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ABSTRACT: RPC latencies and other network-related
delays can frustrate mobile users of a distributed file
system. Disconnected operation improves matters, but
fails to use networking opporrunities to their full ad-

vantage. In this paper we describe partially connected
operation, an extension of disconnected operation that
resolves cache misses and preserves client cache con-
sistency, but does not incur the write latencies of a
fully connected client. Benchmarks of panially con-
nected mode over a slow network indicate overall
system performance comparable to fully connected
operation over Ethernet.

A preliminary version of this paper appeared in Proceedings of the Second USENIX Symposium on Mobile and
Location-Independent Computing, Ann Arbo¡ April 1995.
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l. Introduction

An important advantage of a distributed computing environment is on-demand
access to disffibuted data. Disconnected operation [Huston & Honeyman 1993;
Kistler & Satyanarayanan 1,992), a form of optimistic replication that allows the
use of cached data when file servers are unavailable, has proved successful at pro-
viding this access to mobile users. Disconnected operation is especially successful
at hiding network deficiencies by deferring and logging all mutating operations,
replaying them later.

Distributed systems are often designed to work in environments that provide
high data rates and low latencies, but these assumptions are generally invalid in
a mobile environment. Here, disconnected operation has broad applicability, but
is something of a blunt instr¡ment: by treating networks as either available or
unavailable, disconnected operation does not account for the varying degrees of
network quality encountered by mobile users.

For example, even though AFS [Howard 1988] caches aggressively and has
good support for low-speed networking in the transport protocol [Bachmann et
al. 19941, the latency that accompanies many operations can make AFS over a
low-speed network a trying experience. This affects user satisfaction when interac-
tive response time is increased beyond that which a user is willing to tolerate.

One option appropriate for low bandwidth networking is to exploit cache hits
aggressively, but to fetch files when cache misses occur. This fetch-only mode of
operation does not support the AFS cache consistency guarantees, so a user may
unwittingly use stale data at a time when it is possible to obtain the most recent
version. Furthermore, mutating operations are not propagated immediately, so the
chance that two users might concurrently update the same file grows.

Lying among connected, disconnected, and fetch-only operation is a mode of
operation that allows us to hide many of the network latencies, yet to continue to
use the network to maintain a relaxed form of cache consistency. In the remainder
of this paper, we give an overview of our approach and some implementation
details, and present some benchmark measurements that illustrate the effectiveness
of the technique.
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2. Background

The work presented in this paper is based on a version of the AFS client that sup-
ports disconnected operation [Huston & Honeyman 1993]. The client cache man-
ager supports three modes of operation: connected, disconnected, and fetch-only.
In connected mode the cache manager is an ordinary AFS client, using callback
promises to preserve cache coherence fKazar 1988].

In disconnected mode the cache manager treats the network as unavailable,
and allows cached data to be used even though cache consistency cannot be guar-
anteed. File and directory modifications are also handled optimistically: updates

are reflected in the disconnected cache and logged for propagation to the flle
server when the decision is made to return to connected operation. Conflict due

to overlapping updates is rare and generally benign.
Fetch-only mode differs from disconnected mode in the way that it processes

cache misses. Where disconnected mode aborts any request that can't be satisfied
out of the cache, fetch-only mode requests and caches the data from the server.

We use fetch-only mode frequentl¡ at home and when traveling, to bring missing
flles to a client without the cost of a full replay.

When a.network is available, the user may choose to return to connected op-
eration. The cache manager replays the log of deferred operations by iterating
through the operations and propagating the modifications to the server. Before
any operation is replayed, the cache manager examines server state to make sure

someone else's newly created data is not destroyed. Manual error recovery is trig-
gered if such a conflict occurs.

3. Related Work

Our work with disconnected operation is inspired by the CODA project, which
introduced the concept of disconnected operation and identified its usefulness for
mobility [Kistler & Satyanarayanan 1992]. CODA researchers are working on sup-
port for low bandwidth networks, such as predictive caching to obviate network
demands caused by cache misses, and trickle discharging, which shares our goal
of using network connectivity opportunistically without interfering with other traf-
fic [Ebling et al. 1994].

The Echo distributed file system resembles ours in its use of write behind to
reduce the latencies of operations and improve performance lMann et al. 1993].
We depart from Echo in two important ways. The first is the failure semantics

associated with synchronous logging. When an operation completes, its changes
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are committed to the log. This provides strong assurance that they will eventually
be replayed. Echo applications that need durability guarantees must either call
fsync or issue a special operation that adjusts the order in which operations are

committed to the server.

The second difference is the semantics of delayed writes. An Echo server is-
sues a demand for delayed updates from a client machine when single system

UNIX semantics require it. In the mobile environment this requirement might be

expensive or impossible to honor and can project the bandwidth latencies of mo-
bile networks onto users of a high speed network.

4. Partially Connected Operation

We now describe partially connected operation, a technique for mobile flle sys-

tems that lies between connected and disconnected operation. As in disconnected

operation, allfile system writes are performed locally and logged. The main dif-
ferences from disconnected operation are in the way we maintain client cache

coherence and process cache misses.

In partially connected mode, as in disconnected operation, vnode operations

that cause file modifications are processed by modifying the flle cache to reflect
the update and creating a log entry. In some cases the ordinary AFS cache man-

ager delegates error checking to the server, but we need to fail invalid operations

as they occur, so we modified the cache manager to perform the necessary checks

locally.
In disconnected mode, the cache manager behaves as though the network were

unavailable and optimistically assumes that all cached data is valid. In contrast,

partially connected mode assumes the availability of some communication be-

tween the client and file servers. This lets us use AFS callbacks to offer regular
AFS consistency guarantees to the partially connected client: a client opening a
flle is guaranteed to see the data stored when the latest (connected) writer closed

the ûle lKazar 19881. Of course, all AFS clients, including partially connected

ones, see their local modifications before the file is closed and updates are propa-

gated to the server.

Directories are tricky. If a partially connected user inserts a file in a directory,
and another user later inserts another file, it is difficult to make both updates visi-
ble on the partially connected client. If the cached version of the directory is used,

modifications by other users cannot be seen until replay. Similarly, importing the

updated directory from the server makes the local modifications invisible until
replay. Merging the two versions requires a partial replay of the log, which can
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consume an arbitrary amount of time. In our implementation, we use the locally
updated directory in analogy to viewing updates in an open file.

On low bandwidth networks, the user may not always want the most recent

version of f,les. For example if any files under hsr/xtt/air'/ arc modified, the

user may wish to continue using the cached versions instead of incurring the cost

of fetching the most recent version. We are investigating methods of providing an

interface to allow this form of selective consistency. The Odyssey system [Noble
et al. 19951 has provisions for adapting file system behavior to network conditions,

and might be useful here.

5. Background Replay

In disconnected operation, frle modifications are not propagated immediately,
which makes it inconvenient to share data and increases the likelihood of a con-

flict during replay [Kistler 19931. For partially connected operation, we want
to take advantage of network availability no matter what the quality if it lets us

achieve a consistent cache and timely propagation of updates, so we implemented

a background daemon to replay the log whenever opportunities arise (or at the

user's discretion).

Two significant issues arise when replaying operations in the background.

The first is rational management of network resources, to prevent response times

for interactive and other traffic from suffering. The second issue is the effect on

optimization: we and our CODA counterparts have observed that optimization
of large logs can be considerable fHuston & Honeyman 1995; Satyanarayanan

et al. 19931, vastly reducing the amount of network traffic necessary for replay.

Aggressive background replay may deny us this savings.

5.1. Priority Queuing

The network is a primary resource in the mobile environment, so it is vital to keep

replay traffic from interfering with a user's other work. Studies have shown that

interactive response time is important to a user's satisfaction [Shneiderman 19871.

Competition among various types of network traffic can increase interactive re-

sponse time if interactive packets are queued behind replay trafflc.
Similarl¡ replay traffic might compete with an AFS f etch, which is undesir-

able if a user is waiting for the completion of the associated read request. No user

process blocks awaiting repla¡ so replay operations should be secondary to other

network requests.
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One solution is to replay operations when the network is otherwise idle. In
practice this solution is hard to implement; it is difficult to tell when a network (or

other resource) is idle [Golding et al. 1995]. Furthermore, some operations, such

as store requests, may take several minutes to complete. To avoid interference

with interactive traffic, the replay daemon would need to predict a user's future
behavior.

Our solution is to augment the priority queuing in the network driver. Our
approach is an extension of Jacobson's compressed SLIP [Jacobson 1990] im-
plementation, which uses two levels of queuing in the SLIP driver: one for in-
teractive ffaffic, and one for all other traffic. When the driver receives a packet

for transmission, it examines the destination port to determine which queue to
use. When ready to transmit a packet, it first transmits any packets on the interac-

tive queue. The low priority queue is drained only when the interactive queue is

empty.

We extend this approach by using three levels of queuing: interactive traffic,
other network traffic, and replay traffic. When determining which packet to trans-

mit we depart from Jacobson. In his SLIP implementation, the packet with the

highest priority is always sent first, which for our purposes might lead to starva-

tion ofthe low priority queues.

For example, suppose the replay daemon is storing a file in the background

and the user starts a large FTP put. FTP packets takes precedence over replay
traffic, so no replay traffic will be transmitted during the duration of the FTP
transfer. If the FTP transfer lasts long enough, the AFS connection will time out,

and lose any progress it has made on the operation being replayed.

To prioritize the queues without causing starvation, we need a scheduler that
guarantees a minimum level of service to all trafflc types. V/e luse lottery schedul-

lrzg [V/aldspurger & Weihl 1994], which offers probabilistic guarantees of fairness

and service.

Lottery scheduling works by giving a number of lottery tickets to each item
that wants access to a shared resource. When it is time to allocate the resource, a

drawing is held. The item holding the winning ticket gets access to the resource.

This gives a probabilistic division of access to the resource based on the number

of tickets that each item holds.

In our driver,we assign a number of tickets to each of the queues, according to
the level of service deemed appropriate. When it is time to transmit a packet we

hold a drawing to determine which queue to transmit from.
Ticket allocation is a flexible way to configure the system and provides an

easy-to-understand'oknob" to turn for system tuning. We would expect relative
throughput to vary along with ticket allocation, as Table I confirms.
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Table 1. Varying lottery ticket ratio. This table shows the

effect on throughput as the allocation of lottery tickets is

varied. Maximum throughput for a given queue is achieved

when all tickets are allocated to that queue. 100 tickets are

used.

Replay

tickets

Replay

throughput

FTP
throughput

0

t6
20

24

31

50
100

0.0

0.16

0.12

0.26

0.30

0.43

1.0

1.0

0.83

0.90

0.73

0.72

0.53

0.0

We primed the replay log with numerous 200 KB store operations, then ini-
tiated a 10 MB FTP put while simultaneously replaying the log. We allocate no

tickets to interactive traffic, and 100 tickets to the remaining traffic. The replay

and FTP throughputs, shown as fractions of the maximum achievable, match fairly
closely their respective ticket allocations.

Allowing replay traffic to compete for access to the network can adversely

affect interactive response time. To gauge the impact, we primed the client with
alarge replay log and measured TELNET round trip times with telnetping, an

application from Morning Star Technologies that sends a slow stream of TELNET
packets to a remote server and measures the response time. Table 2 shows how
round-trip time varies as tickets are reallocated.

Even when interactive traffic is given the lion's share of tickets, other pack-

ets are scheduled for transmission between the telnetping packets. Thus

telnetping packets arrive at the scheduler to find a replay packet in the pro-

cess of being transmitted. The scheduler is not preemptive, so a queueing time
averaging one half of a packet transmission time delays the interactive packet.

Telnetping measures round trip delay, so we expect the total round-trip delay

to be one packet transmission time. For our 576-byte packets and our 38.4 Kbps

SLIP line, that amounts to 150 msec. Table 2 confirms that interactive traffic is de-

layed by about this amount, and that the delay increases as fewer tickets are given

to interactive traffic.
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Tabte 2.Interactive response time. This table shows how
lottery scheduling in the network driver affects interactive
response time. Interactive packets are delayed because the

scheduler is not preemptive. Times are in msec. 100 tickets

are used.

Interactive
tickets

Round-trip
delay

Standard

deviation

100

80

75

66
40

11

168

181

195

301

2

193

259

98

294

5.2. DelayedWrites

Effective crash recovery is critical when writes are delayed. We commit all file
and metadata modifications to the log synchronously with the request so that we

don't have any dirty data in the buffer cache in a crash. Log replay works after a
client crash-in our prototypes, we still rely on it occasionally.

Distinct connected clients that sequentially write a shared file don't experience
a conflict, but delaying the propagation of one or both updates can produce a con-

current write sharing conflict when the log is replayed, so it is to our advantage to
replay the log without much delay. In addition, delaying update reduces the timeli-
ness and potential usefulness of shared data. In short, there is ample motivation to
propagate updates aggressively.

On the other hand, delaying replay offers an opportunity for optimizing the
log. Ousterhout reports that most files have a lifetime under three minutes and that
3040Vo of modified file data is overwritten within three minutes lOusterhout et

al. 19851. Using our optimizer [Huston & Honeyman 1995], we find it typical for
70Vo of the operations in a large log to be eliminated. In fact, the larger the log,
the greater the fraction of operations eliminated by the optimizer. It is clear that
delaying log replay can help reduce the amount of data propagated to the server.

'We may wish to enforce a minimum delay before replaying an operation, es-

pecially on networks with a per-packet cost, so that optimization could have an

effect. On the other hand, if the network is available and idle and costs nothing to
use, then there is nothing to be saved. On our dialups or our Ethernet, we propa-
gate changes aggressively, whenever surplus network bandwidth is available. We
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run the optimizer only when changing from disconnected to connected or par-

tially connected operation. In the future, we plan to experiment with different ap-

proaches to configuring the delay according to the varying network characteristics.

6. Benchmarks

To see how well partially connected operation perforrns in the low-speed and in-
termittent networks that interest us, we measure running times for several bench-
marks. We start with hot data and attribute caches, so that comparisons between
Ethernet and low-speed networks are meaningful. Later we examine the effect of a
cold attribute cache. For the measurements described in this section, we gave eight
tickets to the interactive queue, three to the demand network trafflc queue, and one

to the replay queue.
'We ran the benchmarks over Ethernet, over SLIP in connected mode (C-

SLP), and over SLIP in partially connected mode (P-SLIP). Measurements
were made on a 33 Mhz Intel486 client running Mach 2.5. We used SLIP on a
38.4 Kbps null modem connection for our tests. A direct connect avoids the po-

tential for variability in network transfer time caused by modem latencies and

compression.

6. l. nhf s st one Benchrnark

To measure the fine-grained effect of partially connected operation on individual
operations, we modifled the nhf sstone benchmark [Legato Systems, Inc. 1989]

to remove NFS dependencies. The results in Table 3 show that P-SLIP runs sub-

stantially faster than C-SLIP, as we would expect.
Because all P-SUP operations involve synchronous logging, there is a lower

bound to the running time for any particular operation. The session semantics of
AFS make it difficult to interpret write times, so we omit them here. In our tests,

though, partially connected store operations ran in about the same amount of time
as the other operations, bounded by synchronous logging to the local disk, while
store operations over either network took considerably longer.

6.2. Andrew Benchmark

We ran the Andrew benchmark [Howard et al. 1988], a synthetic workload that
copies a flle hierarchy, examines the copied frles, and compiles them. We find
that partially connected operation dramatically improves the running time of the
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Table 3. Comparison of mutating operation completion times.

This table compares the time to perform various vnode opera-

tions in three cases: over an Ethernet, over SLIP in connected

mode, and over SLIP in partially connected mode. The mea-

surements were made using a version of nhf sstone. All
times are in milliseconds.

Operation Ethernet C-SLIP P.SLIP

setattr
create
remove
rename

link
symlink
nkdir
rmdir

12.8

18.9

39.s
26.8

26.2

38.3

99.8

37.2

99.3

101.6

17t.5
183.6

129.8

t68.7
286.1

99.4

52.9

59.8

64.8

71.3

71.4

66.3

76.6

60.4

Table 4. Andrew benchmark results. This table shows the

running time of the Andrew benchmark over Ethernet in
connected mode, and over SLIP in connected and partially

connected mode. All measurements start with hot data and

atffibute caches. All times are in seconds.

Phase Ethernet C-SLIP P.SLIP

MakeDir
coPy
ScanDir
ReadAll
Make

Total

1

t6
15

26

67
125

t2
144

18

24

385

583

2

20

15

26

70
r33

Andrew benchmark: partially connected mode over SLIP is much faster than its

connected counterpart. Because many network delays are removed from the crit-

ical path, the benchmark runs only a little slower on P-SLIP than over Ethernet.

Table 4 details the running time of the benchmark.

These examples show that partially connected mode improves the response

time for file system operations. With a hot cache, a remote user can expect tasks

to run almost as fast as in the office environment.
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0 sec 100 200 300 400 S00

Figure 1. Length of replay log. This figure shows the num-
ber of operations in the replay log while running the Andrew
benchmark over partially connected SLIP. The solid horizon-
tal line shows the running time of the MakeDir, Copy, and

Make phases of the benchmark. The ScanDir and ReadAll
phases are not shown, as they issue no network requests. The
dashed horizontal line shows the times at which the opera-
tions logged by these three phases are run.

6.3. Replay Time

The time to run the Andrew benchmark and exhaust the log is about the same as

the time to run the benchmark in connected mode over SLIP. Figure I shows the
size of the log as the benchmark runs through its phases. A total of 222 operations
are logged, with up to I29 operations pending at one time. The solid horizontal
line along the bottom of the graph shows the running times of the MakeDir, Copy,
and Make phases of the benchmark. (The ScanDir and ReadAll phases are read-
only.) The dashed horizontal line shows the time at which the corresponding parts
of the log were replayed.

Table 5 shows that logged operations are delayed over a minute on average,
and up to six minutes in the extreme. Because the Andrew benchmark does not
account for idle or "think" time, the log grows more rapidly than we would expect
in practice. Furthermore, these idle periods would make the replay daemon more
effective, so that in real use we would expect the average and maximum log size
to be shorter than is reflected here.

6.4. Replay Interference

The running time of the Andrew benchmark depends on whether the data and at-
tribute caches are hot or cold, as well as whether the replay daemon is running or
idle. V/hen the replay daemon is disabled, hot cache run times do not differ much
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Table 5. Delay time in the replay log. This table shows the

average and maximum time that operations await replay while

running the Andrew benchmark. When running with a cold

attribute cache, the benchmark is frequently stalled, giving

the replay daemon more opportunities to work on the log,

resulting in shorter average and maximum delays. All times

are in seconds.

average maxlmum

cold cache

hot cache

88

r07

314
374

Table 6. Cold cache Andrew benchmark results. This table

shows the effect of running the Andrew benchmark with
a hot or cold atffibute cache, and with the replay daemon

running or disabled. All times are in seconds.

cold cache hot cache

replay: offoff

MakeDir
copy
ScanDir
ReadAll
Make
Total

2

30
t3
25

7l
t"4l

2

36

T4

27

80

159

2

20

13

25

65

r25

2

20

l5
26

70

r33

for partiatly connected mode, fetch-only mode, and disconnected mode. A cold

attribute cache slows the pace of the benchmark, giving the replay daemon more

opportunities to whittle away at the log in the earlier phases, so that the average

and maximum delay of logged operations is decreased, as we see in Table 5.

Table 6 shows that total run time of the benchmark increases by 5-157o when

the replay daemon is running. Most of the slowdown is in the CPU-intensive Make

phase.
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7. Discussion

Partially connected operation improves performance, response time, and reliabil-
it¡ while interfering only a little with AFS cache consistency guarantees. AFS
guarantees that a client opening a flle sees the data stored when the most recent
writer closed the file. Because a partially connected client does not immediately
propagate changes, other users can not see modified data. Furthermore, conflicts
may occur if partially connected users modify the same file. In our experience,
these conflicts are rare; a substantial body of research concurs by showing that
this kind of file sharing is rare [Baker et al. l99l Kistler & Satyanarayanan 1992;
Ousterhout et al. 19851.

If stronger guarantees are needed, they might be provided by server enhance-
ments. For example, an enhanced consistency protocol might inform servers that
dirty data is cached at a client; when another client requests the data, the server
can demand the dirty data, as is done in Sprite [Nelson et al. 1988] and Echo.

We choose not to implement this mechanism for several reasons. First, it as-

sumes that the server is able to contact the client on demand, an assumption that
may not always be true. Additionally, demand fetching can place a severe strain
on a client's network connection. Because of the limited bandwidth, one user may
see her effective bandwidth drastically reduced because another user is reading a
file that she has modified; this may not be acceptable to all users. Finally, such a
change would require changing all of the AFS servers in the world to support the
new protocol; practically speaking, this is out of the question.

Experience with partially connected operation has been positive so far. \Mhile
we designed with remote access to AFS in mind, partially connected operation
can play an important role in the office environment as well, where it can offer
performance and availability advantages over connected AFS.

8. Availability

Researchers with an armful of source licenses may contact inf o@citi . umich. edu
to request access to our AFS client modifications.
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