect to the same ex-

ecutor. The existing solution simplifies the directing server which makes it more

reliable.
To establish a directing session, the director must intemrpt a running program

and open a connection to the program. The session is established as follows (see

Figure 2). The director opens a communication channel and sends the channel

address and a request for attach to the executor. The channel address is commu-

nicated through a file, identified with each executor. The tle is created only when

necessary. Establishing a directing session through a file solves the problem of
races between several directors requesting a connection to a single executor. Be-

cause writing to a file is atomic, the information in the executor's file is always

consistent. When several directors request a connection at the same time, one of

director

(executing)
- open a conmunication channel
- create the executor's file
- write channel infornation to the file
- send a signal
- wait for a connect

- catch the signal-
- activate the directing server
- read cha¡nel information
- delete the file
- connect

- send a cornrnand

- wait for a resPonse
- receive the conmand

- send a response

- send a conmand

- wait for a response
- receive the conmand

..:""u 
a resPonse

- send an "executetr command
(executing) - receive the connand

(executing)

executor

(executing)

Figure 2. Establishing a Session.
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them succeeds by receiving a response from the directing server, while the others
receive a timeout after the executor fails to respond.

After the executor's file is created, a request for attach is sent as a signal
which activates the directing server. Upon catching the signal, the directing server
reads the executor's file and connects to the specified channel. Communication
channels use sockets with TCPIP. Directing commands and their results are trans-
mitted across sockets by an ftp-like protocol [Stevens 1990]. If the director and
the executor run on two different machines, then the director uses remote file copy
and remote shell execution to access the executor's file and to send signals. In
future implementations, the remote execution facilities might be replaced by a spe-
cialized server. The remote execution server could provide an increased level of
security for handling the setup of directing sessions and transmission of signals.

A separate signal is being used during a directing session to stop an asyn-
chronously running executor. Two separate signals, one to establish a session and
one to interrupt the executor during the session, enhance the robustness of the
protocol. Previous implementations of Dynascope used only one signal for both
purposes, which proved to be extremely fragile. Errors in directors could easily
break executors. For example, if the director unexpectedly terminated, it could
leave the executor in an unrecoverable state. Because the existing implementa-
tions use a dedicated signal to establish a session, another director can attach to
the executor and continues with the directing.

The directing server can receive a request for a new session while another
session already exists. In this case, the existing session is terminated and a new
session is established instead. This policy allows directors to attach to executors
which are in an undefined state, possibly because of errors in a previous director
or in the executor itself. The policy provides more flexibility than a flxed method
for conflict resolution in the server. Because directors are responsible for resolv-
ing potential access conflicts, they can implement a conflict resolution method
which is the most appropriate for their application. So far in practice, the directors
have been mostly initiated by human users and the problem of conflicts has been
insignificant.

3.4. State Access

The implementation of commands for state access is straightforward. The director
provides an address in the executor's address space, the address of a buffer in
the director's address space, and the length of the buffer. Based on the command,
the buffer is copied from the director to the executor or from the executor to the
director. specialized commands are provided to simplify the copying of dynamic
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data structures and strings. These commands automatically allocate the necessary

space and, in the case of strings, determine the buffer length.

Besides accessing the address space of the executot the director can access

or modify the processor registers. Because these registers are always captured and

restored on entering or exiting the directing server, it is trivial to provide these

registers for manipulation by the director.

Two directing primitives assist in mapping source code to machine addresses.

The flrst primitive returns the address of a global symbol. The second primitive

returns the address of a source line. These two primitives are used in setting

breakpoints and for accessing global symbols. They are implemented by search-

ing symbol and debugging tables which are loaded in the directing server.

3.5. Breakpoints

Breakpoints can be set by a director at any instruction in the user program. V/hen

the user program executes a breakpoint, the program is suspended, the breakpoint

is reported to the director, and the directing server is activated.

Two different approaches have been tried for implementing breakpoints. The

flrst approach uses only user level code, while the second approach uses a system

provided breakpoint traP.

In the first approach, breakpoints are implemented using the breakpoint code

and the breakpoint handler fHollingsworth 1994, Kessler 1990]. To set a break-

point, instructions at the breakpoint address are replaced with the breakpoint code

which redirects control to the breakpoint handler. The breakpoint handler saves

the user state and activates the directing server. The main advantage of this ap-

proach is the speed ofbreakpoint handling, because no system calls are involved.

However, the approach has several disadvantages. The breakpoint code, which is

implanted in the user code, can be longer than one instruction. On Sun SPARC,

for example, three instructions are required for the breakpoint code. The break-

point code thus covers instructions other than the breakpoint instruction. If the

execution of any of these instructions is attempted, while the breakpoint is set, the

resulting behavior of the user program is unpredictable. A similar problem can

occur, if a directing request is received, while the breakpoint code is executing.

Later versions of Dynascope use a special, system provided breakpoint in-

struction for the breakpoint code. These breakpoints occupy only one instruction

slot. When the breakpoint instruction is executed, it causes a system trap, which

calls the trap handler. From the trap handler, the activation of the directing server

is identical to an external server activation. The trap handler passes control to the

server prolog which jumps to the server entry point. The implementation of break-

points through the trap handler is simpler than the first approach, which uses only
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user level code to handle breakpoints. Because breakpoints activate the server in
the same way as directors, the code for the external and internal server activa-
tion can be unified. The unified code is significantly more portable and reliable
than the olde¡ user level implementation. A breakpoint trap takes only a small
amount of the total time required to service a breakpoint. Most of the time is spent
in communicating the breakpoint to the director. Therefore, slower execution of
the breakpoint handler through a system trap has only minimal influence on the
overall breakpoint performance.

Breakpoints require special handling, when the control is returned to the user
program. A breaþoint replaces an instruction. This instruction must be executed
before the user program continues executing after the breakpoint. The server ac-
complishes this by replacing the breakpoint with the original instruction. The
instruction is executed under the control of the server and the breakpoint is re-
installed. The capability to execute a single instruction is usually provided by the
operating system. Unfortunately, this capability cannot be used by the directing
server, because it shares the control with the user program. If the directing server
implements tracing, which is described in the next section, then the instruction is
simply traced. If tracing is not implemented, then single stepping is simulated with
breakpoints. Possible addresses are calculated for the next instruction to be exe-
cuted. Internal breakpoints are implanted at these locations and the user program
is resumed. One of the internal breakpoints will be executed, which returns control
to the directing server. The server removes the internal breakpoints and switches
to the user program.

3.6. Tracing

Tracing allows directors to collect detailed information about the execution of user
programs. If a user program is placed in the tracing mode, then each executed
instruction produces one or more events. Events are generated by the directing
server. The server controls the execution of the user program, produces events,
and sends them to the director.

One event is generated for each location modified by the user progr¿ì.m.

These locations include registers and locations in memory. An event consists
of several fields: an event descriptor, the program counter, the instruction reg-
ister, the changed location's address, the modified value at the address, and the
original value at the address before the instruction execution. Events provide
extensive information about the program behavior. They can be used to obtain
control flow, memory traces, or to perform reverse execution. Although events
have machine specific content, their structure is machine independent. All com-
puting platforms provide events with the same flelds. unless the director uses
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machine specific information, such as operation codes in machine instructions

or machine specific registers, events can be processed in a machine independent

manner.

Two approaches are commonly used to generate tracing events: single stepping

and simulation. Single stepping uses hardware support to execute one instruction

at the time. The main advantage of single stepping is simple implementation, if
suffrcient support is provided in hardware and the operating system. There are

several disadvantages in using single stepping in the directing server. Normall¡

the system interface does not enable the server to single step through the user

program, because it is part of the same process. Single stepping involves a sys-

tem call for each executed instruction which causes significant overhead in the

execution time. An important disadvantage is that it is expensive to determine

which locations change during execution. Partial instruction decoding is required

to obtain the addresses of modified locations, which defeats the purpose of single

stepping.

Using simulation, the hardware processor is emulated in software lCmelik &
Keppel 19941. This approach eliminates disadvantages of single stepping, although

at the expense of increased complexity of implementation.

Dynascope uses .ç¿¿rrogate execution, a combination of simulation and direct

execution. Surrogate execution exploits the fact that the processor running the

simulation and the processor being simulated are the same. Each instruction is

decoded to find out its opcode, its operands, and the locations modified by its exe-

cution. After the decoding, the simulator chooses the relevant simulation sequence.

If the instruction is simple, it is simulated. If the instruction is complex, possibly

involving condition codes or floating point computations, it is executed by a sur-

rogate instruction. The surrogate instruction performs the same operation as the

original instruction, but with different operands. Because of the instruction decod-

ing, the simulator knows the locations of input operands and output results. The

input operands are supplied to the surrogate instruction and the surrogate instruc-

tion is executed. Its output results are stored to locations that would be modified

by the original instruction.
Surrogate execution is demonstrated on a hypothetic instruction that adds reg-

ister ra to register rb:

add ra,rb i rb = ra + rb

ra and rb can be any of the general purpose registers in the processor. While sur-

rogate execution is being performed, the directing server is active and the user

program is suspended. The state of the user program, which consists of an array of

register values, is saved in a data structure reg in the directing server. Let reg[xJ
denote the saved value of register rx from the user program. Simplifled code for
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surrogate execution of the add instruction is shown in Figure 3. At the beginning,
operand information, in this case indexes of user registers, is extracted from the
instruction. The value of user register reg [bJ , which will be modifled by the re_
sult, is saved. This original value is later reported in an event. Processor registers
16 and 17, which are used during surrogate execution, are saved to a temporary
area. User registers reg[aJ and reg[bJ are loaded in processor registers 16 and
17 . The suffogate instruction, " add 16 , r7 ", is executed at this point. Although
any two registers can be specified in the original instruction, the surrogate exe-
cution will always add registers 16 and 17. At the end, the result is saved in user
register reg[bJ and the registers 16 and 17 are restored to their original values.

Surrogate execution significantly simplifles the implementation of tracing.
It entirely eliminates complex calculations of condition codes and floating point
operations in software. An additional advantage of surrogate execution is that
it does not involve self-modifying code and subsequent expensive operations to
maintain the consistency of the instruction cache. Simitar approaches can be found
in fast instruction-set simulators [Cmelik & Keppel 1994].

System calls and shared libraries are executed directly. While system calls
execute automatically through a trap execution, shared libraries are detected by the
directing server. When a shared library is entered, a breakpoint is set at the return
address and the library routine is executed directly.

Tracing produces alarge number of events, at least one for every executed in-
struction. The transmission of every event to the director introduces approximately
four orders of magnitude of overhead [Sosið rg92]. Many applications require
only a subset of events. For example, if the director produces a runtime animation
of the function call graph, it needs only events generated by function calls and
returns. To reduce the overhead oftracing, the directing server supports filters. Fil-
ters are functions that can be dynamically installed in the directing server by the

<extract indexes a and b from the instruction)
<save the value of reglbJ>
move r6,r6save ; save processor register 6
move r7,r7save ; save processor register 7
move reg[a],r6 ; load user register ra to 16
move reg[b],r7 ; load user register ra to 17
add 16,17 ; surrogate instruction: add 16 to 17
move r7,reg[bJ ; save result to user register rb
move r6save,r6 ; restore processor register 16
move r7save,r7 ; restore processor register r7

Figure 3. Surrogate Execution of add Instruction.
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director. After an event is generated, the directing server calls the fllter to evaluate

the event. If the result is nonzero, the event is sent to the director, otherwise it is
discarded.

Commands are provided that load, set, and remove filters. An example of the

filter that selects only events associated with control instructions is shown below:

/* return 1 for control instructions, return 0 otherr¡i-se *,/
eventfittero
{

return(evstate IESAD] == PCADDRESS) ;

Ì

Because control instructions change the program counter, these instructions gen-

erate an event with the address field equal to the address of the program counter.

The filter simply compares the address changed, evstate IESAD], to the address

of the program counter, PCADDRESS. If the two addresses match, this denotes a

control instruction.
Because the communication of events is significantly more expensive than

their generation, event buffering considerably reduces the overhead oftracing.

With buffering, a few hundred events can be collected together and sent in one

block with almost the same overhead as one event. A previous version of Dy-

nascope provided special directing primitives for event buffering. However,

a simpler, but functionally equivalent solution can be provided by using a fllter
for event buffering. The filter collects events and reports a single event when the

buffer is full. After the director receives a buffer full event, it copies the buffer

from the user program and resets the buffer in the fllter. The implementation of
buffering with a filter is more flexible than the original solution with a direct im-

plementation in the directing server. Because filters can be changed dynamically, a

filter implementation is not fixed and can be easily adapted to suit specific applica-

tion needs.

The installation of filters is implemented using dynamic loading and linking

facilities, described in the next section.

3.7. Dynamic Loading and Linking

At any time during runtime, an external object file can be dynamically loaded and

linked with the user program. These modifications to the user program remain

permanent, unless they are explicitly changed or reversed. The directing server

provides separate constructs for loading and linking.
The loading of an object file takes several steps: sufficient space is allocated

from the heap of the executor; code and static data are extracted from the object
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file and copied to the allocated space; and references to external symbols are as-

signed values from the already running code. If the object file defines symbols that
are already defined in the running code, then the values from the running code are

given priority. Therefore, the loading process modifies the object file, but it does

not change the previously existing code. For each loaded object file, the direct-
ing server builds an entry in the table of object flles. The entry consists of the file
name and type information, its corresponding static data, its symbol table, and the

relocation information. Besides the information about object tles, the directing
server maintains a separate table of global symbols. For each symbol, the informa-
tion is maintained about its narne, value, and references.

Linking, which takes a file name and a symbol name, changes symbol val-
ues and references. When the link command is issued, the value of the symbol
from the specified file is made global. All references to the symbol are modified
to reflect the new value. Linking is done by directly modifying symbol refer-
ences in the user program. At runtime, it does not impose any penalty of indirect
function calls, usually present in implementations of dynamic linking [Ho & Ols-
son 19911.

Dynamic loading and linking is used in program testing and debugging. Of-
ten, two versions of a single procedure are loaded simultaneously. The ûrst one

is a production version, optimized for speed, the other one a slower test version
with possible additional output. At runtime, the two versions can be interchange-
ably activated without the need to restart the program from the beginning. This
approach is useful for long running programs, which run mostly unattended, but
require periodical checks on their behavior.

4. Applications

Dynascope enables many novel directing applications. This section describes rel-
ative debugging, steering agents, and testing of tracing capabilities in Dynascope.
Relative debugging is a new technique which helps in software development and

program porting. Steering agents assist with the execution and integration of com-
plex scientific simulations. Tracing capabilities of Dynascope have been tested by
comparing the results of tracing with direct execution. Some additional applica-
tions can be found elsewhere lSosið 1995].

4.1. Relative Debugging

Relative debugging enables a comparison of values from two running programs.
Usually, one of the programs is a reference version whose behavior is expected
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to be correct. The second program is a development version whose behavior must
correspond to the reference version. The development version can differ from the
reference version in several aspects. It can be written in another language, it can

run on another platform, or it can incorporate different algorithms which produce

the same results.

Relative debugging helps in program developmenf and maintenance. Changes

to programs are often incremental and large parts of the program functionality re-
main the same. A relative debugger can verify that the behavior of the modiûed
program is the same as the original program. The debugger executes both pro-
grams concurrently and checks the corresponding data structures. Another impor-
tant use of relative debugging can be found in porting programs from one platform
to another. The behavior of the program on the new platform can be checked for
correspondence to the program on the original platform.

We are developing a relative debugger, called Guard lSosiõ & Abram-
son 19941. In addition to regular debugging commands, Guard provides commands
for relative debugging. Guard can control two processes at the same time. Us-
ing Guard commands, the user can specify the corresponding data structures in
both processes and locations at which the data structures should be compared.

Guard places the breakpoints and runs both programs. After breakpoints are hit,
it compares the specified data structures and reports any differences found. Guard
provides several facilities to automate this process of program comparison. These

facilities involve declarative commands for relative debugging and automatic gen-

eration of debugging scripts from pragmatic comments in the source code. Guard
can also compare data structures from programs written in different languages.

Comparisons automatically take into account different representations, such as a

row-major or column-major representation of arrays.

Guard uses Dynascope to carry out debugging tasks. It is a nontrivial appli-
cation which utilizes the portability of Dynascope directors and their ability to
operate in heterogeneous environments. No changes in its source code were nec-
essary to port Guard to all platforms supported by Dynascope. Only recompilation
of Guard was required. Guard and programs being debugged can be arbitrarily
mixed on Dynascope supported platforms. For a demonstration, we have success-

fully compared the execution of a program in C with a program in Fortran. Both
programs calculated shallow water equations [Abramson et al. 1991]. The program
in C ran on a NeXT computer, the program in Fortran ran on a Sun computer, and
Guard ran on a Silicon Graphics computer. All three computers were connected
through Internet.

The experience with Guard demonstrates that Dynascope provides debugging
primitives which are portable across computing platforms and capable of operating
in heterogeneous environments. In addition, the development of Guard required
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no knowledge about system dependent debugging and communication primitives.

Dynascope was thus successful in abstracting low level system dependencies and

in providing a high level, system independent directing interface.

4.2. Steering Agents

Although Dynascope includes a collection of debugging primitives, its main pur-
pose goes beyond debugging. One of our projects, which is using Dynascope for
nondebugging purposes, is developing steering agents for scientific computations.

Steering agents provide runtime interaction with computationally intensive
scientiflc simulations. Usually, these simulations are performed in a batch mode,

producing large flles with results. Howeve¡ it is often desirable to be able to inter-

act with the simulation while the computation is still in progress. Such interaction

could be used to predict the running time of the computation, to check the ongo-

ing status of the simulation, to change some parameters at runtime, or to turn on

or off the monitoring of important variables.

Dynascope primitives include machine independent execution control, inter-
process communication and access to process states. These primitives are used

by steering agents to interact with simulations. Normally, a simulation is running
undisturbed. Upon a request from the user, the agent intemrpts the simulation and

places a breakpoint at a location that is known to have a consistent simulation
state. Possible breakpoint locations are loop and function entries and exits. After
the simulation reaches a breakpoint, the agent performs whatever task is requested

by the user. The task can involve the retrieval of partial results of the simulation
or modifications of some simulation parameters.

The use ofDynascope in constructing steering agents has several advantages

over more traditional approaches, such as message passing libraries. A steering

agent can exercise control over the simulation. As a result, the simulation is not
required to contain any support for steering agents. If a message passing library
is being used instead, the communication between the simulation and the agent

must be explicitly programmed in the simulation. Scientific simulations are usually
large programs, whose internal structure is often not very well understood by peo-

ple using them. The integration of explicit communication constructs can require

a significant amount of resources. An additional problem with explicit communi-
cation constructs is increased maintenance cost. Because the simulation exists in
the original version and a version for agents, two versions must be maintained.

Using Dynascope, communication constructs are not hardwired in the simulation
at compile time. The communication is specified and controlled by the director
at runtime through breakpoints and other Dynascope primitives. This approach

is much cheaper to implement, because the simulation code does not require any
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significant modifications. Dynascope also enables more flexibility in interaction
with the simulation, because decisions about agent actions can be postponed until
runtime.

Currently, we are developing steering agents for some representative scientific
simulations. Agents are capable of steering scientific applications on different
computing platforms across networks. We are also exploring scripting capabilities
which would automate most of the steering actions and make the agents more
autonomous.

4.3. Testing of Tracing Capabilities

Dynascope has been used for testing the implementation of tracing in Dynascope
itself. A director has been constructed which executes concurrently two copies of
a single program, A and B. Copy A is traced, while B is directly executed. The two
copies exchange information that would be impossible to obtain only by tracing
or only by direct execution. The traced copy provides breakpoint locations for the
directly executed copy. On the other hand, the state of the directly executed copy
is used to verify the results of tracing.

The main loop of the director is as follows:

while (executors_A_B_runningO) {
trace(A,l); /* trace one instruction of A */
getstate(A,stateA) , /,r. get state of A, */
setbreak(B,stateA[PC] ); /* set breakpoint in B */
execute(B) i /* run B x,/
waitbreak(B); /* waít for a breakpoint in B x/
getstate(B,stateB) i /t get state of B */
if (lequa1(stateA,stateB)) /* compare A and B */

error(stateA);
]

The director traces a single instruction from program A at the time. The program
counter from program A, denoted by stateA[PCl, provides the address for a

breakpoint in program B. Program B is then executed until it reaches the break-
point. After the breakpoint, the states of programs A and B, which include only
processor registers, are compared. If a comparison detects differences, then the
error in the simulator is reported by displaying the state of program A.

This director was significantly more effective in testing the simulator than al-
ternative methods, such as locating errors by hand or extensive printouts of the
simulator operation. A major advantage of the director over other methods is its
automatic operation. The director can execute long tests without human interven-
tion. The execution speed during testing is around five orders of magnitude slower
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than direct execution. Four orders of magnitude are spent in tracing and report-
ing events. An additional order of magnitude is added by the managing of both
executors. If the speed is important, more than two orders of magnitude increase

in speed can be obtained by buffering multiple instructions together or by tracing
several instructions in one step.

5. P erformance Measurements

The performance of Dynascope directing primitives has been extensively mea-

sured. Measurements were performed on a NeXTstation Turbo, using a 33Mhz
M68040 processor and the NeXTStep 2.2 operating system, and a Sun Sparc
ELC, using a33Mhz Sparc processor and the SunOS 4.I.3 operating system.

Results indicate performance for two different architectures, NeXT and Sun,

and for two different modes of directing, local and remote. Three configurations
are shown: NeXT local, the director and the executor are on the same NeXT com-
ptte¡ Sun local, the director and the executor are on the same Sun computer; and

Sun remote, the director and the executor are on two different Suns, connected by
Ethernet. All measurements were performed on lightly loaded machines. Some op-

erations involve almost no communication between the director and the executor,
so the results for the Sun remote configuration are omitted.

Measurement results are presented in Table l. They show elapsed time, re-
quired by a director to perform Dynascope primitives. A user can expect this per-
formance in directing applications.

R'.ow Attach shows the time required to establish a directing session between
a director and an executor. Attach involves creating the executor's file, sending a

signal, and establishing a TCP/IP connection. It can be observed that there is a
significant difference, almost an order of magnitude arrd a half, between local and

remote operations. Local sessions take on the order of 100ms, while the remote
session requires more than 5s to establish. Additional measurements showed that
Attach imposes very little overhead on the execution time of the executor. Dy-
nascope can thus support directors which need to attach to the executor l0 times
per second in the local mode or 10 times per minute in the, remote mode. Attach
is required at the beginning of a directing session, so it needs to be done only
once.

A more significant primitive for application performance is Connect.It is used
to interrupt an executor, after a directing session has been already established.
Connect involves sending a signal and receiving a response. Connect is impor-
tant because it determines the maximum rate at which the user program can be
sampled by a director. Results show that local directors can sample user programs
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Table 1. Performance of Dynascope Primitives.

Primitive NeXT local Sun local Sun remote

Attach

Connect

Null Command

Maximum Throughput

Data Requests/s

Breakpoint (internal)

Breakpoint (complete)

Tracing/Execution Ratio I
Tracing/Execution Ratio II
Loading an Object File

Linking a Symbol

85 ms

1.4ms

620 p,s

2.I3Mbls
1360

11 ¡;s

5.1ms

272

24r

18ms

1.85 ms

197ms

1.7ms

750 p,s

3.45Mb/s

r070

454 p,s

6.3 ms

344

525

21ms

2.34ms

5,150 ms

2,650ms

3,220 p,s

0.39Mb/s

220

202ms

around 600 times per second, while remote directors can sample only 20 times per

minute. The local sampling rate is high enough to support applications requiring
real time human interaction, such as an interactive visualization of a running pro-
gram. The remote sampling rate is too low for real time interactions, because the

sampling can be performed only once every few seconds.

After the director connects to an executor, it issues commands. The rate of
command issuing is demonstrated by NuII Command.The command immediately
returns a value to the director without performing any other computation. Row
Null Command gives the response time of the directing server and involves a mes-

sage exchange over a TCP/IP. It can be observed that over 1200 commands can

be issued per second in the local mode and over 300 in the remote mode. These

rates are high enough to support real time user applications, such as an exploration
of a static program state, in the local and remote mode.

An important performance indicator is the rate of data transfer between the di-
rector and the executor. The first measurement, shown in row Maximum Through-
put, provides the maximum data throughput. This throughput was measured by

. copying large blocks of data. It is achieved by Dynascope in applications that

copy large arays of continuous data. The second measurement, shown in row
Data Requesls/s, gives the maximum number of data requests per second that

can be handled by the directing server. This number was obtained by copying a

lot of small blocks. This performance can be expected in applications that copy
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a large number of small elements, which cannot be copied as a single block. An
example is copying of a linked list, where each element must be identified and

copied separately. Measurements show that several Mbytes of data can be copied
per second in the local mode and several lOOKbytes in the remote mode. More
than 1000 elements of a linked list can be copied per second in the local mode
and around 200 elements in the remote mode. These two measurements essentially
give the throughput and the turnaround time of the underlying implementation of
the TCP/IP protocol.

Two measurements were performed for the handling of breakpoints. The flrst
measurement, shown in row Breakpoint (internal), gives the breakpoint servicing
time inside the executor. It shows the time required to perform context switches
from the user program to the directing server and back to the user program. A
large difference can be observed between NeXT and Sun. The reason is that the
breakpoint handler executes in the user mode on the NeXT, but requires a system
trap to save register windows on the Sun. The second measurement, shown in row
Breakpoint (complete) gives the complete time of the breakpoint handling. It in-
cludes a breakpoint cycle of issuing a breakpoint request by the director, resuming
the executor, and receiving a breakpoint report. Dynascope breakpoint handling is
thus suited for applications with around 160 breakpoints per second in the local
mode and 5 breakpoints per second in the remote mode. Results for Breakpoint
(complete) demonstrate that system traps on Suns have only limited influence on
the complete breakpoint cycle. Because system traps for servicing breakpoints
have other advantages, as described in the section on breakpoints, later versions of
Dynascope use this implementation.

Tracing involves simulation of machine instructions which imposes execu-
tion overhead. The speed of tracing was measured on Stanford benchmarks,
a suite of 10 small C programs. Because the overhead of tracing is large, it is
assumed that cache effects are not significant and that small programs are suf-
flcient for overhead estimations. P.low Tracingf Execution Ratio I gives the ratio
between tracing and direct execution of non-optimized Stanford benchmarks. Row
Tracing f Execution Ratio II gives the ratio between tracing and direct execution
of optimized Stanford benchmarks. Although the same approach of surrogate ex-
ecution is used to simulate M68040 and Sparc instructions, measurements show
significant differences in the execution speed. Tracing of nonoptimized and opti-
mized versions is from 240 ro 270 times slower on the NeXT and from 340 to 520
times slower on the Sun. The increase in the ratio between the non-optimized and

the optimized code on the Sun is attributed to the increasing relative frequency
of procedure calls and the corresponding explicit handling of register windows in
software. Because tracing in Dynascope has not been optimized for speed, it is
expected that its speed could be improved signifrcantly.
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Row Loading an Object Fil¿ shows the time required to dynamically load a
simple object file. Row Linking a Symbol shows the time required to dynamically
link a symbol. Results show that linking is around l0 times faster than loading.
For some directing applications, preloading of object files can thus save signiflcant
time. Times to load and link a filter are similar to their corresponding operations
with object files.

6. Discussion

Existing implementations represent the third version of Dynascope. The flrst ver-
sion was built around a virtual machine code which was interpreted at runtime

lSosið 1,992].It required a specialized compiler, a linker, and an interpreter of ma-
chine code.

The second version works with regular, compiled programs, so no special
compilers or linkers are needed [Sosið 1995]. The virtual machine code and the
interpreter have been eliminated. Although the internal structure of Dynascope has

been completely changed during the transition from the first to the second version,
the procedural directing interface remained almost the same. The second version
has been implemented on NeXT and Sun computers.

The third version involved a redesign of the directing server. Before, directing
servers have been uniform and implemented from scratch on each platform. The exist-
ing server is modular and isolates system specific parts, which makes it easier to port.

Dynascope is currently implemented on several computing platforms. The
client library, which does not contain any system speciflc constructs, has been

compiled without changes on the following systems: Sun SPARC, Silicon Graph-
ics MIPS4000, IBM RS6000 and NeXT M68040. The directing server has modu-
lar structure. Primitives for execution control, which enable the director to control
the executor, are essential. Other groups, which provide state access, breakpoints,
tracing, and dynamic loading and linking, are optional and not necessarily pro-
vided by every implementation. The directing server has been fully implemented
on Sun SPARC and NeXT M68040. Partial directing servers, which provide only
execution control, state access and breakpoints, but no tracing or dynamic loading
and linking, exist on Silicon Graphics MIPS and IBM RS6000.

Dynascope has successfully met design objectives. Directing is performed
transparently to the user program. The program's source code is not required to
contain any explicit constructs to support directing. The directing server does not
significantly slow down the execution of programs that are not being directed. By
encapsulating system dependent constructs, Dynascope simplifies the development
of directing applications. Directors and executors can be developed using existing
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program development tools, such as compilers and linkers. Directors are easily
ported across computing systems. Directors and executors can run on separate
computers and communicate over a network. A director is able to direct programs
on different types of computers. Directors and executors can be freely mixed re-
gardless of the type of computing systems they run on.

The largest and most complex Dynascope application is Guard, a relative de-
bugger. It consists of almost 6000 lines of C code. Guard demonstrates Dynascope
capabilities in a practical application. only recompilation was required to port
Guard to all Dynascope supported platforms, which confirms the portability of
Dynascope primitives. Guard can debug programs running on any Dynascope sup-
ported platform, which demonstrates the capability of Dynascope to operate in
heterogeneous environments. Guard was developed with no knowledge about sys-
tem specific debugging primitives. By providing system independent primitives,
Dynascope makes the development of directing applications accessible to a much
wider programming community.

current development of Dynascope concentrates mainly on two areas. The
first area is expanding the support for programming languages. This support will
include primitives for handling language dependent information, such as variable
types and structure layouts. The second area involves additional primitives for
heterogeneous systems. All systems currently supported by Dynascope have sim-
ilar architectural characteristics. They have 32-bit words, are big-endian, and use
the same representation for floating point numbers. The goal is to provide new
primitives for supporting systems with different architectural characteristics, while
maintaining the portability and heterogeneity of directors.

7. Related Work

Dynascope aims to provide a unified framework for building directing applica-
tions. As a result, it incorporates techniques from a wide range of tools and
approaches, such as debugging, monitoring, instruction simulators and dynamic
linkers. A discussion of related work is presented here.

Debugging primitives, which form the core of Dynascope primitives, are usu-
ally provided by the operating sysrem [Bach 1986, Killian 1984, Redell 19sg].
Debuggers rely on these primitives to carry out their operations [Linton 1990,
Maybee 1990, stallman & Pesch r99rl. Because operating systems provide dif-
ferent debugging primitives, debuggers must be carefully engineered to support
porting to different platforms [Ramsey & Hanson l99z]. A significant amount of
research has been carried out recently to provide high-level debugging abstractions
and languages [Golan & Hanson 1993, olsson et al. 1990, olsson et al. 1991,
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Winterbottom 19941. Some debuggers provide debugging in networked and

heterogeneous environments by using interpreted languages, which control se-

quential debuggers on each target machine [May & Berman 1993, Maybee 1992].

Dynascope simplifies the construction of debuggers for networked and heteroge-

neous environments by providing system independent debugging primitives. These

primitives encourage the development of high-level debugging languages. Using

Dynascope primitives, these languages become portable actoss platforms and ca-

pable of debugging in networked and heterogeneous environments. Dynascope

primitives also eliminate the need for a separate debugger on the target machine,

which enables faster execution of debugging primitives.

Another important application area for Dynascope is monitoring. Most exten-

sive monitoring capabilities are usually provided in interpreted environments [Jef-

fery &. Griswold 1994, Kishon et al. 1991, Moher 19881. One approach to moni-

toring is to use operating system primitives [Graham et al. 1982]. These primitives

provide only a limited range of capabilities. A common approach is to instrument

the user program with code, which produces required monitoring information.

Instrumentation is incorporated in the source code [Brown 1988, Stasko 1990],

or in the object code or executable [Bishop 1987, Larus & Ball 1994, Srivas-

tava & Eustace 19941. Some applications modify the user program at runtime

[Hollingsworth et al. 1994], using techniques that are similar to user level break-

points lKessler 1990]. Monitoring applications consist of several phases: program

instrumentation, event generation, event transport, and analysis. Each monitoring

application provides its own primitives to carry out these phases, although large

parts of functionality are similar for different applications. Dynascope provides

cornmon primitives for building monitoring applications, such as primitives to

control the executor and access its state. Because monitoring applications can use

these common primitives and need to implement only application specific prim-

itives, they require much less effort to build. It is expected that Dynascope will
be extended with the most commonly used monitoring primitives in the future, so

that they can be directly used by applications.

Instruction level simulators represent a special class of monitors. Instead of
running an instrumented program, these simulators generate events by simulat-

ing instructions. At the cost of longer execution times or larger space require-

ments, they are capable of providing more execution details than instrumentation

monitors. Some of the simulators, such as Shade [Bruegge et aI. 19931, provide

extensive support for instruction analysis or even a debugging interface to the

simulated target machine. Surrogate execution in Dynascope is similar to tech-

niques used in some of the simulators [Bedichek 1990, Cmelik & Keppel 1994,

Magnusson 19931. Dynascope can be used as an instruction level simulator, if
its performance overhead of two orders of magnitude can be tolerated by the
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application. The overhead is a result of event generation, because Dynascope
generates extensive information for every instruction. Tracing performance of
Dynascope could be improved significantly by incorporating additional advanced
techniques from simulators, such as partial translation or selective tracing of in-
structions [Bruegge et al. 1993].

Dynamic linking provides a structured way to modify program code. using
dynamic linking, executing programs can be changed without being restarted from
the beginning. This capability is important in controlling long running programs,
because it is often prohibitively expensive or time consuming to restart these pro-
grams from the beginning. Dynamic linking can be done by programs modify-
ing themselves [Ho & olsson 1991] or by programs modifying other programs
[Kempf & Kessler 1992]. Dynascope implements the second, two process, model.
This model provides more flexibility, because decisions about dynamic linking
can be postponed until runtime. Another advantage of a two process model is that
a comrpted program can be repaired by another program. It is expected that dy-
namic linking will gain in importance in future applications of Dynascope.

8. Conclusion

Dynascope demonsúates that a powerful and practical directing interface for com-
piled programs can be implemented using only generic operating system primi-
tives. An implementation of the directing interface at the user level has several
advantages. A unified directing interface hides system complexity and provides a
base for building portable directing applications, capable of operating in heteroge-
neous environments. The interface can be easily extended with advanced features
or adapted to specific application needs. Experience with several projects that use
Dynascope to build directing applications confirms this. Programmers with almost
no knowledge of system programming were able to produce novel applications in
a short time. By implementing a simple, system independent interface, Dynascope
provides foundations for numerous new directing applications.
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