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ABSTRACT: Parallel Virtual Machine (PVM) is a
widely-used software system that allows a heteroge-
neous set of parallel and serial UNIX-based computers
to be programmed as a single message-passing parallel
machine. In this paper, an extension to PVM to sup-
port dynamic process migration is presented. Support
for migration is important in general-purpose worksta-
tion environments since it allows parallel computations
to co-exist with other applications, using idle-cycles
as they become available and off-loading from work-
stations when they are no longer free. A description
and evaluation of the design and implementation of
the prototype Migratable PVM system is presented

together with some performance results.
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l. Introduction

PVM [Beguelin et al. 1993.7; Dongarra et al. 1993; Beguelin et al. 1993.6] is

a software system that allows a heterogeneous network of parallel and serial

computers to be programmed as a single computational resource. This resource

appears to the application programmer as a potentially large message-passing vir-
tual computer. Such a system allows the computing power of widely available,

general-purpose computer networks to be harnessed for parallel processing. V/ith
the rapid advances in workstation performance, such networks already provide a

viable and affordable alternative to expensive special-purpose supercomputers.

General-purpose workstation networks have certain key characteristics that

must be considered when they are to be used for parallel processing. First, the col-

lective resources of the network are often shared by a potentially large number

of users running a wide range of applications. Second, despite the high level of
sharing, the concept of ownership is frequently present. In particular, individual
workstations, while available across the network, are likely to be owned by some

specific user or have priority users. Workstation owners are often willing to al-

low others to access their workstation when it is idle, but expect dedicated access

the rest of the time. Since most workstations are idle most of the time fl-itzkow
et al. 19881, the key to harnessing the full power of such systems lies in gaining

access to these idle cycles.

For PVM to gain unobtrusive access to idle cycles, it must be able to (a) rec-

ognize when a workstation becomes available for it to use, (b) recognize when

a workstation ceases to be available to it, and (c) migrate processes between

workstations so that work can be assigned to newly available workstations and

off-loaded from workstations that are being reclaimed by their owners. Automatic

and timely offJoading of processes requires PVM to be extended to support dy-

namic process migration.
In this paper, Migratable PVM (MPVM), an extension of PVM that allows

parts of the parallel computation to be suspended and subsequently resumed on

other workstations, is presented. There were three key goals under consideration

in the design of MPVM. First, migration had to be transparent to both application
programmer and user. Neither the programmer nor the user needs to know that
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portions of the application are migrating. Second, source-code compatibility with
PVM had to be maintained. Source-code compatibility would allow existing PVM
applications to run under MPVM without, or at least with minimal, modification.
Lastly, MPVM had to be as portable as possible.

The remainder of the paper is organized as follows. Section 2 gives an

overview of PVM and the problem addressed by this work. Section 3 outlines
the design and implementation of MPVM, and is followed by performance results
in Section 4. Related work is presented in Section 5, a qualitative discussion of
the design and implementation in Section 6, and conclusions and future work in
Section 7.

2. Background

MPVM is based on PVM 3.3.4 as released from Oak Ridge National Laboratory
and is part ofthe larger Concurrent Processing Environment, an ongoing research

effort fBeguelin et al. 1993.6]. This section presents an overview of the PVM
system and the problems that had to be addressed to support task migration.

2.1. PVM Overview

The PVM system con$ists of a daemon process called the pvmd running on each

host on a network of workstations and a run-time library called the pvmlib linked
into each application process (Figure 1). Each pvmd is assigned a unique host ID
or hid. The pvmlib defines a suite of PVM primitives that presents a "message-

passing parallel machine" user-interface to the application.

A PVM application is composed of Unix processes linked with the pvmlib.
These processes, called tasks in PVM, communicate with each other via message-

passing primitives found in the pvmlib. Just like the pvmds, each task is assigned

a task ID or tid which uniquely identifies each task in the virtual machine. These

tids are used to designate the source and destination tasks for messages (i.e., mes-

sages are addressed to tasks, not to ports or mailboxes).

Messages passed within the PVM system can be categorized into system mes-

sages and application messages. System messages are used exclusively by PVM
to manage the virtual machine and perform application code requests (e.g., spawn
a new task, get information about the virtual machine, etc.). The application code
is not aware of these messages. Application messages on the other hand are used

exclusively by the PVM application.
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Figure 1. The PVM system. PVM is composed of daemons
(pvmds) running on each host of the virtual machine and a
run-time library (pvmlib) linked into every task.

PVM provides two routing mechanisms for application messages: indirect and
direct routing. The choice of routing mechanism to use is controlled by the appli-
cation code. By default, messages are routed indirectly. Using indirect routing, as

illustrated in Figure 1, a message from task T2 to T3 passes through T2's local
pvmd (pvmd on hostl), through T3's local pvmd (pvmd on host2), and finally to
T3. Pvmd-to-pvmd communication uses UDP socket connections while task-to-
pvmd communications use a TCP socket connection which is established during
task start-up. In direct routing, a message from task T2 to T4, also illustrated in
Figure 1, uses a TCP socket connection between T2 and T4, by-passing the pvmds
altogether. TCP connections between tasks are created "on-demand". Only when
tasks that have set their routing option to use direct routing start communicating
with each other are TCP connections established.

An important aspect to remember when using PVM is the message-ordering
semantics it provides. PVM guarantees that messages sent from one task to an-
other are received in the same order they weÍe sent. The importance of recogniz-
ing this "guarantee" is that there are PVM applications that take advantage of this
message-ordering semantics. Hence, new versions of PVM such as MPVM should
maintain the same semantics.

Lastl¡ in PVM 3.3.4, it is possible to designate a special task as the resource
manager. The resource manager, also called the global scheduler (GS) in this
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paper, embodies decision making policies [Al-Saqabi et al. 1.994] such as task-

to-processor allocation for sensibly scheduling multiple parallel applications.

Using a GS makes it convenient to experiment with different scheduling poli-

cies. In MPVM, the interface between the pvmds and the GS has been extended to

accommodate task migration, allowing the GS to use dynamic scheduling policies.

2.2. PVM Task Migration: the Problem

Task migration is the ability to suspend the execution of a task on one machine

and subsequently resume its execution on another. A major requirement for task

migration is that the migration should not affect the correctness of the task. Execu-

tion of the task should proceed as if the migration never took place. To ensure the

"transparency" of the migration, it is necessary to capture the state of the task on

the source machine and reconstruct it on the target machine.

The state of a task can be viewed in two ways: its state as a Unix process and

its state as a task of a PVM application. From the point of view of the operating

system (OS), a task is just a single process. As such, its state includes (1) the pro-

cessor state, (2) the state held by the process, (3) the state held by the OS þr the

process, and (4) the state held by the process about the local OS.

The processor state includes the contents of the machine registers, program

counter, program status word, etc. This information defines exactly where the task

was executing prior to migration, and consequently, where execution should re-

sume upon restart on the target machine. The state held by the process itself
includes the contents of its text, data (static and dynamic), and stack. The state

held by the OS for the process includes signal information (e.g., blocked signals,

pending signals), open files, and socket connections to name a few. Other less

obvious state information held by the OS includes page table entries, controlling

terminals, and process relationship information (e.g., parent/child process relation-

ship and process groups). OS state held by the process includes file descriptors,

process IDs, host name, and time. These are state information, known to the pro-

cess, that are only valid in the context of theìocal execution environment (local

OS and host).

From the point-of-view of PVM, a task is one of a set of tasks that makes up

an application. In this context, a task's state includes its tid and the messages sent

to/from that task. Regardless of migration, each task should be referred to using

the same tid, no message should be lost, and all messages should be received in
the correct order (as defined by PVM).

Thus, the problem addressed by MPVM is how to capture and reconstruct

the state information so that tasks can be migrated from one machine to another

without affecting the correctness of the entire application.
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3. Design and Implementation

In this section, the design and implementation of MPVM is described. In order
to support task migration, both the pvmd and pvmlib had to be modified. The
modifications made were also driven by the goals of source code compatibil-
ity, portability, and migration transparency. To ensure source code compatibil-
ity, the modifications had to maintain the same function calls, parameters and

semantics, as provided by PVM. To maximize portability, the migration mech-
anism had to be implemented at user-level, using facilities available through
standard UNIX library routines and system calls. Migration transparency is ad-

dressed by modifying the pvmd and pvmlib such that the migration could occur
without notifying the application code and by providing "wrapper" functions to
certain system calls. A more complete evaluation of these goals are presented in
Section 6.

3.1. Applícation Start-up

The primary interface to the migration mechanism in MPVM is through the signal
mechanism provided by UNIX. That is, task migration is initiated using a migra-
tion signal sent from the pvmd to the migrating task. The migrating task should
have a migration signal handler installed to catch the migration signal. At this
point, it is only important to know that a signal handler has to be installed for mi-
gration to work. The function of the migration signal handler will be discussed in
Section 3.2.

To avoid explicitly modifying the source code of the PVM application to
install the signal handler, the pvmlib deûnes its own nainO function which
executes the necessary initialization and then calls a function called MainO.
When the application program is compiled, its maino function is "renamed" to
MainO using "C" macro substitution facilities available through the compiler
(e.g., -Dnain=Main flag). Thus, when the application code is linked with the pvm-
lib, the resulting executable will have the pvmlib's mainO as the entry point,
allowing execution of the migration initialization code prior to the execution of the
application's code.

While this solution is simple, not to mention inherently portable, it will fail
when combined with other systems that use the same "trick" for executing code
prior to the application's mainO. An alternative solution is to define a customized
version of the start-up code, usually crtO. o (o'C" Run-Time object module).
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3.2. Mígration Protocol

once the application is up and running, it executes just as a traditional PVM ap-
plication would, until a task has to migrate. There are a number of reasons for a
task to migrate: excessively high machine load, machine reclamation by its owner,
a more suitable machine becomes available, etc. Regardless of the rationale for
migration, the same migration mechanism can be used.

A migration protocol is used to facilitate the migration. The migration
protocol is divided into four stages as shown in Figure 2. While the flrst
stage addresses "when" migration occurs, the last three stages correspond
exactly to the main components of migration: state capture, ffansfer, and re-
construction.

An important component of the migration protocol is what is collectively
called Control Messages. These control messages or CMs are special system
messages added to the pvmds and the pvmlib for the primary purpose of man-
aging task migration. Just like other system messages, these control messages are

host 1

ru
host I

Re-enroll

H
host 2host I host 2

2. Migration Initialization

Figure 2. Migration protocol. This flgure illustrates the stages

involved in migrating task Tl from hostl to host2.

î 

cs' *lg.ate Tl to host2

ffiffi
host I host 2

1. Migration event

Forward messages
for Tl to host2

Start-up
skeleton
process

host 2

3. State Transfer

4. Restart
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invisible to the application code. There are different kinds of CMs, each of which
will be discussed in the following sections.

3.2.1. Migration Event

The migration of a task is triggered by a migration event. This event triggers the

GS which determines whether or not tasks have to be migrated. If so, it also de-

cides which tasks to migrate and to where.

If the GS decides to migrate a task, an SM-MIIG CM (SM stands for Scheduler

Message) is sent by the GS to the pvmd on the host where the task to be migrated

is currently executing. This SMJUIIG CM contains a tid and an hid, indicating the

task to be migrated and the destination host respectively. For brevity, the task to

be migrated shall be referred to as Mtask, the pvmd on the host where Mtask will
be migrating from as Spvmd, and the pvmd on the destination host as Dpvmd.

3.2.2. Migration Initialization

Upon receipt of an SM-tUIIG CM, the Spvmd verifies that the tid belongs to a lo-
cally executing task and that the hid refgrs to a valid host (not itselfl. If either of
the tid/hid is invalid, a PvmNoTask/PvmNoHost error code is sent back to the GS

via an SM-IIIGACK Cj|l4..

Migration initialization is divided into two components which occur in par-

allel. The first component, local initialization, involves "priming-up" Mtask for
the state transfer. The second component, remote initialization, involves the cre-

ation of a "skeleton process" that will be the recipient of the state information to

be transferred (Figure 3).

Local initialization begins when a SIGMIGRATE signal is sent from the

Spvmd to Mtask (step f in Figure 3). This signal is caught by the migration

signal handler installed by Mtask during its start-up (recall the application start-

up discussion). The advantage of using a migration signal handler is two-fold:

first, it allows for asynchronous task migration, and second, it is the main compo-

nent used in capturing the processor state. V/hen the signal handler is invoked, the

OS automatically stores a copy of the processor state at the time when the process

was intemrpted in the user stack. This saved processor state is used to restore the

state of execution of the process/task upon return from the signal handler. Cur-

rently, SIGTSTP is used as the SIGMIGRATE signal.

To prepare for the process state transfer in the next stage, the migration signal

handler in Mtask flushes all messages in the TCP socket connections it has with
other tasks (used in direct message routing), and then closes these connections

(step 2'). It is necessary to flush these TCP socket connections to avoid losing any

message that may be buffered in these sockets. The details of how the connections
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Figure 3. Migration Initialization. Local initializations (1',
2', and 3') and remote initializations (I,2, and 3) occur in
parallel and "sync" at step 4.

are flushed and closed will be discussed in Section 3.3. Note that the tasks with
which Mtask had a direct TCP connection continue executing as they normally
would. In the event they send a message to Mtask, the message will automatically
be forwarded through the pvmds. Message forwarding will be discussed in Sec-
tion 3.4.2.

Once the TCP connections have been flushed and closed, Mtask sends a
TMtrIIG CM (TM stands for Task Message) to Spvmd (step 3') to tell the
Spvmd that local initialization is complete. Mtask then blocks and waits for a
TMtrIIGACK CM from the Spvmd.

While the local initialization component is executing in the source machine,
remote initialization is proceeding simultaneously on the destination machine.
Remote initialization is triggered by a DM-tr[lG cM (DM stands for Daemon
Message) from spvmd to Dpvmd (step 1, no prime). This cM informs the Dpvmd
that a task will be migrating to it. Information about the migrating task such as

its tid, executable file name, parent task's tid, etc., is passed along in this CM.
The name of the executable file from which the migrating task was started is
particularly important since the same executable file is used to start a "skele-
ton process" (step 2).The executable flle is assumed to be accessible from the
destination machine. The skeleton process provides the infrastructure to which
process state can be transferred and will eventually be executing in the context of
Mtask.

State transfer has three requirements: the source of the state, the recipient of
the state, and the medium through which the state will be transferred. The flrst
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two components are satisfled by Mtask and the skeleton process respectively. For

the transfer medium, a TCP connection, to be established at process state transfer

time, is used. The main advantage of using a TCP socket is that TCP provides

reliable delivery of sequenced data, simplifying the transfer of data between Mtask

and the skeleton process.

For the TCP connection to be established, it is necessary that the skeleton pro-

cess have a TCP socket to which Mtask can "connect." Before the Dpvmd starts

the skeleton process, it creates a socket and binds it to a port address. Following

the semantics of f ork() f execO, the skeleton process automatically inherits the

socket from the Dpvmd.
In addition to inheriting the socket, special arguments are also passed to the

skeleton process. These special arguments cause the skeleton process to execute

"restart code". Recall that at application start-up, some migration initialization

code is first executed prior to executing the application's code. Part of the migra-

tion initialization code is to test whether the process has to execute as a skele-

ton process, based on the arguments passed to it. If the process was started as a

skeleton process, it will wait for a connection on the socket it inherited from the

Dpvmd. If not, it executes application code.

For Mtask to be able to connect to the socket waited on by the skeleton pro-

cess, Mtask must know the port address the socket is bound to on the destination

machine. This port address is known to the Dpvmd. To send the port address to

Mtask, the Dpvmd sends a DM-ILIGACK CM to the Spvmd (step 3) containing

the port address and an error code. If the error code is zero, then the port ad-

dress is valid and can be used by Mtask to connect to the skeleton process. A
non-zero error code indicates that something went wrong during remote initializa-

tion and that migration cannot proceed. Possible error codes are PvmNoFile and

PvmOutOfRes. A PvmNoFile error code means that the executable file name of
the migrating task was not found on the destination machine. A PvmOutOfRes

error code means that there wasn't enough resources on the destination machine

to start the skeleton process. This error could be caused by several factors such as

inability to create more sockets, inability to f orkO another process, etc. A non-

zero erïor code causes the Spvmd to send the GS an SMJYIIGAC¡( CM containing

the error code, similar to what it would have done given an invalid tid or hid from

an SM-MIG CM. Sending these error codes back to the GS allows the GS to keep

track of unsuccessful migrations, giving it an up-to-date view of the state of the

PVM system.

The last part of this stage is for the Spvmd to send a TM-MIIGACI( CM to

Mtask (step 4). Recall that at the end of the local initializatron, Mtask blocks wait-

ing for this message. But before the Spvmd can send this CM to Mtask, it must

be sure that both the local and remote initializations have completed. Completion
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of local and remote initializations is indicated by receipt of both the TMtr4IG CM
from Mtask and the DM-I4IGACK CM from the Dpvmd.

The TM-tr[IGAClf CM sent to Mtask contains three items: an enor code, the
IP address of the destination machine, and the port address of the socket to con-
nect to on the destination machine (the one the skeleton process is waiting on). If
the error code is zero, then the migration protocol proceeds to the next stage. If
the error code is non-zero (for reasons mentioned above), the migration is aborted
and Mtask simply returns from the migration handler and continues its execution
prior to getting intemrpted by the SIGMIGRATE signal.

Conceptually, this stage of the protocol is simple. Unfortunately, the same
cannot be said for the actual implementation. In particular, note that while within
the migration signal handler, the cMs TM-rrIG andTMJ\IIGACK arc sent and
received respectively. Sending and receiving these CMs requires the migra-
tion signal handler to use routines in the pvmlib. However, the pvmlib is not
re-entrant. If the migration signal handler happened to be invoked while Mtask
was executing within the pvmlib, the migration signal handler's use of pvm-
lib routines could comrpt data structures in the pvmlib, leading to unpredictable
results.

The obvious solution is to make the pvmlib re-entrant. Making the pvmlib
re-entrant, however, would require a complete re-work of the library. The simpler
but not so elegant approach of synchronizing migration signal handler invocation
with the task's execution in the pvmlib is used. one way of achieving this syn-
chronization is to block the SIGMIGRATE signal whenever task execution enters
the pvmlib. The approach was tried and worked as expected. Unfortunatel¡ block-
ing and unblocking signals require system calls that incur a significant amount of
overhead.

The solution used, which gives the same result as that of blocking signals but
with much less overhead, is to set an INLIB flag whenever task execution en-
ters the pvmlib. when the migration signal handler is invoked, this INJ-IB flag
is checked first. If the flag is not set, the migration signal handler can safely use
pvmlib routines. If it is set, however, the migration signal handler sets another
flag called the IS-ùIIG flag, indicating that the signal occurred, and returns. when
execution of the task leaves the pvmlib, in addition to clearing the INLIB flag,
the IStrIIG flag is checked. rf the ISLVIIG flag is set, the task generates a sIGMI-
GRATE signal to itself. Sending the signal to itself "simulates" the situation when
the signal was first received, except that this time, the task is already outside the
pvmlib.

A problem arises when execution of the task blocks inside the pvmlib such as

when the user code calls a pvm-recvO and the desired message has not yet ar-
rived. This situation is undesirable since the migration signal handler will not get
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invoked for an indefinite amount of time, preventing the task from migrating. To

resolve this problem, all PVM routines that could block for an indef,nite amount

of time were rewritten so that they blocked outside the pvmlib. That is, modi-

fications were made such that instead of having the routines block deep inside

the pvmlib as they would in the original pvmlib, they now block on the o'sur-

face" of the pvmlib. This change is sufficient to allow the pvmlib routines used

in the migration signal handler to be executed without running into re-entrancy

problems.

3.2.3. Process State Transfer

Reaching this stage of the migration protocol implies that the skeleton process was

successfully started and that Mtask has received the TMLVIIGACI( CM containing

the destination host's IP address and the port address of the socket the skeleton

process is waiting on.

Before the state of Mtask is transferred, Mtask first detaches from the local

pvmd (Spvmd in this case) using pvn-exit O. This call closes the TCP socket

connection Mtask has with its local pvmd. Messages in the pvmlib that have not

yet been received by the application remain intact in the task's data space.

As mentioned above, migration involves capturing the process's state (text,

data, stack, and processor context), transferring it to another host, and reconstruct-

ing it. The text of the process can be taken from the executable file from which

the process was started. It is for this reason the skeleton process is started from

the same executable file from which Mtask was started. Using the same executable

flle automatically "migrates" the text. The data and stack, however, have to be

read directly from Mtask's virtual memory. As for the processor context, recall

that this has already been saved in the stack when the migration signal handler

was invoked. By performing the state transfer while within the migration signal

handler, coupled with the ability to transfer/restore the stack correctly, the proces-

sor context is preserved.

The processor context saved due to the invocation of the migration signal han-

dler contains information regarding where execution should resume in the user's

code. However, if migration is to occur within the signal handler, a second set of
processor context information is needed to determine where execution should re-

sume inside the signal handler. Correctly resuming execution inside the migration

signal handler is necessary for the signal handler to be able to "retum" correctly

and restore the process context saved when the signal handler was invoked. For

this purpose, a setjmpO is called within the migration signal handler just be-

fore the actual state transfer. A similar approach is taken in Condor [Litzkow &
Solomon 19921.
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After calling setjmpo, Mtask creates a TCP socket and using the Ip address
and the socket port address from the TM-ILIGACK CM, establishes a connection
with the skeleton process on the destination host. It is through this TCP connec-
tion that the data and stack of Mtask is transferred.

3.2.4. Restart

After sending all the necessary state information to the skeleton process, Mtask
terminates. It is at this point where Mtask is officially removed from the source
host. The skeleton process, after receiving Mtask's state, assimilates it as its own.
This assimilation of state is done by placing the received data and stack state in
their appropriate place in the skeleton process's virtual address space. A temporary
stack is used, again using the signalling facilit¡ while restoring the state of the
real stack to avoid comrpting its contents. After restoring all the state information
from Mtask, a longjmpO is done using the buffer saved from the setjnpO call
in the state transfer stage. This longjmpO causes execution to "go back" into
the migration signal handler just as it was in Mtask at the time the setjmpO was
called. It is at this point that the skeleton process starts .pxecuting in the context of
the Mtask.

Before the skeleton process could re-participate as part of the application,
it first has to re-ernoll itself with the local pvmd (Dpvmd in this case). By re-
enrolling to the PVM system, the skeleton process officially becomes an MpvM
task, at the same time re-establishing its indirect communications route with the
other tasks. As for the TCP connections that were closed prior to the state transfer,
note that direct connections are established "on demand" in PVM. That is, only
when a message is first sent between two tasks (which have set their routing mode
to use direct routing) is the TCP connection established. By closing down the TCP
connections in such a way that the tasks involved "think" that there was never a
connection, direct connections with the just-migrated task will automatically be
re-established, using the protocol provided by PVM, once messages start flowing
between them again.

Lastly, though no longer technically part of the restart stage, the Dpvmd sends
a SM-tltIIGACl( cM to the GS containing an effor code of zero. This cM informs
the GS that the migration was successful and that the migrated task is again up
and running.

Figure 4 shows the timeline of the migration protocol. Note that the migration
protocol involves only the migrating task, the source pvmd, and the destination
pvmd. Multiple migrations can occur simultaneously without interfering with each
other, even if they have overlapping pvmds.
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Figure 4. Migration protocol timeline.
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3.3. Closing TCP Connectíons

As mentioned in Section3.2.2, the TCP socket connections Mtask has with

other tasks have to be flushed and closed prior to migration. These TCP

socket connections are used for direct routing between Mtask and the other

tasks. The TCP connections are flushed to avoid loss of any un-received mes-

sage.

Flushing and closing these TCP socket connections is not as simple as just

reading everything that could be read from the socket and then closing them. It is
possible that messages are still in-transit and thus not yet available for reading. It
is also possible that the peer task (the task at the other end of the connection) is

just about to send a message. In either instance, the fact that nothing can be read

from the TCP socket connection does not imply that there wouldn't be any in the

future.

184 Casas et al.



To ensure that there are no messages in the connection, in-transit or in the fu-
ture, it is necessary for Mtask to explicitly inform the peer task of its intention
of closing the connection and get an acknowledgment from the peer task that it
will no longer send messages through that connection. To inform the peer task of
the intention of closing the connection, Mtask sends an out-of-band (OOB) data,
using the MSG-OOB flag for the sendO system call, through the TCP connec-
tion. The OOB data causes a SIGURG signal at the peer task. Using this method
of informing the peer task of the connection closure has a number of advantages.
First, it enables the peer task to respond to the socket connection closure immedi-
ately. Minimizing the time it takes to take down Mtask's TCP socket connection
is necessary to minimize the time it takes to migrate Mtask. Second, by testing for
"exception conditions" using selectO, this method provides enough information
for the peer task to know which socket, assuming it also has TCP socket con-
nections with other tasks, is being closed. And lastly, this method involves only
Mtask and the peer task which helps minimize the overhead involved in closing
the connection.

The exact protocol used is illustrated in Figure 5. TCP socket connections
can be pictured as two uni-directional pipes or channels. Another feature of TCP
socket connections that the protocol uses is the ability to close only one channel of
the connection with the shutdownO system call. Using the shutdownO system
call, it is possible to close the TCP socket connection one pipe or channel at a
time. The close O system call closes both channels at once.

Initially, Mtask (T1) sends the OOB data to the peer task (T2). It then calls
shutdownO to close the channel from T1 toT2, and proceeds to read the socket
(i.e., reading theT2 to T1 channel) until it reads an end-of-file (EOF). The OOB
data in the mean time causes a SIGURG signal to be generated at the peer task,
which in turn invokes a SIGURG signal handler. The SIGURG signal handler at
the peer task first determines which socket caused the SIGURG signal using the
selectO system call, and then reads in all it can from the socket until it reads
an EOF. The reading of the socket until an EOF is detected, in effect, flushes any

3. Read socket till EOF

- 

TcPconnection

4. SIGURG signal
5. Determine socket

6. Read socket till EOF

Figure 5. TCP socket connection closure protocol.
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un-received messages sent by Mtask. The EOF is guaranteed to be detected due to

the shutdownO call in step 2. After detecting the EOF, the signal handler issues

a shutdor,rnO on the T2 to T1 channel. At this point, Mtask is still reading the

socket waiting for an EOF on theT2 to T1 channel. Once Mtask reads the EOR

it knows that all the messages, both sent and received through that socket connec-

tion, have been flushed.

Three things are worth mentioning about the protocol. First, the protocol

works even if T1 and T2 ne migrated simultaneously. Both tasks will simply go

through steps 1, 2, and 3, with the shutdownO on step 2 of one task causing an

EOF to be read on step 3 of the other task. Second, note that the SIGURG signal

handler, just like the migration signal handler, uses pvmlib routines to read the

messages from the socket. Thus, the SIGURG signal handler had to be guarded

against re-entrancy problems, using the same method used for guarding the migra-

tion signal handler. Lastly, the protocol described above assumes only one TCP

socket connection is being closed. Typically, either Mtask has no TCP socket

connections with other tasks or it has a number of them, all of which have to be

closed. Instead of executing the protocol one connection at a time, Mtask can exe-

cute steps I and2 for all TCP connections first before going to step 3. This causes

steps 4, 5, and 6 on all the peer tasks to be executed in parallel, further minimiz-
ing the time it takes to take down all the connections.

A drawback of this method, however, is that it doesn't work for UNIX do-

main sockets. PVM 3.3.x uses UNIX domain sockets for direct connections

between tasks on the same host since it is about I.Sx-Zx faster than TCP sock-

ets [Manchek 1994]. UNIX domain sockets only work for tasks on the same host.

Unfortunately, UNIX domain sockets have no support for OOB data. As currently

implemented, MPVM uses TCP sockets for direct communication even for tasks

on the same host.

One last aspect related to TCP connection closure is with regards to routing

for messages from the peer tasks to Mtask and the re-establishment of the TCP

connection after migration. As mentioned previousl¡ TCP connections between

tasks are established on demand. Since the peer task has its routing option set to

direct routing (which had to be set in the first place for the just-taken-down TCP

connection to have been established), the peer task will try to establish another

TCP connection on the next message to Mtask. But since Mtask is migrating, this

should not happen. Otherwise, the peer task would only be blocked waiting for
an acknowledgment from Mtask. To address this problem, before the SIGURG

signal handler returns, a flag inside the pvmlib is set to indicate that the peer task

should not try to establish a TCP connection with Mtask. Messages for Mtask will
then be routed indirectly through the pvmds allowing the peer task to continue

executing.
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Once Mtask has migrated and is running again, it would be desirable for the
TCP connections that were taken down before migration to be re-established.
Since a flag has been set on the peer tasks, no TCP connection request will come
from the peer tasks. The request should come from Mtask. One option would be
for Mtask to request a TCP connection from all the tasks it used to have a con-
nection with prior to returning from the migration signal handler. However, this
option would pay the price of establishing the connection without knowing if the
connection will even be used. This brings connection re-establishment back to the
"on demand" philosophy.

To continue supporting "on demand" TCP connection establishment, one pos-
sibility is to inform all the peer tasks that they could now establish a TCP con-
nection if they wanted to. This option, however, would require that a message
be multicast to all the peer tasks. The solution taken in MPVM currently is to
do nothing. That is, a TCP connection will be established with a peer task only
if Mtask requests it. This request will be generated on the first message Mtask
sends to the peer task after the migration. This implementation, however, im-
plies that if the communication between the peer task and Mtask is always one
way from the peer task to Mtask, all the messages will be routed through the
pvmds. Both options have advantages and disadvantages. Which one is better is
debatable.

3.4. Message Delivery on Migration

An important aspect of the MPVM implementation that has yet to be discussed
is how MPVM handles messages for migrating/migrated tasks. That is, how do
messages sent to Mtask find their way to the new location of Mtask. To ensure
correct delivery of messages in the presence of migration, support for virtual tids,
message forwarding, and message sequencing had to be built into MpVM.

Note that the problem of message delivery really only applies to messages us-
ing indirect routing. Direct routing is not a problem since by definition it uses a
point-to-point connection. Also, recall that at migration time, direct connections
are taken down and messages from other tasks to the migrating task are automat-
ically routed indirectly through the pvmds. The next three sections will therefore
be presented in the context of indirectly routed messages.

3.4.1. Virtual Tids

All tasks in PVM are identified by task identifiers or tids. These tids are used to
identify the source and destination of messages. Tids are formed using an en-
coding of a host ID and a task number [Geist et al. 1994]. The host ID or hid
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represents the host where the task is executing while the task number identifies

a particular task on a particular host.

The combination of the host number and the task number uniquely identifies
any task in the entire virtual machine. One advantage of this encoding scheme is

that it allows fast routing of messages since the target host of any message can be

determined directly from the destination tid. However, recall that the tid of a task

is part of the state information maintained on migration. That is, a task with tid
T1 will always be referred to as T1 regardless of where it is actually executing.

The use of the same tid is necessary to make migrations transparent to the applica-

tion. Unfortunately, the use of the same tid also implies that there is no longer any
guarantee that the host number encoded in the tid is the actual host where the task

is executing.

MPVM gets around this problem by virtualizing tids, thus making them loca-
tion transparent. Virtualizing the tids is done by maintaining a table of tid-to-host
mappings. Instead of just relying on the host number encoded on the tid as the

search key for the target host, the whole tid is used. Note that the same host num-
ber and task number encoding scheme is still used in generating the tids.

Each pvmd in the virtual machine maintains two tid-to-host mapping tables: a

home map and a hint map. The home map on host H, for example, contains a list
of mappings for tasks that were originally started on host H, regardless of where

they are currently executing. Note that since these tasks were originally started on

host H, the host numbers in their tids "point" to host H as their home. The home

map on host H is always updated whenever a task whose home is host H migrates.

The concept of home/hint maps is not new and have been used in other systems

such as V [Theimer et al. 1985] and Amoeba [Mullender et al. 1990].

Consider the example in Figure 6. In step 1, task T1 is started in host Hl.
This causes a T1 --- Hl entry to be added on the home map of Hl. At some later
time, step 2,Tl migrates to host H2. This migration causes the T1 ---+ Hl home

map entry on Hl to be updated to T1 ---+ H2, indicating that T1 is now on H2. The
same goes for step 3 when T1 migrates to H3. Notice from the flgure that when

T1 migrated from H2 to H3, a DM-IIOMEUPD CM was sent from H2, where Tl
migrated from, to Hl, the home of T1 (step 4). This CM informs Hl that task T1

has migrated to H3, causing Hl to update its home map. It was not necessary to
have a DMJIOMEUPD CM when T1 first migrated from Hl to H2 since Hl is

already the home of Tl and the home map can be updated directly.
V/ith the use of the home map, it is possible to determine the exact where-

abouts of any given task. For example, using Figure 6 again, if at some later time
task T2 in host H2 sends a message to T1, the message is first routed through the
pvmd on H2 (step 5). The pvmd on H2 determines that the destination for the

message is T1 and sends a DM-IIOMEREQ CM to Hl, the home host of T1 (step
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Home map
on H1

T1+H1

T1 -+ H2

T1 -+ H3

l. Spawn at Hl

<T1 map removed>

Figure 6. Tid virtualization using home maps. A task's home
host is the host where it was started and is identifled by the
host number encoded in the task's tid.

6). Recall that the home host is determined from the host number encoded in the
tid of T1. The pvmd on H1 receives this CM and replies with a DM_IIOMEACK
CM containing the T1 --* H3 mapping (step 7). The pvmd onH2 then knows that
the message should be sent to H3.

V/hen T1 terminates, the pvmd on host H3 sends a DM_IIOMEDEL CM to
the pvmd on Hl indicating that Tl has terminated. This cM causes the home map
entry for T1 to be removed. If at some later time a DM_IIOMEREQ CM for T1 is
received by Hl, a DM-IIOMEACK CM containing an error code is sent back to
the requesting pvmd. This error code would inform the requesting pvmd that T1
no longer exists and the message for T1 is discarded.

While this scheme works nicel¡ it is terribly inefficient. To improve the per-
formance, a hint map is used. The hint map caches tid-to-host mappings received
from previous home map requests. using a hint map will limit the need for send-
ing DMJIOMEREQ CMs to only those cases when there is no local copy of the
mapping. As currently implemented, the hint map is allocated statically. This lim-
its the number of mappings that could be cached. V/hen the hint map gets full,
replacement of entries uses the least recently used (LRU) policy. This policy will
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throw away the mapping that hasn't been used for the longest time. Examples of
such mappings would be those for tasks that have terminated.

To minimize the number of DM-IIOMEREQ CMs, home and hint maps in
Spvmd and Dpvmd are updated immediately. For example, when task T1 was

migrated from H2 to H3, updating the hint map on H2 immediately with the entry

Tl -+ H3 will eliminate the need for aDMJIOMEREQCM in step 5 of Figure 6.

Similarly, hint map entries are also immediately updated for newly spawned tasks.

A problem associated with home maps, however, is that it creates a residual

dependency between a task and its home node. That is, the home node has to be

functional even if the task is executing elsewhere. If the pvmd on the home node

should fail, messages to the task may not get delivered correctly since information

about the current location of the task is no longer available.

To resolve this problem, home maps are replicated on other nodes. As cur-

rently implemented, the home map list of a node is replicated in two other nodes.

The decision of replicating home maps only on a subset of the nodes in the system

was for scalability considerations. The ideal case is for a home map to be repli-
cated on all the other nodes.

Each pvmd maintains an ordered list of all the nodes in the virtual machine.

The order is determined by the sequence the nodes were added into the system.

When a node fails, its failure is detected by the pvmds on the other nodes (e.g.,

via timeouts) and the node list on each active pvmd is updated to reflect this fail-
ure. The back-up nodes of node A are defined to be the next two available nodes

following the entry for node A in the node list. Since all the nodes have identical

copies of the node list, each pvmd can locally determine the back-up nodes of any

given node.
'When a pvmd needs to send a DM-IIOMEREQ CN{, it first checks if the

"real" home node is available. If so, it sends the DMJIOMEREQ CM to that

host. Otherwise, it will send the DM-IIOMEREQ CM to one of the "real" home

node's back-up nodes. With the use of back-up nodes, the dependency of a task on

its home node is removed. This also implies that a node can be "totally" vacated

since pvmds can now be removed, if desired.

A problem with this solution is that if the real home node and its two back-

ups should fail, reliable message delivery will again be compromised. To help

deal with this problem, when a home node detects that one of its back-up nodes

have failed, another node is chosen to replace it. The new back-up node will be

the next active node in the nodes list that follows the failed node. In this way, the

rule that the back-up nodes are the next two active nodes in the list still applies.

By re-electing back-up nodes, a node will always have two back-up nodes (un-

less the number of nodes is less than three); this minimizes the problem of losing

messages to only when the node and its back-ups "simultaneously" fail.
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3.4.2. Message Forwarding

with the use of home and hint maps, it is possible to determine the exact loca-
tion of any task at any time. However, in the face of migration, these home
and hint maps could be left in an inconsistent state. For example, using Fig-
ure 6 again, the home map in Hl won't reflect the T1 ---+ H3 mapping until it
receives The DM-IIOMEUPD CI|i/..lf a DM_IIOMEREQ CM arrived jusr be-
fore the DMJTOMEUPD c]|i/', the DM-I{)MEACI( cM reply would contain a
T1 ---+ H2 mapping which is no longer true. Also, note that nowhere in the migra-
tion protocol are the other pvmds (aside from the source pvmd, target pvmd, and
pvmd on the home host) in the virtual machine informed of the migrated tasks'
new location. Thus, the hint maps on these "uninformed" pvmds could contain
old and now invalid tid-to-host mappings. The end result of these invalid home
and hint maps is that messages will be sent to the wrong host. In this case, the re-
ceived message should be forwarded to the correct host and the invalid host/hint
maps corrected.

consider the example in Figure 7. Assuming Hl is the home host of 11, Hl
has a home map entry for T1. In step 1, T1, which is currently in H3 (which
means task Tl migrated from Hl to H3, possibly through other hosts) migrates
to H4. At almost the same time, T2 on}l2 sends a message to T1 (step 2).lf H2
had an out-of-date hint map, the message would be sent to H3, the previous host
of T1. The pvmd on H3 will determine that the destination task T1 is no longer
one of its local tasks. At this point, there are two possibilities: either the pvmd
on H3 has an idea of where T1 is (it has a home or hint map entry for T1) or it
doesn't.

In the case where the pvmd has an idea of where T1 is, H4 in this case, the
pvmd on H3 will send the pvmd that sent the message a DMJTINTUpD cM con-
taining a T1 -+ H4 mapping (step 3), and then forward the message to H4 (step
4). The DM-ITINTUPD cM will cause the pvmd on H2 to update its hint map so
that future messages for Tl will be sent directly to H4. Note that the T1 ---+ H4
mapping is not necessarily valid. such would be the case if rl migrated again
from H4 to some other host. In that case, the message forwarding sequence will
simply repeat.

The other case to consider is when the pvmd on H3 has no idea where T1
is currently executing. This case is possible if 11 once migrated to H3, caus-
ing a T1 ---+ H3 hint map entry to be added onH2, but has since moved to an-
other host and the T1 mapping in H3 has been removed from its hint map due
to the LRU policy. since the pvmd on H3 doesn't know of 11's whereabouts,
it sends a DMJIOMEREQ CM to H1, rhe home of T1 (srep 6). It then sends
a DM-IIINTDEL CM to H2, the source of the message (step 7). Eventually,
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Figure 7. Message forwarding protocol.

the pvmd on Hl will reply with a DMJIOMEACII CM to H3 containing the

T1 --+ H4 mapping (step 8). H3 updates its hint map and then forwards the mes-

sage to H4 (step 9).

The DMIIINTDEL CM sent to H2 in step 6 causes the incorrect T1 ---+ H3

hint map entry on H2 to be removed, forcing H2 to request Tl's location from Hl
on the next message to T1. An alternative implementation is for H3 to wait for

the DM-IIOMEAC¡< CM from Hl and send the returned mapping to H2 using a

DMTIINTUPD CM. This method would update the hint map on H2 eliminating

the need for H2 to send a DM-IIOMEREQ CM to Hl for future messages to T1.

The drawback of this method is that while H3 is waiting for the DM-IIOMEACK
CM reply to arrive, the pvmd on H2 may be continuously sending messages to

H3, all of which have to be forwarded to H4. By sending the DMJIINTDEL CM

to H2 immediately, the pvmd onH2 would be forced to get the true location of T1

from Hl, allowing the messages to be sent to H4 directly.
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3.4.3. Message Sequencing

A consequence of message forwarding, however, is that it could break PVM's
message ordering semantics. Consider the situation in Figure 8. The situation is
similar to the example in Figure 7 above except that the message H2 forwarded to
H3 (message A in Figure 8) takes a long time to get to H3. An example of why
message A could be delayed is that H2 is on a different network than Hl and H3.
Since Hl and H3 are on the same network, a message would travel faster from Hl
to H3 than from H2 to H3. The important point here is that the delay, whatever
the reason, caused message A to arrive after message B. This behavior is a direct
violation of the PVM message passing semantics since message A was sent before
message B. It is therefore essential to use some sort of sequencing mechanism to
ensure proper ordering of messages.

In standard PVM, the pvmds communicate via UDP sockets for scalability
reasons. UDP transport, however, has two basic restrictions. First, a UDP mes-
sage or datagram can only be UDPMTU (UDP Maximum Transmission Unit)
bytes long. The UDPMTU limit is host dependent. This restriction requires
messages larger than UDPMTU bytes to be broken up into message fragments
or packets. Note that when considering the effective UDPMTU between two
hosts, the smaller of the two MTUs is used. For example, the UDPMTU be-
tween H1 and H2 is 4096 but only 2048 for H2 and H3. The second restriction

UDPMTU ---ø" 4096

H1

4096

H2

2048

H3

o
Ê
tr

message A but
ayed for some reason

Message B arrives

Message A anives

Figure 8. Example where message forwarding breaks message
order. In this example, messages A and B are sent from T1
but arive at T2 in the reverse order.

to T2

4. Forwa
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is that UDP is unreliable. That is, datagram delivery is not guaranteed. These

two restrictions requires the pvmds to (1) have the ability to fragment and re-

assemble messages and (2) support message fragment re-transmission to guarantee

delivery.
Taken in this context, the discussion above regarding message forwarding

really applies to message fragments rather than whole messages. Thinking of the

example in Figure 8 in these terms (i.e., messages A and B are actually fragments

A and B of one message), it is possible that the whole message arrives but with its
contents out of order.

To address this problem, each message sent from TI to T2 is assigned a se-

quence number based on the number of bytes already sent from task T1 to T2.

That is, the sequence number for message ¡f + I is calculated as Se4¡¡a1 :
SrqN+ Len¡¡ where Seq¡¡ and SeqN+t are the sequence numbers of packets Iü
and I/f 1 respectively, Len¡¡ is the length ofpacket ll in bytes, and Seqs:0 and

I'enç: Q.

For example, using the UDPMTU values in Figure 8 and assumingT2 is still
in H2, if the first message Tl sends to T2 is 6000 bytes long, it will be broken

into two fragments with 4096 and 1904 bytes each with sequence numbers 0

and 4096 respectively. A second 6000 byte message from T1 to T2 will again

be broken into two fragments of 4096 and 1904 bytes each but will have sequence

numbers 6000 and 10096.

Since each message fragment has a unique sequence number, it is now possi-

ble to re-arrange the fragments even if they arrive out of order. Note that even if
fragments are further fragmented, correct ordering can still be maintained. Frag-

mentation of message fragments is possible due to different UDPMTUs between

hosts. Using Figure 8 again, the pvmd on H2 had to forward a message fragment

from Hl to H3. If the fragment is 4096 bytes long (UDPMTU between Hl and H2
is 4096), it will have to be further fragmented into two 2048 byte fragments since

the UDPMTU between H2 ar'd H3 is only 2048.|n the re-fragmentation process,

new sequence numbers are calculated, using the same equation above, for each

of the fragments. For example, if the original 4096 byte fragment had a sequence

number of ,S, after re-fragmentation, the first fragment will have sequence number

^9 
and the second fragment will have sequence number (,S + 2048), where 2048 is

the length of the first fragment.

Note that message sequence numbers are based on point-to-point messages.

That is, the sequence numbers for messages from T1 to T2 are independent of the

sequence numbers of messages from T1 to any other task. Since these sequence

numbers are based on point-to-point messages, the assignment of sequence num-

bers and the re-ordering of message fragments based on these sequence numbers is

done in the pvmlib. Also note that since the pvmds guarantee delivery of message

194 casas et al.



fragments through re-transmission, the message re-assembly code in the pvmlib,
the code responsible for correctly sequencing fragments into messages, need not
worry about lost packets.

Another point to mention is with regards to O-byte messages (i.e., one pro-
duced by a pvm-initsendO ; pvn-send O code sequence). Considering how
sequence numbers are calculated, the sequence number of a O-byte message -A/

will be the same as the sequence number of message ¡rr + 1. This situation is ob-
viously unacceptable. Fortunately, what the application sees as a 0-byte message is
actually a message with some header information and 0 bytes of application data.
The message header contains information such as the message's tag and encoding.
since the message headers are counted as part of the message length, there can
never be truly 0-byte messages.

While the sequencing mechanism above works for point-to-point messages
(i.e., sent by pvn-sendO), it presents a problem for multicast messages (i.e., sent
by pvm-mcastO).

Figure 9 illustrates the multicast mechanism in PVM as task T1 sends a
multicast message to tasks T2 through 15. In step 1, task 11 first sends a list

Figure 9. PVM Multicast protocol. This example shows the
steps involved in sending a multicast message from T1 to
tasks T2 to T5.

2. mcast
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of the target tasks (T2 . . .T5) for the multicast message. The pvmd on H1 then

determines the hosts where the target tasks are executing, H2 and H3 in this case.

The pvmd on Hl then sends a message to H2 and H3 indicating that a multicast
message will be sent to all or some of their local tasks (step 2). In the case for
H2,the message contains the tids for tasks T2 and T3 indicating that the multi-
cast message will be for tasks T2 and T3 only (assuming there are other tasks on

host2). The same goes for H3. Note that no message is sent to H4 since T6 is not
a recipient of the multicast message. In step 3, task Tl sends the actual message.

A copy of the message is then sent by the pvmd on Hl to H2 and H3 (step 4).

The pvmds onH2 and H3, knowing which local tasks the multicast message is

meant for from step 2, send each of the target tasks a copy of the message.

The advantage of this implementation is that regardless of the number of tar-

get tasks on H2 for example, only one message will be sent from Hl to H2. The

pvmd on the target host is responsible for giving each target task a copy of the

message. Unfortunately, the fact that only one message is sent out by T1 causes

some problem with the sequencing mechanism discussed above. Conceptually, a

multicast message to Iy' tasks is functionally equivalent to a point-to-point mes-

sage to each of the l/ tasks. Since the sequence numbering is based on the number

of bytes previously sent from the sending tasks to the target task, each of these ly'
point-to-point messages will most likely have different sequence numbers. Since

only one message is sent from the sending task for a multicast message, there is

a problem on how each of the l/ target tasks will receive the message with the

appropriate sequence number.

This problem is resolved by sending the "would be" sequence number as part
of the list of target tasks. Going back to the example in Figure 9, assume that the

correct sequence number of the next message for each for the four target tasks T2
to T5 are 200, 300, 400, and 500 respectively. In step 1, instead of sending just

the list of target tasks, the list of <tid, sequence number> pairs is sent. The same

approach is used in step 2where instead of just sending a message containing the

tids of T2 andT3 toH2, a message containing <T2,200> and <T3, 300> is

sent. When the actual message is sent (steps 3 and 4), the sequence number of the

message is reset to 0. That is, if the message is 6000 bytes long and the UDPMTU
is 4096, the resulting two message fragments would have sequence numbers 0 and

4096. Finally on step 5, as the pvmd on H2 gives task T2 a copy of each fragment
of the message, it adds the sequence number for T2 it got from step 2 to the cur-
rent sequence number in the fragment. By updating the sequence number, task T2
will receive two message fragments with sequence numbers 200 (200 + 0) and

4296 (200 + 4096), which are the sequence numbers of the next message T2 ex-
pects from T1. Task T3 will receive two fragments with sequence numbers 300

and 4396 and so on for tasks T4 and T5. Note that because the sequence number
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for the message fragments is reset to 0, this mechanism will work even if the mul-
ticast message fragments get further fragmented along the way.

Aside from the modifications described above, more changes had to be made

for the multicast mechanism to work under MPVM. Recall that the pvmd on Hl
first had to determine the hosts on which the target tasks were executing before it
could go to step 2. For this purpose, the home and hint maps are used. It is possi-

ble, however, that some of the target tasks don't have an entry on the home or hint
maps. One solution is to send a DM-IIOMEREQ CM for each task that doesn't
have an entry and only go to step 2 when all the corresponding DMJIOMEACK
CMs are received. While this solution would work, it tends to delay messages un-
necessarily. For example, if the pvmd on Hl had a mapping for all but T5, tasks

T2,T3 and T4 will have to wait until the pvmd on Hl gets the DM-IIOMEACK
CM for T5.

To avoid unnecessarily delaying the message for all the tasks, instead of send-

ing a DMJIOMEREQ CM for T5, the pvmd on H1 will assume that T5 is in its
home host, H3 in this case. If T5 was actually on H3, then everything is fine. If it
so happened that T5 was actually on H4, in step 5, the pvmd on H3 will still up-
date the sequence numbers for T5's copy of the message, but will recognize that
T5 is not executing locally. This will cause the pvmd on H3 to execute the mes-

sage forwarding mechanism described previously on the copy of the message for
T5. Since H3 is the home node of T5, it knows exactly where the message should
be forwarded from its home map. Also, recall that the message forwarding mech-
anism sends a DMJIINTUPD CM to the source of the message, H1 in this case.

This CM will cause the pvmd on H1 to update its hint map so it knows where T5
is located on the next message send or multicast involving T5. This is the same

sequence that would happen if the home or hint map on the source of the multicast
address had an out-of-date entry for some of the tasks. Such would be the case if
the pvmd on Hl had an incorrect T2 -* H3 mapping. The only difference is that a

DM-IIOMEREO CM might be generated if H3 has no idea where T2 is located.
The use of sequence numbers for multicast messages raises an issue with re-

gards to the message ordering semantics defined by PVM. As mentioned earlier,
PVM requires that messages from task A to task B should be received in the same

order they were sent. However, this condition actually breaks in PVM when mes-

sages are sent using both pvm-mcastO and pvn-sendO with direct routing. Con-
sider the case when a message is sent from task A to task B using pvn-mcast o
followed by another message sent via pvm-sendO with direct routing. Since
pvm-mcast O routes messages through the pvmds while the pvm-sendO uses a

direct TCP connection with task B, it is more than likely that the message sent

via pvm-sendO will get to task B first, in violation of the message ordering se-

mantics. V/ith the use of sequence numbers for both point-to-point and multicast
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messages, the message ordering semantics can be preserved. Whether this prop-
efiy gives MPVM some advantage over PVM is hard to say. However, at the very
least, mixing pvItrrncast O and pvn-sendO with direct routing will now generate

deterministic application behavior.

3.5. Migrating OS State

OS held state cannot be transferred like the processor state, the process's data

or stack. For one thing, since the migration mechanism is implemented at user

level, not all OS held state can be captured/reconstructed. An example of process

state that cannot be reconstructed is the process ID. Recall that PVM tasks are

actually UNIX processes. As such, they have assigned process IDs. Allocation and

assignment of process IDs to processes is done entirely by the OS kernel.
Realize that it is only necessary to migrate OS state information that the pro-

cess can observe directly. For example, OS kernels keep track of the page table
entries of processes. But since processes are "usually" not concerned about the
specifics of these page table entries, on migration, the OS kernel on the target ma-
chine could be left alone in deciding how to allocate pages and page table entries.

The problem in migrating OS state is that the OS state a process observes

is valid only in the context of the computing environment at the time the state

was observed. Changing the computing environment (e.g., the process migrates
from one host to another) would require a mapping of the OS state information as

viewed by the process to its equivalent in the new computing environment. This
mapping or virtualizatton of OS state can be achieved to some extent by providing
"wrappers" to system calls.

Consider the case of file I/O. To accommodate flle I/O migration, the pvm-
lib supplies its own file I/O routines (e.g., openO, cl-oseO, dupO, readO,
r.¡rite O, etc.) which are rwrappers for the actual system calls. The use of wrap-
per functions in this manner is similar to what is done in Condor [Litzkow &
Solomon 19921. These wrapper functions allow the pvmlib to maintain a list of
the files used by a task. This list contains information such as the file's name,

file access mode, file descriptor, etc. On migration, but prior to the actual state

transfer, for each file in the used files list, the current file pointer offset is taken
and then closed. Upon restart, each file in the list is re-opened and the current file
pointer is reset to its position prior to migration. The pvmlib also makes sure that
each re-opened ûle is assigned the same file descriptor used before migration.

For file I/O migration to work, as currently implemented, it is necessary that
the file be available on the target host. For simplicity, a global file system is as-

sumed to exist (e.g., through NFS). Ways of getting around this restriction are cur-
rently being investigated. The current MPVM pvmlib traps only commonly used
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file I/O system calls. There is currently no support for f cntlO and ioctl-O, for
example.

4. Quantitative Evaluation

This section presents performance results for MPVM. The first two experiments

were designed to measure the normal case performance (i.e., no migration) of
MPVM against PVM 3.3.4 at the micro-benchmark and application level. The

third experiment was designed to test migration performance. All experiments

that required timing measurements were done on two idle HP series 90001720

workstations running HP-UX 9.03 connected over an idle 10 Mb/sec Ethernet.

Each workstation has a PA-RISC 1.1 processor and 64 MB main memory.

4.1. Ping

Table 1 shows the results of running a"ping" experiment using PVM and MPVM.
The ping experiment was set up to determine the difference between the message

passing times of the two systems. In this experiment, a message is sent from one

host to another and back. There is very little computation done. To take the steady

state performance for each data size, 50 messages of the appropriate size are first
sent back and forth to "warm-up" the system. After which, a timed execution of
1000 ping messages was done.

Table 1. Ping experiment results for PVM and MPVM for
direct and indirect communication modes. The numbers rep-

resent the average roundtrip time of a message between two
hosts.

Data Size PVM (ms) MPVM (ms) Vo inqease of MPVM
Indirect Direct Indirect Direct Indirect Direct

0 4.788 t.693
1024 7.566 4.035
2048 9.533 5.432

4096 17.75r 10.059

8t92 29.990 18.849

16384 53.370 33.694

32768 1.02.478 65.2t1

4.99t t.990
7.760 4.321
9.6t2 5.648

18.015 t0.493
30.024 r8.22r
53.353 33.87r

t02.187 65.574

4Vo

2Vo

0.8Vo

L.47o

0.l%o

-0.3Vo

-O.37o

ITVo

7Vo

4Vo

4.37o

-3Vo
0.5Vo

O.57o
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As can be seen from Table 1, MPVM and PVM only differ in the order of
10ths of a millisecond. In general, however, MPVM is expected to be slower than

PVM for three reasons. First, there is the additional cost of avoiding potential
re-entrancy problems. Every time task execution enters/leaves the pvmlib, a flag
has to be set/reset. Second, there is the cost of virtualizing tids. This cost only
applies for indirectly routed messages. For every message sent out through the

daemon, a table lookup has to be done to determine the correct location of the

target task. The cost is even greater the first time a lookup is done since a first
time lookup would typically result in a DM-IIOMEREQ CM mapping request
from the home node of the destination task. Lastl¡ there is the cost of supporting

sequence numbers. This sequence numbering cost is linear with the number of
fragments of a message.

Notice that as the message size increases, the percentage difference between

the performance of PVM and MPVM decreases to the point where they are

almost identical. This result indicates that as message size increases, the cost of
data transfer increasingly dominates the cost of sending a message.

It should also be mentioned that in the case of direct connections between

tasks in the same host, the performance of PVM is better than that of MPVM.
This performance difference is due to PVM's use of UNIX domain sockets for
direct connections between tasks in the same host as mentioned in section 3.3.

MPVM does not use UNIX domain sockets because it doesn't support OOB data

which is used for asynchronous closure of direct connections. V/ays of getting

around this restriction are currently being investigated.

4.2. Gaussian Elimination

The Ping experiment above showed the overhead MPVM imposes on message

passing performance. Though good for benchmarking, it can hardly qualify as

a real-world application since barely any computation was done. To show how
MPVM affects the performance of real-world applications, a parallel Gaussian

elimination program was run using both PVM and MPVM for different matrix
sizes. This experiment only used two machines, each task being responsible for
solving half of the matrix. As can be seen from Table 2, the overhead imposed by

MPVM is hardly noticeable.

4.3. Migration Cost

In this section, the cost of migrating a task is presented. Two measures are de-

fined. The first is the obtrusiveness cost, i.e., the time from when the Spvmd re-

ceives an SM-ù(IG CM to the time the task is removed from the machine (i.e., the
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Table 2. Gaussian elimination timing results for PVM and
MPVM.

Matrix size PVM (sec) MPVM (sec)

80x80
300 x 300

500 x 500

0.448
3.205

9.3r1

0.453
3.205
9.375

task exits). This time represents the minimum time an owner may have to wait
before regaining dedicated access to the machine. Note that the machine is not
necessarily unusable during this time; it just means that something else is execut-
ing other than the owner's jobs. The second measure is the migration cost. This is
the time from when the Spvmd receives the SM-IVIIG CM to the time the task has
restarted on the destination host. The migration cost is essentially the obtrusive-
ness cost plus the restart stage cost. The first measure approximates the impact of
migration on the owner, the other on the job itself. Table 3 and Figure 10 show the
obtrusiveness and migration costs for migrating the Gaussian elimination program
used in the previous section for various matrix sizes.

Table 3. Obtrusiveness and migration costs for various ma-
trix sizes. The process state size indicates the actual number
of bytes transferred at migration time while the TCP trans-
fer time indicates the time spent in sending the appropriate
amount of data through a TCP socket connection.

Matrix size Process state Obtrusiveness
size (bytes) cost (sec)

Migration TCP transfer
cost (sec) time (sec)

0x0
80x80

300 x 300

500 x 500
1000 x 1000

2000 x 2000

97448
109736

277672

597160

2100392
8t09224

0.139

0.257

0.363

0.683
r.993
7.5r2

0.327

0.361

0.590

0.871

2.205

8324

0.092
0.103

0.255
0.549
1.924

7.449

As in the previous experiment, this experiment makes use of two machines
with one task on each machine. The timing measurements were taken while
migrating one task on one machine to the other. The 'þocess state size" indi-
cates the actual number of bytes transferred as measured at migration time. This
state size includes static and dynamic data, and the stack. The "TCP transfer time"
shows the time speni just transferring the same amount of data over a TCP socket
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Figure 10. Graph of Table 3. This graph clearly shows the

direct relationship between the state size, the TCP transfer

cost, and the migration cost.

connection. This measure provides a lower bound for the migration cost. As can

be seen from the table, the task's state size is the dominating factor in the obtru-

siveness and the migration cost.

While the effect of the migration on the migrating task can be quantified in
terms of the migration cost, the effect of migrating one task on the whole appli-

cation cannot be as easily deflned. In the best case, the migration of one task may

not affect the performance of the application at all if, for example, the migrated

task had the least work to do or was blocked waiting for the other tasks anyway.

In the worst case, the entire application could be stalled by as much as the migra-

tion cost if, for example, migration occurred just before a global synchronization

point (e.g., a barrier), effectively stalling all the tasks in the application until the

migrated task resumes execution.

A more important consideration in evaluating the effect of migration on an

application is the placement of the migrating task. Migrating a task to a heavily

loaded machine will slow down the application not only at migration time but also

for the rest of the time it is on the heavily loaded machine. 
'We 

are currently eval-

uating the MPVM system using a scheduler [Al-Saqabi et aL. t994] that takes into

account processor heterogeneity in terms of architecture and speed. The scheduler

recognizes the difference between cooperating tasks (tasks of the same applica-

tion) and competing tasks (tasks of different applications) and schedules them

accordingly to minimize contention. Using the services provided by MPVM, the
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scheduler is capable of gang scheduling tasks of multiple applications and allows
tasks to double-up on processors. Processor doubling is a technique that allows
an application to use fewer resources and yet perform as if all available resources
were allocated to it.

5. Related Work

Process migration implementations can be broadly categorized as either supported
at the system-level or at the user-level. In system-level supported implementations,
the oS kernel is involved in the migration. Notable examples of such implemen-
tation are present in Charlotte [Artsy & Finkel 1989], V [Theimer et al. 1985],
Mosix [Barak & Litman 1985; Barak et aL.19931, Sprite [Douglis & Ouster-
hout 1987; Douglis & Ousterhout 19911, and Mach [Milojicic et al. 1993].
User-level supported process migration implementations, on the other hand,
do not require services other than what the oS ordinarily provides through its
system call interface. Condor [Litzkow et al. 1988; Litzkow & Solomon 1992;
Bricker et al. 19911 is an example of such an implementation. MPVM fits into this
category.

Most of the literature on these systems focus on process migration mecha-
nism efficiency. Efficiency is defined in terms of application "fteeze time" and
state transfer cost. Freeze time is the time during which the process is not execut-
ing. State transfer cost on the other hand is the cost of transferring the process's
state. The state transfer cost is often the limiting factor in migration speed fza-
yas 19871. This observation is in accordance with the experimental results shown
in the previous section. Two other categonzations of these implementations are
in terms of transparency and residual dependency. Transparency refers to how
much, or how little, the process is affected by the migration. Of particular interest
is how IPC connections are maintained with other processes. Residual dependency
refers to how much or how little a migrated process depends on its previous host
or hosts.

In Charlotte, the entire virtual address space of a process is transferred at mi-
gration time. MPVM uses the same approach. While this approach is simple, it
has drawbacks. First, the process is "frozen" for the entire duration of the transfer.
Second, the entire virtual address space is transferred even if not all pages may
be used by the process. For IPC connections, message senders are informed of the
new location of the migrated process. No explicit message flushing is necessary
due to kernel provided message caching and retransmission mechanisms. The v
kernel addresses the problem of prolonged freeze time by using a technique called
"pre-copying." In essence, while the virtual address space is being transferred, the

MPVM: A Migration Transparent Version of PVM 203



process is allowed to continue executing. Once the transfer is complete, the pro-

cess is stopped, and the memory pages that were touched by the process after the

first transfer started are re-copied. The second-stage transfer hopefully is much

shorter thus minimizing the freeze time of the process. This technique has been

shown to reduce the freeze time significantly though it has to do more work since

some pages have to be copied more than once.

V/hile MPVM could benefit from pre-copying, this technique requires access

to page table entries-a requirement that cannot be easily satisfied at user-level.

As for IPC, the V kernel allows messages to be dropped while the process is

ftozen. Once the process is un-frozen, the senders are informed of its new loca-

tion and must re-send the messages. MPVM differs in this regard since MPVM

doesn't drop messages. Rather, messages are forwarded to the new destination of
a migrating task. If the message arrives at the destination, and the migrating task

hasn't restarted yet, the pvmds simply buffer the messages until the migrating task

is ready to receive them.

Sprite takes a different approach in transferring process state by making use of
a network-wide ûle system. Since Sprite uses the network file system as a back-

ing store for virtual memory most of the memory pages used by a process are

already saved on the network file system. Hence, at migration time, all Sprite has

to do is to flush all the dirty pages of the migrating process and start-up a pro-

cess on the destination host whose pages afe set-up to be demand-paged from

the network file system. Mosix uses a slightly different approach for minimiz-

ing freeze time by sending all the dirtied pages of the migrating process directly

to the target host but sets-up the other pages to be demand paged from the ex-

ecutable file (e.g., the text) or zero-filled. Again, while the techniques used by

Sprite and Mosix to minimize freeze time could be used in MPVM, these tech-

niques require access to not only the OS's page table entries, but also the sys-

tems swap area (backing store). As for IPC migration transparency, Sprite, Mosix

and MPVM use different approaches. Sprite uses the shared file system as the

medium for inter-process communication. The file system essentially provides a

"well-known" point of communication regardless of where a process is actually

executing. In Mosix, transparency is easily achieved since most of the process

state information is location independent by design. The obvious disadvantage

of MPVM over these two systems is that since MPVM is implemented at user-

level, its migration mechanism has to contend with the peculiarities of the OS it
is running on as opposed to re-designing the OS to easily accommodate process

migration.
Mach uses the concept of copy-on-Reference (coR) initially used in Ac-

cent lZayas 19871, the precursor of Mach. COR semantics allows a migrating

process or task (in Mach parlance) to be started immediately at the target node.
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When the new task references a page that hasn't been transferred, a page fault oc-
curs and the page fault handler ananges for the page to be sent from the source
host (i.e., demand paging from the source's memory). Compared to MPVM's mi-
gration mechanism, this method has the advantage of minimal freeze time and
minimal state transfer cost since only those pages actually used by the task are
transferred. However, it suffers from residual dependency, due to the fact that re-
sources on the source host cannot be released until either everything has been sent
or the task terminates. This residual dependency also makes the process suscep-

tible to failure since if any of the hosts on which the process depends fails, the
process could also fail. While MPVM's migration performance may be dwarfed
by Mach's use of COR, MPVM doesn't suffer from residual dependencies. To
address the transparency problem for IPC connections, a version of Mach that
provides in-kernel IPC and DSM called Mach NORMA was used. This method
of addressing the IPC transparency issue is very similar to that of MPVM since

both systems provide a layer of communication end-point virtualization: the in-
kernel IPC in Mach and the message forwarding and task-to-host mappings in
MPVM.

On the other side of the implementation domain are those systems imple-
mented at user-level, just like MPVM. The most notable of user-level process

migration implementations is Condor. Condor was initially designed for sequential
programs. Recently, however, support for PVM applications was added but only
as far as scheduling and process suspension/resumption fPruyne & Livny 1,9951.

There is currently no support of migration of PVM applications. The main dif-
ference between Condor and MPVM is that Condor uses a checkpoint/roll-back
mechanism to achieve migration. This design decision was made to minimize ob-
trusiveness. The Condor system, from time to time, takes a snap shot of the state
of the programs it is running. This is done by taking a core dump of the process

and merging it with the executable file of the process to produce a checkpoint file.
At migration time, the currently running process is immediately terminated. It is
later resumed on another host, based on the latest checkpoint file. In addition to
being minimally obtrusive, this method has the advantage of fault tolerance in that
if something goes wrong (e.g., the system crashes), it is still possible to restart
the program from the last checkpoint flle. Fault tolerance is something MPVM
currently doesn't support. Restarting processes based on roll-backs, however, re-
quires idempotent file operations, a problem MPVM does not suffer from since the
state is restarted exactly at the point where it was intemrpted. Using roll-backs is
particularly troublesome for a parallel/distributed application since it would re-
quire synchronous checkpointing of all the tasks or some form of message logging
mechanism. MPVM also has the additional advantage of requiring almost no disk
I/O. Disk I/O will only occur when transferring pages of the migrating task that
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have been paged out. Aside from the speed factor, disk space consumption is also

avoided.
Three systems closely related to MPVM are UPVM, Dynamic PVM, and Fail-

Safe PVM. UPVM [Konuru et al. 1.994], another research effort here at OGI,

addresses the problem of the coarse-grained distribution granularity present in

MPVM. MPVM migrates tasks at the level of whole processes. UPVM intro-

duces the concept of User Level Processes (ULPs) which are thread-like entities

that are independently migratable. Since ULPs are smaller "processing" enti-

ties than processes, UPVM has the potential for achieving better load balance.

As currently implemented, UPVM has two main restrictions. First, it only runs

SPMD programs. Second, since all the ULPs share the address space of a single

UNIX process, there is a limit on the number of ULPs the application can have

depending on the size of the virtual address space of the process and the memory

requirements of each ULP.

Dynamic PVM [Dikken et al. 1994] is an extension to PVM to support pro-

cess migration, very much like MPVM. The overall designs of Dynamic PVM

and MPVM are very similar, such as the use of hint maps and thelazy update of
routing information [Dikken L9931. There are differences, however, in how hints

are used. In Dynamic PVM, all hint information is stored and requested from the

master pvmd. When a pvmd receives a message for a task that is not executing

locally, it replies with a 'TASK-UNKNOWN' acknowledgement to the sender of
the message. This 'TASK-LINKNOWN' acknowledgement causes the first pvmd

to request route information from the master pvmd. In this way, Dynamic PVM

does not need to forward messages.

More striking differences, however, appeff in that Dynamic PVM does not

support multicast messages (as defined by PVM), can only migrate one task

at a time, and uses Condor-style checkpointing to achieve process migration.

In [Vesseur et al. 1995], some performance numbers were reported. For exam-

ple, migrating a process with 0 and 6 MB of data takes 3.8 and 60'5 seconds

on lightly loaded Sun SPARC-2's. Compare these numbers with those in Ta-

ble 3.

Finally, Fail-Safe PVM [Leon et al.l993l is an extension to PVM that im-

plements transparent application checkpointing and restart. The effect of process

migration can be accomplished by checkpointing the application and restarting the

tasks on different hosts. However, since Fail-Safe PVM wasn't meant to address

process migration, there is alarge overhead involved in using Fail-Safe PVM for
migration. This large overhead is caused by the need for all tasks to synchronize

with each other, flush all outstanding messages, and write their checkpoint files to

disk to checkpoint the application.
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6. Discussion

In this section, a more qualitative discussion on the design and implementation of
MPVM is presented.

6.L PVM Source Code Compatibility

Recall that one of the goals of MPVM is to be source code compatible with pVM.
To this end, MPVM has maintained the same user-interface, their parameters and
semantics, as defined by PVM. The pvm-sendsigO routine has to be specially
mentioned, however. Since MPVM does not currently support migration of user-
installed signal handlers, the use of pvm-sendsigO may behave differently for a
migrated task that uses signal handlers.

A closely related aspect that affects source code compatibility is the use of a
GS. when a GS is used, some of the PVM user-interface calls, pvm-spar^rno for
example, are forwarded to the GS. To maintain full compatibility, the GS should
respond to these requests in a PVM compatible way. What the GS does with the
requests it receives is outside the control of MPVM.

6.2. Portability

Another goal of MPVM is that of portability. This was the motivating factor for
choosing a user-level implementation. MPVM was first implemented on Hp-pA
workstations running HP-ux 9.03. It has since been ported onto sunos 4.1.3,
DEC OSF/I V1.3, and AlX3 rel2.

Although machine dependence of the migration mechanism is unavoidable, the
dependence was limited by implementing the migration mechanism using signals,
sockets, the setjmpO/longjnpO function, etc., all of which are available on
most UNIX flavors. Also, no assembly language was used. Everything is written
using "C" code.

As long as a process can determine the extents of its data and stack segments
at run-time, porting the migration code should not be difficult. Consider the dif-
ference between the HP-uX and sunos versions of MPVM for example. For
HP-UX, the following macros are defined

#define STACK-TOP ((char *) &stk_var)
#defíne STACK-BASE ((char *) USRSTACK)

#define DATA-T0P ((char *) sbrk (0))
#define DATA_BASE ((char *) &__data_start)

For SunOS, the same macros are defined as
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#define STACK-TOP ((char *) USRSTACK)

#define STACK-BASE ((char *) &stk-var)
#define DATA-TOP ((char *) sbrk (0))
#define DATA-BASE ((char *) &environ)

USRSTACK is a system defined macro which is the absolute address of the

beginning of the stack. Stk-var is a local variable defined in a function where

these macro definitions are used. &stk-var thus provides the process an ap-

proximate top of stack address which is always more than what is needed to

festole, but only as much as the amount of stack space used by a stack frame

on a function call. The --data-start and environ variables define the start of
the data space under HP-UX and SunOS respectively. The --data-start vari-

able is documented in HP-UX. The environ variable on the other hand is not

documented but could be determined by using the nn UNIX command. And

lastly, sbrk O is a system call, which when given the parameter 0, returns the

address of the top of the heap. Thus, when porting to a new system, only the

equivalents of these four deflnitions need to be determined. In most machines,

the usage of sbrko and &stk-var should be portable and since USRSTACK

is usually defined by the system, this leaves only the value of DATA-BASE to be

determined.

Unfortunately, there are some systems that don't have the USRSTACK macro

defined. In this case, the easiest thing to do is to let the process figure out the

start-of-stack address at run-time. One way of doing it is to get the address of a
local variable declared in the pvmlib's nainO and "round" that address to the

next higher or lower page boundary. Rounding up or down of the address depends

on whether the stack grows downward or upward respectively. The resulting ad-

dress is the start-of-stack address. While this workaround is totally portable, it
would fail if the local variable was not allocated on the flrst stack page. This situ-

ation is possible, for example, if enough command line arguments were passed to

the process such that it filled up the first page of the stack.

Other potential problems are usually caused by system interface incompat-

ibility. For example, some systems use the sigveco interface to install signal

handlers while others use sigvectorO.
There are special cases however that would require more in-depth investi-

gation. For example, the HP-PA workstations use space registers that contain

the addresses of a process's text, data, and stack spaces which are guaranteed

to be constant for the lifetime of the process. With migration, however, these

addresses are bound to change, and would have to be explicitly updated to the

new addresses. Fortunately, the signaling facility in HP-UX (as well as in other

OSs) provides a third parameter to the signal handler called the signal context.
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This signal context contains the processor state that was saved when the sig-

nal was invoked. Using the signal context, the values of space registers can be

updated before returning from the signal handler. Another example of this spe-

cial case is how well the longjnp O code interacts with the use of signal han-

dlers that use a temporary stack. Such was the case in the OSF/I Vl.3 port. The

Iongjmp O code had safety-checks that detected an error when used with a tem-

porary stack when in fact there is none. Fortunately, the system also provides a

lower level -longjnpO function that is essentially a tongjnpO without the error

checking.

6.3. Transparency

The decision to implement migration at user-level for the sake of portability un-

fortunately had a negative impact on MPVM's capacity to be truly migration

transparent. MPVM can only guarantee transparency for PVM interface calls

and some file I/O system calls. Again, there is the assumption that a global-file

system is used.

By implementing the migration at user-level, state information managed by the

OS kernel such as process IDs and pending signals cannot be automatically pre-

served on migration. Additional transparency problems appear if the task directly
uses UNIX facilities that depend on the location of the task. Examples of such

facilities are shared memory, pipes, semaphores, sockets, and shared libraries.

V/hen developing applications of MPVM, special attention has to be given

to shared libraries since most compilers/linkers/bundled libraries nowadays are

configured to use shared libraries when available. The memory addresses of shared

libraries on one machine need not be the same on another. Since shared libraries

cache addresses of dynamically loaded modules in the address space of the calling

process, migrating the process could cause execution to fail when it tries to call a

routine in the shared library on the new machine. For this reason, the developer

should explicitly create executable files that are statically linked. This requirement

is usually satisfied through some compiler or linker option. Also, recall that the

-Dmain=Main C compiler flag should also be set.

A possible solution to address this transparency issue in user-level implemen-

tations is to provide wrapper functions just like those used for flle I/O in Sec-

tion 3.5 for all system calls. Using these wrapper functions, it would be possible

to implement mechanisms that would refer back to the orginal host for context in-
formation about and for the process. Such mechanisms would provide the process

with a consistent execution environment regardless of where it is currently exe-

cuting, similar to what is done in Utopia lZhou et al. 19921and Lsbatch [Wang
et al. 19931and to some extent, in Condor [Bricker et al. l99ll.
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6.4. Heterogeneity Support

MPVM supports heterogeneity at the same level as PVM in that processes can

be started-up on both homogeneous and heterogeneous architectures. Howeveq
migration can only occur within homogeneous machine pools. For example, given
ten machines (flve Suns and five HPs), a task can be started on each machine.
A task on an HP machine however can only migrate to any of the four other HP
machines.

The difficulty in supporting heterogeneous migration is that process state on
heterogeneous machines is represented differently. Heterogeneity can come in the
form of different processors and instruction sets, different OSs, different memory
management units, etc. Translation of a process's state as captured on one machine
to one of a different architecture is not easy, though there is some work being
done that addresses this problem [Theimer & Hayes 1992].

6.5. Scalability

Recall that the migration protocol generally only involves the migrating task, the
source pvmd, the destination pvmd, and the home pvmd of the migrating task.
This approach implies that regardless of the number of tasks on the system, the
operations required to migrate a task remain the same. The involvement of other
tasks would only depend on whether they have TCP connections with the mi-
grating task that have to be closed. Other than that, all other tasks will continue
executing as they normally would and will only get affected by migration if they
require a message from the migrating task (i.e., application level synchronization).
For this reason, the migration protocol is scalable with respect to the number of
tasks.

Also, note that the migration of one task is totally independent of the migra-
tion of another. This "independence" property of the migration protocol allows
multiple simultaneous migrations to occur. Thus, it doesn't matter whether ma-
chines are reclaimed by their owners one at a time, all at the same time, or are

reclaimed/released at arbitrary times. In this regard, the migration protocol is scal-
able with respect to the dynamics of the shared network of workstations.

A factor that negatively affects the migration protocol's scalability, however,
is the assumption of the existence of a global file system. MPVM currently relies
on a global file system in two ways. First, to avoid moving the migrating process's

text, it assumes the executable file of the migrating process is available on the
destination machine. Second, the current support for migration transparent file
I/O assumes that files available on the source machine are also available on the
destination machine. Both of these assumptions will only be always true under
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a global file system. While such global file systems already exist, the reality is
that such file systems are not yet commonplace, though it is certainly possible to
"simulate" one via NFS, for example.

6.6. PerforYnance

As has been concluded by other studies and also from the task migration cost

measurements in Section 4, the perfonnance of the migration mechanism is largely

dependent on the cost of transferring the process's virtual address space. The f,rst

implementation of MPVM used a checkpoint file style of process migration. This

method requires five disk accesses (each proportional to the process state size):

write the core file, read the core file, read the executable file, write the checkpoint

file, and then a final read of the checkpoint file when it is restarted on the desti-

nation machine. Disk I/O is particularly troublesome if the local file system is

actually an exported file system (e.g., via NFS) since it will not only generate lots

of disk I/O on the exporting machine but also a lot of network traffic. By mov-

ing to direct state transfer through a TCP connection, the migration speed was

increased approximately 10x for processes that use lots of memory.

The current implementation of MPVM is similar to that of Charlotte. That is,

the entire virtual address space (data and stack at least) is transferred at migration

time. As mentioned previously, this has two drawbacks. The ûrst is prolonged

freeze time and the second is possible waste of work by transferring all the pages

in the virtual address space even though not all may be used.

Unfortunately, current OSs don't leave much of a choice as far as user-level

implementations are concerned. The solutions presented by systems such as V
and Mach rely on virtual memory functions such as trapping page faults, check-

ing for dirty pages, etc. These functions, however, are not generally available at

user-level. Though there is work being done to provide user-level virtual memory

management [Appel &Li I99I; Harty & Cheriton 1992; Sechrest & Park l99I],
until such functionality becomes widely available, portable user-level process mi-
gration implementations cannot make use of methods available to system-level

implementations.

7. Conclusion

MPVM is an extension to PVM that provides for transparent process migration.

Such a facility allows tasks to be scheduled on a machine and then later moved

to another if so desired. This ability to move tasks makes it possible to use idle
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cycles on available machines and at the same time respect ownership of those

machines. As is, existing PVM applications can be used under MPVM with lit-
tle modification. Migration is transparent to the application developer as far as

the PVM interface is concerned. File I/O migration is also supported to some

extent. Versions of MPVM currently exist for HP-UX 9.03, SunOS 4.l.3,DEC
OSF/I V1.3, and AIX 3 rel2. Micro-benchmarks show that message-passing in
MPVM is just slightly slower than that of PVM. However, tests with real-world
applications such as the Gaussian elimination program where some amount of
computation being done show that this difference in latency is barely noticeable.

To ensure that task migration doesn't affect the correctness of the application,
a strict migration protocol is used. The protocol ensures that messages are not lost
and are received in the correct order. The design ofthe protocol is scalable such

that the migration of a task is not affected by the number of tasks in the system

and multiple simultaneous migrations can occur. The current limitation of the pro-

tocol is the assumption of the use of a global file system.

Measurements of migration costs show that the dominant factor in the mi-
gration time is the transfer of the process's virtual address space through the

network. This bottleneck has been addressed by system-level process migration
implementations. Unfortunately for user-level implementations, unless the OS pro-

vides user-level memory management functionality, it would seem that nothing
else can be done to improve migration performance.

Though the migration mechanism requires processes to be frozen for some

time, the important thing to realize is that this very same mechanism allows
PVM applications access to machines they couldn't have used otherwise. It is
now possible to have long-running applications execute on a more powerful vir-
tual machine owned by someone else without worrying about getting in the way
of the owner. Also, machine owners will likely allow use of their machines know-
ing they will regain dedicated access whenever they want it. Thus, despite the cost

of migration, the ability to migrate could lead to large gains in overall resource

availability and performance.
'We are currently using MPVM within the research group to get some practical

experience regarding its usefulness and performance. Combined with a scheduler

capable of dynamic task scheduling and gang scheduling, we are currently in-
vestigating the real effect of task migration on both the PVM application and the

workstation owners.

As for future work, a lot of things still have to be done to improve migration
transparency: non-reliance on a global file system, support for migrating user-

installed signal handlers, use of UNIX domain sockets for direct communication
between tasks on the same host, etc. Support for migrating applications using X-
windows will also be investigated. Another aspect being considered is the support
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for fault-tolerance with the use of checþointing. InÍegration wjth existing utilities
such as batch schedulers (Condor and DQS [Green & Snyder 1993]), tools (Ptools

[Gropp & Lusk 1994]), profilers and debuggers O(PYM lKohl & Geist 1994]),

eto., is also be being considered. All this work is targeted for the next generation

PYM system.
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