
A Programming Interface for
Applic ation-Aw are Adaptation in
Mobile Computing

Brian D. Noble, Morgan Price, and

M. Satyanarayanan

Carnegie Mellon University

ABSTRACT: Mobile clients face wide variations in
network conditions and local resource availability when
accessing remote data. Coping with this uncertainty
requires the ability to retrieve and present data at

varying degrees of fidelity. In this paper we present
application-aware adaptation as a solution to this prob-
lem. The essence of our solution is a collaborative
partnership between applications and the operating sys-

tem. We describe a preliminary design of the Odyssey

API for application-aware adaptation and explain how
it is used in accessing video and map data on mobile
clients.

This research was supported by the Air Force Materiel Comma¡d (AFMC) and ARPA under contract number
F196828-93-C-0193. Additional suppof was provided by the IBM Corporation, Intel Corporation and A1&T
Corporation. The views and conclusions expressed in this paper are those of the authors, and should not be
inærpreted as those of the funding organizations or Carnegie Mellon University.

o 1995 The USENIX Association, Computing Systems, Vol. 8 . No. 4 . Fall 1995 345



l. Introduction

Mobile clients face many challenges in accessing data from servers. Because a
mobile client has to be compact and lightweight, it is typically resource-poor rela-
tive to a desktop client. Network connectivity, especially via wireless media over
a large area, tends to vary considerably in bandwidth, latency, reliability and cost.

Fower management considerations often require certain actions to be deferred,
avoided or slowed down to prolong battery life. The relative costs of accessing

distributed services changes as mobile clients move. Finally, the very nature of
mobility has a negative impact on robustness and security.

As a consequence of these constraints, the mechanism for mobile data access

has to be adaptive in nature, dynamically conforming to the limitations of indi-
vidual clients and their current environments. We believe that such adaptation can
best be performed by a collaborative partnership between the operating system and

individual applications. We refer to this strategy as application-aware adaptation

[Satyanarayanan et al. 19951.

Application-aware adaptation charactenzes the design space between two
extremes. At one extreme, adaptivity is entirely the responsibility of individ-
ual applications. This means that there is no focal point in the system to resolve
the potentially incompatible resource demands of individual applications. It also
means that there is no way to enforce limits on resource usage. At the other ex-
treme, adaptivity is completely subsumed by the system. Although the feasibility
of this approach has been demonstrated in systems such as Coda [Kistler & Satya-
rrarayaran 1992; Satyanatayaîan et al. 19901, there are limits to its applicability.
In particular, the end-to-end argument [Saltzer et al. 1984] suggests that there will
be circumstances where only an application can determine the best form of adapta-

tion. Unless the system is extended to incorporate specific knowledge about every
application, there will be situations where adaptation by the system will be inad-
equate or even counter-productive. By striking a balance between these extremes,
application-aware adaptation offers a more promising approach to mobile data ac-

cess. It permits individual applications to determine how best to adapt, but allows
the system to retain management of key resources and enforcement of decisions
regarding their usage.

346 Brian D. Noble, Morgan Price, and M. Satyanarayanan



How can application-aware adaptation be effectively supported? This paper

is a status report on our work toward answering this question. This work is being
done in the the context of Odyssey, an experimental Unix platform for mobility.
We have implemented a preliminary prototype and have demonstrated its use in
two applications accessing data in a mobile environment. While rudimentary in
many respects, our prototype does provide initial evidence of the feasibility and

effectiveness of application-aware adaptation.

We begin the paper by introducing the concept of data fidelity and discussing

the central role it plays in application-aware adaptation. Next, we discuss a num-
ber of factors influencing our design. We then describe the design of Odyssey,

focusing specifically on its support for application-aware adaptation. Finally, we
describe the implementation and status of our prototype.

2. Data Fidelity

Under ideal circumstances, the data presented at a mobile client should be iden-
tical to the current server copy. As resources become scarce, it may no longer be

feasible to completely preserve this correspondence; some form of degradation is

unavoidable. How does one charactenze the extent of this degradation? We de-

fine fidelity as the degree to which a copy of data presented for use matches the

reference copy.

Fidelity has many dimensions. One well-known, universal dimension is con-

sistency. Other dimensions depend on the type of data in question. For example,

video data has at least two additional dimensions: frame rate and image quality
of individual frames. Spatial data, such as topographical maps, have dimensions

of minimum feature size or resolution. For telemetry data, appropriate dimensions

include sampling rate and curency.
The dimensions of fldelity are natural axes of adaptation for mobility. But the

adaptation cannot be solely determined by the type of data; it also depends on the

application. As we show in the next section, different applications using the same

data may make different tradeoffs among dimensions of fidelity.

2.1. Vídeo Data in Mobile Environments

Consider a movie stored on a server, and two applications accessing that video
stream from a mobile client. The first application is a video playback application,
player, and the second, editor, is a video scene editor. These two applications

must make different fidelity tradeoffs in accessing the same video stream. No sin-
gle policy can satisfy them both.

A Programming Interface for Application-Aware Adaptaîion in Mobile Computing 347



The player's primary goal is to preserve correspondence between movie time
and real time. A secondary goal is to play the movie at the original frame rate,
resolution, and image quality. In times of plentiful resources, the player can indeed
meet both goals. However, when network bandwidth becomes scarce, the player
may have to sacrifice its secondary goal in order to meet its primary goal. Thus,
it may choose to switch to a black-and-white stream at full frame rate, to drop
frames, or otherwise reduce the bandwidth requirements of the stream. To guard
against total disconnection, the player may even hoard a very low-quality version
of the movie.

The editor's main goal is very different from that of the player; it must ensure
that the user sees every frame of the video stream to allow precise editing. To
allow this, the editor is willing to relax the correspondence between movie time
and real time. Thus, when network bandwidth decreases, the editor will access the
movie at a. rate slower than real time to avoid dropping frames.

It is hard to see how any single operating system policy can adequately ser-

vice both of these applications' needs, even though they are accessing exactly the
same data. Regardless of the system's decisions, either the player or the editor-
and quite possibly both-will not be satisfied. No system can be clever enough to
anticipate and satisfy every application's needs. On mobile machines, where the
environment is unpredictable, such unsatisfactory service will be even more evi-
dent. Only with the active participation of applications can scenarios such as the
above be satisfactorily handled. Hence the need for application-aware adaptation.

3. Design Considerations

What is required to support application-aware adaptation? Generall¡ the system
must provide a set of API extensions that allow applications to track and react
to their environment, and a system architecture which effectively supports these
extensions. In the sections below, we outline the desired properties of the API
extensions and supporting architecture.

3.1. API Extensions

In order for applications to make decisions based on their environment, they must
be able to name aspects of the environment that are important to them. This nam-
ing mechanism must be both simple and extensible. Applications should be able to
specify exactly those features of the environment in which they are interested, and
be notified of changes to just those features. Such specification and notification

348 Brian D. Noble, Morgan Price, and M. Satyanarayanan



should be efficient. They must also flt into the programming style and culture of
the base operating system, but cannot depend on esoteric features. Popular appli-
cations mn on an increasingly diverse set of operating systems; providing common
adaptation facilities enhances the portability of such applications.

As applications track changes in the environment, they must adapt their ac-

cess to data. Some types of adaptation will require changes in operating system
policy. There must be an effrcient, flexible, and extensible mechanism to request

such changes. Since the operating system is the final arbiter ofresource usage, the

request need not always be honored.

3.2. Supporting Architecture

V/hat of the underlying architecture supporting these extensions? The overriding
goal is simplicity. We are not trying to invent a new operating system, but merely
to extend existing ones in simple ways. We have striven to keep such extensions

minimal, while making them powerful enough to explore application-aware adap-

tation for a wide range of data types.

It is important to note that we do not attempt to provide resource guarantees

to applications. Such guarantees, typically encountered in real-time systems, re-
quire guaranteqs from lower layers of the system. But the environment of a mobile
computer is too unpredictable for such guarantees. Hence, we only promise to
inform applications when their environment changes, and arbitrate between appli-
cations competing for scarce and unpredictable resources.

Finally, our architecture should adhere to sound principles of software engi-

neering. Some functionality in support of the API will be independent of the type
of data, while other functionality will be type-specific. The architecture should
provide isolation between different types of data as well as between the generic

and type-speciûc portions of the system.

4. Odyssey API

This section describes our design of the Odyssey API supporting application-
aware adaptation. We wish to emphasize that this is a preliminary design.

Changes in some of the details are likely in the light of implementation and us-

age experience.

There are three components to the Odyssey API. First, there is a way for ap-

plications and the system to talk about salient features of the environment. Second,

there is a mechanism that enables applications to track their environment. Third,

A Programming Interface for Apptication-Aware Adaptation in Mobite Computing 349



Resource Units Reference Item?

Network Bandwidth
Network Latency
Disk Cache Space

CPU
Power

Money

bits per second

microseconds
kilobytes
SPECints available
minutes of computation
cents

yes

yes

no

no

no

no

Figure 1. Generic Resources in Odyssey. This figure lists the
generic resources defined for the Odyssey system. The first
column lists the name of the resource. The second column
gives the units in which the resource is measured. The third
column specifies whether or not the resource is measured
with respect to a particular item in the Odyssey store. Of
particular interest is the last item, money. Many experimental
implementations of electronic money as well as systems that
use money in exchange for services exist. V/e believe that
such services, particularly those which offer some sort of
query facility, will become more common. Note that these
are only the generic resources; there may be others that are
type-specific.

there is a mechanism through which applications request policy changes based
upon their environment. We describe each of these components in the following
sections.

4.1. What Is an Application's Environment?

We consider the salient features of an application's environment to be fhe re-
sources available to that application. Such resources can be either generic or
type-specific. Generic resources have meaning for all items stored in Odyssey.
Examples of generic resources include network bandwidth between the mobile
client and the server storing an item, available disk space on the mobile client, and
battery power remaining on the mobile client. The generic resources in Odyssey
are listed in Figure 1.

Type-specific resources have meaning only for items of a particular type. For
example, consider a commercial database that indexes items in the World Wide
Web. Such a service might sell a subscription that enables a client to make some

350 Brian D. Noble, Morgan Price, and M. Satyanarayanan



number of queries per day. The number of queries left in a given day is a resource

that is meaningful only in the context of queries against that database.

Odyssey tracks and reports the availability of a resource, and how that avail-
ability changes. We measure the availability of an individual resource with a
single scalar value. The units of a particular resource's availability are chosen

appropriately for that resource. For example, network bandwidth is measured in
bits per second. Available disk space is measured in kilobytes. Power remaining to
a laptop is measured in minutes of operation.

Some resources are estimated with respect to a particular item in the Odyssey

store. We call such items reference items. For example, network bandwidth be-

tween a mobile client and a server differs for different servers. Thus, we only
speak of network bandwidth with respect to a particular reference item; the band-

width in question is that between the client and the server storing that particular
item. Since type-specific resources only have meaning for items of a particular
type, they always have reference items.

4.2. How to Trøck the Environment?

For an application to track the availability of resources two things must happen.

First, the application must inform the system of the resources in which it is inter-
ested. Second, the system must monitor the availability of resources, and notify
the application when the availability of one or more relevant resources changes in
an interesting way. For efflciency, we chose to use asynchronous notification rather

than polling in Odyssey.

Naturally, not all applications will be interested in the same set of resources.

To tell the system what resources an application is interested in, the Odyssey

API provides a call, ody-request. For example, an application making an

ody-request might ask, "Please invoke procedure bar if the network bandwidth
between here and the server storing / ody /f oo. c exceeds ten Mb/s or falls below
one Mb/s." The C declarations for ody-request and associated data structures

appear in Figures 2 to 4.

Requests name the resource of interest, the bounds of tolerance on that re-
source's availabilit¡ the reference item, and an upcall procedure.In our example

above, the resource of interest is network bandwidth. The upper tolerance bound
is ten Mb/s, and the lower bound is one Mb/s. The reference item is / ody / loo . c,

and the upcall procedure is the procedure bar.
The resource is named in the ody-req-des-t structure, as are the tolerance

bounds and the address of the upcall procedure, which is a handler function much
like a signal handler. The resource is named by an integer identifier. Generic re-
source identifiers are known throughout the system; type-specific identifiers are

A Programming Interface for Application-Aware Adaptation in Mobite Computing 351



/* Pathname resource request */
int ody-request (path, req, res);
char xpath; /* pathname of reference item */
ody-req-des-t *regi /* A request descripton */
Iong ,<res; /* The request is returned, or current value */

/x Cancel a request */
int ody-cancel (reqid) ;

long reqid; /x The request to cancel */

Figure 2. C Declaration for ody-request and ody-cancel.
This figure shows the C declarations for the pathname-
based version of ody-request, as well as ody-cancel.
The descriptor-based version is identical except that a file
descriptor is used instead of path. Note that ody_request
is similar to the UNIX sigvec system call. ody_request
allows an application to place a notification request req;
ody-cancel cancels an outstanding request. Declarations for
relevant data structures can be found in Figure 3; the signa-
ture for the callback function to be invoked on notification of
an outstanding ody-request is shown in Figure 4.

known only to portions of the system that implement that type, but are limited to a
specific range. If the resource is not within the specifled tolerance bounds, the call
fails and returns the current value in res. Otherwise, the request is registered with
the system.

Associated with each registered request is a request identifier. Once an ap-
plication registers a request with the system, there is no further communication
between them until the system detects that the corresponding resource has strayed
outside the declared bounds. At that point, the system notifies the application via
an upcall. The application can cancel an outstanding resource notification request
at any time by issuing an ody-cancel on it.

4.3. How to Request Policy Change?

As applications are notified of resource changes, they will need to adapt their ac-
cess patterns. Some of this adaptation will require changes in policy within the
operating system. Since policies are type-specific, these requests for changes in

352 Brian D. Noble, Morgan Price, and M. Satyanarayanan



/* A version stamp*/
typedef struct {

long gs;
ody-codex-t codex;
long cs;

) ody-vers-t;

/* A resource request descriptor */
typedef struct {

Iong
ody-vers-t
long
ODYIEQ-FN-T

) ody-req-des-t;

/* Version of generic resource interface */
/* The type of the reference item */
/ * Version of type-specific resource interface * /

/* Resource identifier */
/* Version stamp */
/* low, high values of window */
/* function to call if window is left */

resource;
version;
low, high;
fn-ptr;

Figure 3. Data Structures for ody-request. These are the

principal data structures used in the ody-request call.
ody-vers-t is used to ensure that the application and sys-

tem are using the same set of resource identifiers, and that the

application and the system agree on the type of the reference

item. The type ody-codex-t is an enumeration of known
types in the system, called codices. The req-des-t type holds

the flelds of a request: the resource, version information, the

window of tolerance, and the upcall procedure. The signature
for upcall procedures is shown in Figure 4.

policy must also be type-specific. We call such a request a type-specirtc operation,
or ody-tsop. An example of a type specific operation would be, "Please switch
from the full-color version of this stream to the black-and-white version."

Just as there is no way to predict the needs of all applications, there is also

no way to predict all possible requests for policy changes. Instead of trying to
enumerate them for each type a priori, we provide a general mechanism to allow
for experimentation and extension. The C declaration for ody-tsop appears in
Figure 5.

To invoke ody-tsop, an application must specify a reference item. It must

also specify the operation to perform, the arguments to the operation, and a buffer
for the return value. The type of the reference item determines the type of the
ody-tsop, and the reference item is passed through to the body of code that im-

A Programming Interface for Apptication-Aware Adaptation in Mobile Computing 353



/* A resource request handler */
typedef void (tODY-REQ-FN-T) (Iong, long, long);
/* the three arguments are: */
/,r the request id to which this notification is responding */
/* the resource identifier */
/* the current value of the resource */

Figure 4. Notification Handler Declaration. This figure shows
the type signature of a request handler. A request handler
takes three arguments: the request identifier, as returned by
ody-request, to which this notification is responding, a
resource identifier denoting the resource that has changed, and
the new availability of that resource.

/* Pathname-based type specific operation */
long ody-tsop (path, vers, op, argsz, ârgr retsz, ret);
char *path; /* pathname of reference item */
ody-vers-t vers; /x version ofthß codex' interface x/
long op; /* which operation to perform */
size-t argsz ; /* size of argument buffer */
void targ; /* arguments for operation x/
size-t retszt /* size of return buffer */
void xret! /* return buffer */

Figure 5. C Declaration for ody-tsop. This figure shows the
C declaration for ody-tsop, the pathname-based invocation
of a type-specific operation. The descriptor-based version is
identical except that a file descriptor is used instead of path.
The arguments name the reference item, version information,
the operation to be performed, and buffers for the arguments
and results. The definition of ody_vers_t can be found in
Figure 3. The sizes of the argument and result buffers must
be passed, so that layers that do not know the details of the
particular type can pass arguments correctly. Note that this is
similar in flavor to the TINIX ioctl system call.

354 Brian D. Noble, Morgan Price, and M. Satyanarayanan



plements the ody-tsop. The reference item can be specifled by file descriptor
or pathname. The operation is denoted by an integer identifier, and need only be

unique within a single type, thus preserving independence between different types.

The sizes of these buffers are speciûc to the operation.

The type-speciflc operation mechanism is designed to allow applications to
make policy requests. However, once it is present, ody-tsop can be leveraged to
provide a set of access methods richer than the simple file system interface pro-
vided by coÍrmon operating systems. For example, items of type "video" might
support the type-specific operation video-read-frame, which reads a single

variable sized frame, in addition to the simpler read system call. Such exten-

sion allows us to use data of different types in ways that are natural to the data,

rather than forcing the data to frt the more restrictive file system model.

5. Odyssey Structure

To support the Odyssey API, our design provides three extensions to UNIX. First,
we have added a notion of type to the standard UNIX file system. Second, we

have added a generic cache manager, the viceroy, to provide type-independent

support for the Odyssey APL Third, we have provided a set of wardens, which are

part of the Odyssey cache manager, each providing support for an individual type

in the Odyssey store. The next three sections explore each of these in turn.

5.1. Adding Types to the Operating System

Odyssey provides a single, global namespace to its clients. A simple example of
such a namespace is shown in Figure 6. This namespace is broken into subspaces

called tomes, or typed volumes. Tomes are similar to volumes in AFS and Coda

[Sidebotham 1986; Howard et al. 1988; Satyanarayanan 1990]. A tome carries

with it a notion of type; all items in a tome are of the same type. A tome's type
determines type-speciflc resources, operations, and dimensions of fidelity for items

in that tome. All tomes which have the same type are logically grouped together

into a codex.

The decision to group data in tomes was based on the positive impact of
volumes on scalability and manageability in previous systems. Clients need

only discover server location once per volume, rather than once per file, con-

tributing to the scalability of the system. Maintaining coherence on volumes
rather than individual items can reduce the cost of cache coherence in intermit-
tent environments [Mummert & Satyanarayanan 1990]. All system administration

A Programming Interface for Application-Aware Adaptation in Mobile Computing 355



fimm solrome

H;ifF,¿ unixrome

æä iltpegTome

Figure 6. Odyssey Tomes. This tgure illustrates a sample

Odyssey namespace. In this example, there are three tomes,

each of a different type. The first tome, rooted at odyssey,
contains the single UNIX file hello.c. The second, rooted
at payroll, is a database. Note that no nodes appear inside
of payroll; it is named associatively rather than hierarchi-
cally. The third tome, rooted at movies, contains two MPEG
movies, haII.mpg and cal.mpg.

duties-such as moving data between servers, creation and deletion of space, and

backup-occur at volume granularities. This greatly simplifies the life of the sys-

tem administrator.
The obvious drawback of this decision is the inability to store objects of dif-

ferent types together in the namespace. While our system combines name and

type information, we do not believe such a combination is necessary; we have
done it only for implementation convenience. A simple solution would be to use

symbolic links to give the appearance of mixed-type storage. One could easily
add a naming layer on top of volumes that provide a flat namespace, combin-
ing the scale and management benefits of volumes with a more flexible name

structure.

We envision a small number of types in Odyssey. The implementation effort
to add a type is nontrivial, and will likely be undertaken by experienced system
builders. A new type will be justified when applications using data of that type
exhibit access patterns fundamentally different from any other existing ones. In the

video example in Section 2.I, the player and editor have roughly the same access

patterns, but prefer to make different tradeoffs. In contrast, video data, which is
inherently linear, will be accessed differently from topographical maps, which are

inherently spatial.

356 Brian D. Noble, Morgan Price, and M. Satyanarayanan



Figure 7. Odyssey Client Architecture. This figure illustrates

the architecture of an Odyssey client. Odyssey applications

make use of the Odyssey API extensions along with the op-

erating system's API. Operations on Odyssey objects are

redirected by the kernel to the cache manager, which is at

user level for ease of implementation. The cache manager is

split into two logical pieces: the viceroy, providing generic

support, and a set of wardens, each supporting a single type.

5.2. Providing Generic Support

There are many client tasks that are independent of data type. This generic func-

tionality is implemented by the viceroy. The viceroy can be thought of as the

generic cache manager, which depends on type-specific cache managers to com-

plement its functionality.
The viceroy's most important task is to act as the single point of resource con-

trol in the system; all other pieces of the Odyssey client are subordinate to it. The

viceroy also handles requests for generic resources, and notifies applications when

those resources leave requested bounds. Finally the viceroy responds to requests

on individual Odyssey objects, and forwards them to the appropriate warden.

5.3. Providing þpe-Specific Support

We call Odyssey's type-specific cache managers wardens. There is one warden

in the Odyssey cache manager for each type in the Odyssey store. The wardens

are responsible for implementing the access methods on objects of their type-
both the standard UNIX operations as well as type-specific ones. The wardens also

implement a number of different fidelity levels, and allow applications to choose

between them. In addition, they provide reasonable default policies for naive ap-

plications. Default policies are also important in providing backward compatibility
with legacy applications.

A Programming Interface for Application-Aware Adaptation in Mobile Computing 357



6. Implementation Status

'we 
have built a preliminary prototype of the odyssey client along with applica-

tions, wardens and servers for two data types. The goals of the prototype were
twofold. First, we wanted to test the efficacy of the odyssey ApI by coding appli-
cations that might benefit from application-aware adaptation. Second, we wished
to explore the practical implications of the division between viceroy and warden.

The two data types we have explored are Quickrime [Apple computer 1993]
and GRASS [Madry 1989]. Quickrime is a multi-media encoding srandard pro-
posed by Apple computer. GRASS is a public domain geographical information
system. Along with some basic applications using these data types, we provide a
simple control program to a user of the prototype. The control program is used to
simulate various network bandwidths on the connection between the cache man-
ager and various servers. The applications then change the fidelity of the data they
access to match the simulatèd bandwidth. While each application works well in
isolation, we have not yet explored resource control mechanisms to arbitrate be-
tween them.

The Quickrime application we have explored is a movie player. The player
can open a Quickrime movie on a server via the odyssey cache manager and be-
gin playing it. The server stores the movie at several different levels of fidelit¡
and bundles them into a logical movie. The player, by using ody_request
and responding to notifications, asks the cache manager to fetch the high-
est fidelity stream that can be played in real time given the available band-
width.

The GRASS prototype supports applications via a modification to the GIS li-
brary. These applications display, query and combine geographical data. The main
type of data is raster data: a two-dimensional array of values set into a coordinate
space. The client caches files from the server in the local file system; the raster
data is fetched at various resolutions, depending on available network bandwidth.
The GRASS applications then access those cached files.

we have made many simplifications for ease of rapid prototyping. The current
prototype is completely user-level, trading realistic resource management policies
and performance for simple implementation. It makes no attempt to measure re-
sources, and depends on the control program instead. The UNIX file system call
interface is not currently implemented; the application uses the odysséy ApI ex-
clusively in communicating with the viceroy, and uses the local file system when
necessary for a cache. The prototype consists of a library linked into odyssey
applications, a prototype cache manager and wardens, and the applications and
servers.

358 Brian D. Noble, Morgan Price, and M. Satyanarayanan



QT-0penMovie (n)

QT-CIoseMovie (n)

QT-GetFra.ne (t)
QT-Sr¡itchTracks (n, i)

Open movie n and return track information.
Close movie m and free resources.

Returns the first frame to display after time t.
Ask to make track i of movie n the active track.

Figure 8. Operations Supported by the QuickTime Warden.

6.1. The Odyssey Library

The API extensions are provided by a library linked with the prototype applica-

tion. All of the calls described in Section 4 arc provided, but the prototype does

not include the standard file system interface. The library communicates with the

cache manager via RPC. The library responds to all notifications by the prototype
cache manager, and forwards them to the proper upcall handler registered by the

application; the UNIX signal interface is used to simulate upcalls.

6.2. The Prototype Cache Manager

The prototype cache manger consists of a simple viceroy, along with the Quick-
Time and GRASS wardens. It performs minimal resource management, and

makes no attempt to authenticate users or arbitrate between conflicting applica-

tions. Rather than attempt to estimate resources, it depends on the external control
program to advise it. It implements ody-request and ody-cancel, and forwards
ody-tsop operations to the wardens based on the reference item's type. It no-

tifies applications by sending them a signal, and passing information about the

notification through the file system. In the sections below, we describe both the

QuickTime and GRASS wardens.

6.2.1. The QuickTime Warden

The QuickTime warden exports the interface we envision for the final system. It
has no type-specific resources, but has four type-specific operations. Those oper-

ations are shown in Figure 8. QT-Sr¡itchTracks is a request for policy change,

while the other three perform data access. Each of these operations is explained

below

QT-OpenMovie takes a sfring which represents a movie name and attempts

to open it at every available frdelity level on the server. Each version is opened

as a track of the base movie, and they are logically bundled as a single movie
and returned. Along with a handle for the movie, akin to a file descriptor,

QT-OpenMovie returns information about each track-specifically, the average

A Programming Interface for Apptication-Aware Adaptation in Mobile Computing 359



bytes per second required to transmit each track across the network and the en-
coding method of each track. upon opening, the best possible track is made
the active track, and will remain active until the application requests otherwise.
QT-CloseMovie frees up any resources associated with an open movie.

QT_GetFrame takes a movie handle, returned by QT_OpenMovie, and a time
offset into the movie, and returns the first frame of the active track to be displayed
after the offset. The frame is copied into the ody-tsop return buffer for use by
the player. GetFrame also returns the index of the currently active track, so the
application can properly decode the frame.

QT-SwitchTracks takes a movie handle and a track identifier within that
movie handle, and makes that track the new active track. Readahead is tenninated
for the old active track, and started for the new track. After the pre-read portion of
the old track is exhausted, QT-GetFrame will return a frame from this new track.
The new track will be used until another QT-switchTracks request is made.

6.2.2. The GRASS Warden

The GRASS warden provides two operations: GrassFetch, which fetches a logi-
cal file from a server if not already cached, and GrassSetQuality, which deter-
mines which fidelity level future fetches will use. The final version of the system
won't need GrassFetch: it'll have open redirected to it instead.

GRASS stores logical files in groups of related physical flles. To avoid in-
consistencies such as a raster header file showing the full size and a raster data
file with lower resolution data, the prototype warden fetches files as a group. The
GRASS warden currently makes no effort at cache replacement. Future refine-
ments will address this.

6.3. The QuickTime Server and Player

The obvious fidelity dimension to exploit in video is the quality of individual
frames; by reducing frame quality, we can also reduce bandwidth requirements.
The QuickTime server currently stores movies at three different fidelity levels:
full color uncompressed, full color with lossy JPEG compression, and black and
white. Individual tracks can be opened, pre-read and closed. The server itself does
not manage the different fidelity levels of the same logical movie as a unit; that is
handled by the QuickTime warden.

The QuickTime player was modeled after a previously built standalone version
that used the UNIX file system interface. It was redesigned to use the ody-tsop
interface exported by the warden, rather than the standard TINIX file system
interface. The new player opens a movie, finds the stream with the highest pos-
sible quality, and begins playing it. It also places a request to be notified if the

360 Brian D. Noble, Morgan Price. and M. Satyanarayanan



bandwidth drops too low to support this track. If so, it switches to the new best
possible stream. If, at some later time, bandwidth improves enough to allow play-
ing a better track, the player will request a change.

Although the prototype explicitly trades performance for ease of implemen-
tation, the player has adequate performance in playing back movies, even at the
highest quality. Of particular interest is the fact that the player was both simplified
and functionally improved by the switch from the LINIX file system interface to
that provided by Odyssey.

The simplification stems from the fact that Odyssey wardens allow better data

encapsulation. This allows the application to access the data in a natural way.

Rather than having to convert the traditional byte-stream abstraction to Quick-
Time frames, the player simply asks for "the next frame."

The functional addition of multiple fidelity levels was tens of lines in the
player. Of course, the complexity of encapsulation and fidelity management is
still present, but it resides only in the warden. Thus, it can be shared among all
applications making use of QuickTime data.

6.4. The GRASS Server and Applications

The server stores raster objects at three levels of fidelity, losing a factor of two
in resolution for each degradation. Because the rasters are two dimensional, each

degradation provides a savings of a factor of four in data size.

Applications wishing to open raster objects share a single routine in the GIS
library. That routine first determines the estimated bandwidth available to the

viceroy through the request interface with an empty bounds window, effectively
polling the viceroy. Since no value could satisfy that bounds window, the band-
width estimation is returned by the request call. The application then uses the

GrassSetQuality operation to ask for a particular fidelity of raster. That fidelity
is then cached on local disk for future use by GRASS applications.

7. Conclusion

Though rudimentary in many respects, our preliminary prototype has allowed us to
gain initial validation of our ideas at low implementation cost. The results so far
are encouraging. We have taken the source code of applications for two data types

and have been able to restructure them into the Odyssey framework with modest
effort.

We are now working toward a more complete and efficient prototype, mo-
tivated by two goals. First, we would like the prototype to support a broader

A Prograrnming Interface for Application-Aware Adaptation in Mobile Computing 361



collection of data types and associated applications. This will stress the designs
of the Odyssey API and architecture, expose shortcomings, if any, and lead to
refinements in both. It will also deepen our understanding of application-aware
adaptation. Second, we would like the prototype to be better integrated with an
operating system. An in-kernel implementation will allow more serious resource
management, provide better performance and functionality, and enable more rigor-
ous evaluation of our design.

As was discussed early in this paper, the constraints of mobile computing
lead inevitably to the recognition that adaptivity is essential in any system that
provides mobile data access. But although the general importance of adaptiv-
ity has been recognized by many researchers [Duchamp 1992; Forman &Za-
horjan 1988; Kulkarni eta7.1993; Theimer eta7.1993; Weiser l9g3f, we are
not aware of specific system designs, much less implementations, that support
application-aware adaptation. The work reported here thus represents a journey
into uncharted waters.

362 Brian D. Noble, Morgan Price, and M. Satyanarayanan



1.

References

Apple Computer, Inc. Inside Macintosh: QuickTime. Addison-Wesley Publishing
Company, 1993.

D. Duchamp. Issues in Wireless Mobile Computing, Proceedings of the Third
Workshop on Workstation Operating Systems, Key Biscayne, FL, April 1992.

G. H. Forman and J. Zahoqan, The Challenges of Mobile Computing. IEEE Com-
puter 27, 4, Apnl 1994.

J. H. Howard, M.L.Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West, Scale and Performance in a Distributed File
System, ACM Transactions on Computer Systems 6, 1, February 1988.

J. J. Kistler, and M. Satyanarayanan, Disconnected Operation in the Coda File
System, ACM Trabsactions on Computer Systems lO, l,February 1992.

D. C. Kulkarni, A, Banerji, M. R. Casey, D. L. Cohn, Information Access in Mo-
bile Computing Environments, Tech. Rep. TR-93-11, University of Notre Dame,
Notre Dame, 1993.

S. Madry Geographical Resources Analysis Support System (GRASS), an Inte-
grated Public Domain GIS and Image Processing System,In GIS/LIS 1989 Pro-
ceedings, Orlando, FL, November 1989.

L. B. Mummert, and M. Satyanarayanan, Large granularity cache coherence for
intermittent connectivity, Proceedings of the 1994 Summer USENIX Conference,
Boston, MA, June 1994.

J. Saltzer, D. Reed, and D. Clark, End-to-End Arguments in System Design, ACM
Transactions on the Computer Systems 2, 4, November 1984.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, and D. C. Steere,

Coda: A Highly Available File System for a Distributed Workstation Environ-
ment, IEEE Transactions on Computers 39,4, Apnl 1990.

M. Satyanarayanan, B. Noble, P. Kumar, and M. Price, Application-Aware Adap-
tion for Mobile Computing, Operating Systems Review,29, I,Ianuary 1995. Also
available as Tech. Rep. CMU-CS-94-1983, Carnegie Mellon Universit¡ School of
Computer Science.

R. Sidebotham, Volumes: the Andrew File System Data Structuring Primitive, Eø-
ropean Unix User Group Conference Proceedlngs, August 1986. Also available as

Tech. Rep. CMU-ITC-OS3, Carnegie Mellon University, Information Technology
Center.

M. Theimer, A. Demers, and B. Welch, Operating Systems Issues for PDAs, Pro-
ceedings of the Fourth Workshop on Workstation Operating Systems IEEE, Octo-
ber 1993.

M. Weiser, Some Computer Science Issues in Ubiquitous Computing, Communica-
tions of the ACM, 36,7, July 1993,75-84.

2.

J.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

A Programming Interface for Application-Aware Adaptation in Mobile Computing 363


