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ABSTRACT: V/e describe a system called Miró for
specifying and checking security constraints. Our sys-

tem is general because it is not tied to any particular
operating system. It is flexible because users express

security policies in a formal specification language,
so it is easy to extend or modify a policy simply by
augmenting or changing the specification for the cur-
rent policy. Finally, our system is expressive enough to
describe many relations on file system conflgurations;
however, it is not expressive enough to describe more
subtle security holes like Trojan Horses or weaknesses

in the passwords chosen by the system's users.

This article is a case study of the Miró languages

and tools. Vy'e show how to represent various UNIX
security constraints-including those described in a
well-known paper on IINIX security [S]-using our
graphical specification language. Vy'e then describe the
results we obtained from running our tools to check an

actual UNIX file system against these constraints.
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l. Introduction

An important security task faced by any system administrator is that of formu-
lating and enforcing a security policy. One example of a security policy was pro-

posed by Bell and LaPadula [2).In their model, each user and file are assigned

a linear security level (e.g., top secret, secret, not secret); roughly speaking, it is
only acceptable for users to write files at their security level or higher and to read

files at their level or lower. If we could specify such a policy and run a program to

check a file system against it, then we could easily detect security holes in that file
system.

We are immediately faced with two problems: that of developing a language

in which to formulate such security policies and that of developing algorithms to

automatically check that some specified policy is not violated. Ideally, we would
like to provide a policy specification and checking system that is general,flexible,
and expressive.First, the system should be general enough to allow and under-

stand policy specifications for different operating systems. Second, it should be

flexible enough to allow extensions and modifications to existing policies. A sys-

tem administrator should be able to easily specify a new security hole to check

for, without having to write a special-pulpose program to perform the check. Fi-
nally, the system should be expressive enough to describe any security hole we

might want to detect.

To meet these goals, a group at Carnegie Mellon developed a security spec-

ification and checking system called Miró [10, 7]. The Miró system consists of
two languages and a collection of software tools. One specitcation language is for
protection confrgurations, and the other is for security policies.

The Miró system is general because it is not tied to any particular operating

system. It is flexible because users express security policies in a formal specifi-

cation language, so it is easy to extend or modify a policy simply by augmenting

or changing the specification for that policy. In addition, our policy specification
language might be used to configure existing security tools such as the Integrated

Toolkit for Operating System Security (ITOSS) [16]. Finally, the system is ex-

pressive enough to describe many relations on the configuration of the file system;

however, it is not expressive enough to describe more subtle security holes like
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Trojan Horses or weaknesses in the passwords chosen by the system's users, since
such security threats cannot be thwarted by access control restrictions.

This article is a case study of the Miró languages and software tools. It shows
how the Miró security checking tools can be used to specify a UNIX security pol-
icy and to check that policy against an existing UNIX file system. Hence, one

aspect of the case study is to test how well our tools perform on real UNIX secu-

rity policies. Some of the security policies we examine are taken from previous

Miró papers. However, most have been simply transcribed from textual descrip-

tions found in a well-known paper on UNIX security by Grampp and Monis [5].
Hence, the second aspect of the case study is to demonstrate the utility and ex-
pressive power of the Miró policy specification languages as applied to a set of
well-known UNIX security holes.

Although the security constraints described here are written for the UNIX op-

erating system, we want to stress that the Miró specification languages described
in Section 2 canbe applied to operating systems other than LINIX. Also, as op-
posed to security systems like COPS [4] or U-Kuang [1], the power of the Miró
system derives from the ease by which it allows users to express and check new

security constraints.
Because textual specifications are often plagued by errors 13,I2l, we have at-

tempted to develop speciûcation languages that are more intuitive to use so that

errors will be less likely. Our languages are primarily graphical, but they mix
graphical and textual notations where each is appropriate. For example, we use

nested boxes to represent group membership and directory containment, but we

use text to represent Boolean formulas. Our graphical notation borrows heavily
from the higraphs proposed by David Harel [6]. We believe the use of a graphical

notation makes our specifications simpler and more natural to use than equivalent
textual specifications.

We describe the tools comprising our system in Section 3. Our system is im-
plemented on UNIX, and one of its components is built using the Garnet user

interface management system ll5,l4l, which runs on X windows.l Throughout
the design and implementation of our tools, we have stressed algorithmic effi-
ciency, so the system runs quickly and is effective at catching policy violations.

In summary, the novel contributions of this work are the following:

. tools for processing graphical descriptions

. a library of predefined security constraints for UNIX

l. Our system is available via anonymous ftp For details, contact the authors or send mail to niro@cs . crnu. edu,
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. a real and efficient system for checking file systems against security con-

straints

. security configuration and policy specification languages that are more natu-

ral to use

In Section 4, we present some security constraints for UNIX, and in Section 5,

we evaluate our tools by measuring their performance on these constraints.

2. The Miró Languages

We address two different aspects of the security specifrcation domain.

First, we use the instance language to specify security configuratiores. By a

security configuration we mean a set of access relationships between subjects and

objects on a file system. In particular, the Miró semantics of a conflguration spec-

ification is a Lampson access matrix [13], which specifies for every subject and

object whether access for that subject on that object is granted or denied for each

access permission.2 Because these specifications can be both read and written,

they give users the ability to determine the access rights granted on their directo-

ries and files and to modify those rights.

Second, we use the constraint language to specify security policies. The con-

straint language is a meta-language of the instance language, since the semantics

of a security constraint c is simply a (possibly infinite) set of configurations C. A
policy is specified by a set of constraints, c1,. ..,cn.lf these constraints represent

the sets of configurations Ct, ...,Cn, respectively, then we say a particular config-

uration is consistenr with the policy if it is a member of the set f-ì¿ C¿; that is, if it
is in each of the conûguration sets represented by the constraints comprising the

policy.
The constraint language has two orthogonal uses. First, we can use the con-

straint language to guarantee that a configuration is realizable by the underlying

operating system. Because the security mechanisms of any operating system can

permit only certain access matrices, some configurations must be disallowed. Sec-

ond, we can use the constraint language to guarantee that a configuration is ac-

ceptable according to some security policy. The constraint language's domain of
applicability in this second sense is quite large. V/e imagine that some policies will

2. The particular set of access permissions embodied by an access matrix depends on the security architecture of
the underlying file system.
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be written by system administrators and enforced across entire sites, while others

will be written by individual users and enforced only on their own files.

In this section, we describe the instance and constraint languages by example,

so that the constraints described in Section 4 will make sense to the reader. The

detailed syntax and semantics of both languages are described elsewhere [11].

2.1. The Instance Language

The vocabulary of the instance language consists of rectangular boxes and of ar-

rows labeled with access permissions. A typical picture drawn in the instance

language-henceforth called an instance picture-has its boxes arranged in two
separate collections, as shown in Figure 1. The boxes on the left are subjects

(users) or sets of subjects, the boxes on the right are objects (flles) or sets of
objects, and the ¿urows represent relations between them. Vy'e use box grouping

to indicate sets, and the language permits us to focus on particular levels of hier-

archy in the picture. For example, we do not detail all of Bob's files; we simply

use a single box to denote the entire set. A positive arrow indicates that access is

permitted, and an arrow with an "X" through it indicates that access is denied.

Figure 1 shows a simple instance picture. Reading the arrows from top to

bottom, this picture specifies that: (1) every user in the adnin group can read all

of Alice's files, except for those in her private directory (which she alone can

read; (2) Alice can write all of her files; (3) all users in the adnin group can

r.rrite the files in Alice's papers directory; (4) all users in the staff group can

write all of Bob's files (including Bob); and 5) all users can read all of Bob's

files.

Figure 1. A simple instance language picture.

{ read}
file system

private

{wri-EãJ

{wríte }

{write }
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Often, security specifications are stated in general rules with explicit excep-

tions, as exemplified by the top three arrows in Figure 1. This pattern of excep-

tions is what makes security specification diffrcult-the patterns are complicated,

but the exceptions are very important. Users want to know the specific exceptions

to general access rules. In Miró, exceptions are indicated by arrows connecting

more tightly nested boxes. For example, because the box for Alice's private files

is nested in the box alice for her home directory, the negative arrow from admin
to private takes precedence over the positive arrow from admin to a1ice. Neg-

ative arrows are not strictly necessary; we can represent any access configuration
by sufficiently many positive ¿ürows alone. However, including negative arrows

allows us to represent exceptions explicitly and more concisely.

Unfortunately, the addition of negative affows to the language makes it possi-

ble to draw ambiguous pictures. For example, suppose Figure 1 also contained a

negative write arrow from the adnin group to Bob's home directory. This nega-

tive write arrow denies access to members of the adnin group, but the positive
write arrow grants access to members of the staf f group. Since Bob is in both
these groups, it is not clear whether he should be allowed write access to the files
in his home directory. We say such pictures are ambiguous.The instance language

semantics precisely defines for each subjeclobjeclpermission triple in an instance
picture whether the access relation for that subject on that object for the named
permission is posiúve, negative, or ambiguous.

Two other orthogonal aspects of the instance language are worth mentioning:

Box Layout and Box Aliases: It is not possible to represent all grouping re-
lationships using box containment. Moreover, symbolic links may also

make it difficult to lay out boxes corresponding to a UNIX file system.

The syntax and semantics of the instance language can be extended easily

to include the notion of box aliases, which would address both of these

problems. However, for reasons described in Section 3, we have not yet
found it necessary to add box aliases to the instance language.

Correspondence to the File System: Users are not required to draw instance
pictures that have a one-to-one correspondence with the file system. For
example, if a subset of the entries in a particular directory share the same

protections, a user can group them by drawing an additional box around

them and then specify the protections for all of the entries in the group by
drawing affows to the grouping box only. This grouping box need not cor-

respond to a directory on the file system; its only function is to group the

relevant boxes in the instance picture so as to make the picture more con-

cise and to visually reflect that the grouped boxes share certain security
properties.
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sysname: Integer
name: string
type: Box-Type
locationl Integer-List
size: Integer-List
atomic: Boolean

owner: Identifier
group: Identifier
qeated: String
modified: String
setuid: Boolean
setgid: Boolean

Figure 2. A box type tree for UNIX.

One important property of each box in an instance picture is its type. A Miró
user can define an arbitrary type tree to suit a particular system and security pol-

icy. Figure 2 shows a sample type tree for UNIX. The three types outlined in
bold at the top of the tree are built in to the Miró system; users extend the tree

by defining new subtypes of either the subject or the object built-in types.

Each type specification includes a set of typed attributes associated with that

type, and any box in an instance picture with that type has values for those at-

tributes. For example, the entity type includes a Boolean valued attribute named

atonic; this attribute is true for a box iff that box contains no other boxes. Since

the entity type is at the root of the type tree, every type inherits the atonic
attribute, so every box in an instance picture has a Boolean value indicating

whether or not it contains any other boxes. We can also associate attributes with
user-defined types. For example, to accommodate UNIX, we've specified that a

Boolean valued setuid attribute is associated with the f ile type. As we shall see

in the next section, types are used primarily in constraint speciflcations.

2.2. The Constraint Language

A picture drawn in the constraint language-henceforth called a constraint picture

or simply a constraint-specifies a (possibly infinite) set of instance pictures. Each

constraint picture can be thought of as a pattern for instance pictures, just as a

Specifying and Checking UNIX Security Constraints 97



regular expression is a pattern for character strings. We now briefly describe the

syntax and semantics of the constraint language using examples.

The building blocks of the constraint language are box patterns. A box pattern

is denoted by a rectangle like an instance box, but it contains a Boolean predicate

written in a simple box predicate language instead of a simple name (see Fig-
ure 3(a)). An instance box b matches a box pattern with predicate a if the value of
b's attributes, when substituted for the corresponding attribute names in a, make

c true. The box predicate language also provides a mechanism to require relation-
ships between instance boxes matching two different box patterns. Box predicate

variables (denoted by identifiers preceded by "$") allow users to require that some

attributes of instance boxes matching two or more box patterns are identical or
distinct. For example, we can specify that the name of some user differs from the

or¡rner of some file by writing "na.ure : $lf in the box predicate of one box pat-

tern and "oürner # $A' in the box predicate of the other.

The constraint language includes three kinds of arrows, each of which may
be negated as in the instance language (see Figure 3(b)). The two arrows we use

most in constraints are the semantics arrow and the containment arrow. The for-
mer are labeled with access permissions just like instance affows. Two instance

boxes b1 and b2 match box patterns connected by a positive (negative) semantics

arrow labeled with permission p if fu has (does not have) access permission p on

b2. Boxes br and bzmatch box patterns connected by a positive (negative) contain-

ment arrow if b1 is (is not) directly contained in b2. As shown in Figure 3, there

are starred variants to both box patterns and containment arrows. Two instance

boxes b1 and b2 match box patterns connected by a positive (negative) starred con-

tainment arrow if br is (is not) contained in bz.

The constraint language shares the instance language's powerful visual rep-

resentation for box containment. In the constraint language, however, drawing
one box directly inside another is simply a shorthand for connecting disjoint ver-
sions of the boxes with a containment arrow. As shown in Figure 4(a), drawing
one box pattern inside another is a shorthand for drawing the same two box pat-

terns connected by a (direct) containment arrow. If the inner box pattern is starred,

as shown in Figure 4(b), the original constraint is equivalent to one in which a
starred containment affow connects the two boxes.

The constraint language presented so far allows us to require only the ex-

istence of certain entities and relationships between those entities. However,
typical security requirements are often conditioned on the existence of some sit-
uation. The constraint language provides the power to express such conditional
constraints. Each box and arrow is drawn in either a thick or a thin style. Those

elements drawn with thick lines represent the antecedent of an implication, while
those drawn in thin lines represent its consequent. For example, the constraint
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Syntax Arrow

box-predicate

Box Pattern

box-predicate

Starred Box Pattern

(a)

Figure 3. Renderings of box patterns (a) and constraint ar-

rows (b).

(a) (b)

Figure 4. The direct (a) and staried (b) box containment

shorthands.

named wRITE-READ shown in Figure 5 is interpreted as follows. The thick part

of the constraint matches any user/file pair such that the user has write permis-

sion on the file. The thin part of the constraint (the read arrow) then requires (as

the consequent of the implication) that the user also has read permission on the

file. Thus, Figure 5 expresses the constraint that "write permission implies read
permission."

I,t
Semantics Arrow

H
ü

Starred
Containment

Arrow

rtrl

n
I

T
(DirecÐ

Containment
Arrow

(b)

=à

type : user type : file{write }
tt¡tt¡r

{ read}

Figure 5. The constraint WRITE-READ.
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Consistent?

Figure 6. The software tools and language compromising the

Miró system. The tools and language relevent to this article
are shown with a thick outline.

3. The Miró Sofnuare System

Figure 6 shows the software tools comprising the Miró system and their inter-

relations [8]. We classify the tools (and languages) as either front-end or back-end

components. The front-end components are designed to work independently of
any operating system, while the back-end components depend on the particular

details of the file system with which they interact. To check file systems other than

UNIX file systems, we would have to reimplement only the back-end tools. So far,

we have implemented these tools only for UNIX, but we do not expect that they
would be much more difficult to implement for other kinds of file systems.3

3. In fact, it is quite easy to implement a prober that produces an instance picture that does not exploit the in-
stance language's grouping mechanism; the challenge is to build a prober that produces relatively concise
output pictures.
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Tlte graphical editor allows users to draw and edit instance and constraint pic-
tures, and the PostScript translator produces PostScript programs to render these

pictures on a printer. To write this article, we used the graphical editor to draw the

constraint pictures only; the instance picture we used was produced automatically
by the prober tool described below.

The access matrix generator verifies that an instance picture is well formed
and then generates a compressed representation of the access matrix corresponding

to the instance picture. This access matrix and the instance itself can then be fed
to lhe constraint checker along with some constraint picture to check whether the

instance is consistent with the constraint. The constraint checker works by model-

ing the instance picture as a special kind of database and compiling the constraint
picture into a program that queries that database [11].

The tools described so far work independently of any file system. To inter-
act with a UNIX file system, we provide the back-end verifier and prober tools.
The verifier compÍres a given instance picture to a file system and produces a list
of discrepancies between the two. The prober searches some subtree of a UNIX
file system and produces an instance picture with the same structure and security
relationships as that file system. The UNIX prober produces a picture that repre-
sents the read, write, and exec access relations between users and files, and the

in-del (insert-delete) and tist access relations between users and directories.

The prober arranges for the access matrix corresponding to its output to reflect
group memberships and the "execute" directory bits of each directory along the

path down to each directory (for in-det and list permissions) or file (for read,
write, and exec permissions).

The prober does not explicitly lay out the boxes in the result it produces, since

we did not need to visually inspect each result. Instead, it represents the abstract

containment relation on boxes in its output. Hence, the prober need not determine

a geometrically correct rendering of the containment relation. Also, the prober

ignores symbolic links, since a symbolic link cannot be used to gain access per-

missions that are not otherwise granted through hard links.
To perform the experiments described in this article, we used both front- and

back-end tools. We first drew our constraint pictures using the graphical editor. We

then used the file system prober to produce an instance picture corresponding to

the /usrO directory of one of the flle systems at CMU. Next, we fed that instance

picture through the access matrix generator to generate its corresponding access

matrix. Finally, we fed the access matrix, the instance picture, and each of our
constraint pictures to the constraint checker to determine if the file system was

consistent with each constraint.
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type : user
&& atomic
&& name : $A

type = home && name * $A

type : dir &e name:"Mail"

type - dir

type : file
&& atomic

{read}
----x-----

Figure 7. The constraint PRIVATE-MAIL.

4. UNIX Constraints

In this section, we describe the constraints that we use in Section 5 to evaluate

the performance of the constraint checker. We have adapted some of these con-

straints from original constraints suggested in previous Miró papers [9, 10]. The

others were suggested in the Grampp-Morris article referred to earlier; we have

simply translated their most promising written security suggestions into constraint

pictures.

4.1. Miró Security Constraints

The constraints suggested by previous Miró papers are designed to fultll a variety

of needs. We have chosen a few representative samples. The flrst is a general se-

curity constraint for UNIX, and the rest enforce various containment requirements

relative to the box type system.

4.1.1. pnrvATE-MAIL

The pnrv.rrE-MArI. constraint is shown in Figure 7. This constraint assumes that

the mail system organizes each user's mail flles in a certain way. Each user's mail

is stored in a subdirectory of his or her home directory called 'oMail." That direc-

tory contains subdirectories that partition the mail into categories, and the actual

mail tles themselves (one file for each mail message) reside in those subdirec-

tories. For each user whose mail is organized in this manner, the pRlv,trB-MAIL

constraint checks that no one besides the owner of the mail files can actually read

them.
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4. 1.2. cpp-IN-l-w, cRp-IN-w-oNLy, v/-Is-Roor

The constraints shown in Figure 8 place realizability restrictions on the nesting of
group and r¡orld boxes in UNlX-namely, that every group box is contained in
the unique world box and no other.

Constraints (a) and (c) introduce a new aspect to the constraint language syn-

tax and semantics for restricting the cardinality of the number of thin matchings in
a constraint. This is done by associating an integer-valued interval with the con-

straint. For each matching to the thick part of the constraint, we count the number

of consistent extensions to the thin part of the constraint, and that number must

fall in the specified interval. If no interval is specified, the default is "[1, oo]"; this

interval corresponds to the original semantics we described: for each thick match-

ing, there must exist (i.e., be at least 1) consistent thin matching.

The constraint named cRP-IN-t-w (a) requires that every group is contained

in exactly one world. However, it is still possible that a group could be contained

in a box other than a world. The cnp-rN-w-oNlY constraint (b) therefore requires

that every box containing a group must be a wor1d. Finally, the w-Is-noor con-

straint (c) requires that a world is contained in no other box. The negative nature

of this constraint stems from its [0,0] integer range: an instance is consistent with
the constraint only if there ate zero thin extensions to each thick matching.

4.2. Grampp-Morris Security Constraints for UNIX

Grampp and Morris have described several possible attacks on the security of a
UNIX system. They point out that most security attacks can be thwarted by edu-

cating users and by ensuring the "existence of administrative procedures aimed at

(a)

Figure 8. The constraints cRp-IN-I-w, cRp-IN-w-oNLY, and

w-Is-RooT.

(b)

type = group
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type : user
&& at.omic
&& name # SA

type : root
&& name : n/tt

type : dir
&& name : "etc"

type : file
&& atomic
&& name : ,,passwd,,
&& owner : $A

{ write }

---x----

Figure 9. The constraint PAsswD-sAFE.

increased security." In regards to their first point, users need to be taught the im-
portance of choosing good passwords, and they need to be educated fully as to the

security mechanisms they are using so that: (1) they can use those mechanisms to

protect their files as they see fit, and (2) they do not inadvertently leave any files
unprotected. As to their second point on administrative procedures, it is precisely
this sort of capability that systems like the constraint checker provide.

Even if these points have been addressed, security lapses can still occur.

Grampp and Morris go on to describe security holes that may occur on a UNIX
system. We have transcribed their descriptions into the following constraint pic-
tures.

4.2.1. pnsswD-sAFE

UNIX uses passwords as its only barrier to unauthorized access; if a user's pass-

word is compromised, then an intruder can act as that user with impunity. ÌVe

must therefore guarantee that passwords are adequately safeguarded. UNIX stores

encrypted passwords in a world-readable file called /etclpasswd. Obviously, no

one besides its owner (the super user) should have permission to change this file.
The constraint PAsswD-sers shown in Figure 9 requires that no user can r^rrite
the password file except its owner.

4.2.2. wptuBLE-DIR

On UNIX, every file and directory has an associated set of protection bits that
specify who may access that file or directory for each relevant access type.

Grampp and Morris point out that on UNIX, "underlying directory permissions

can adversely affect the safety of seemingly protected files." In particular, a user

u may have the ability to change a file f , even if /'s protection bits specify that u
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..,,î:î::.''

type : dir
&& oÍ/ner # sA

type : di-r-dummy
&& atomíc

type : file
&& atomic

type = user
&& atomic
&& name : $A

Figure 10. The constraint wRITABLE-DIR.

is denied write access on /. How is this possible? Suppose that f resides in a di-
rectory d, and that d's protection bits grant write permission to u.That means that

u can cÍeate and delete flles in d. So u can change / by deleting the original /
and then creating a new version of / in d. In this way, u can change /'s contents

arbitrarily.
Naive users are especially likely to be unaware of this LINIX protection fea-

ture. The fact that none of /'s write protection bits are set would seem to imply
that the file cannot be changed. But the writable directory in which / resides

gives u the power not only to change the file, but also to delete it entirely! We

clearly need a constraint to detect occurrences of this situation. However, if we

translate this constraint directly, it may be overly sensitive. It is not uncommon

for users to give themselves write permission on a directory they own, but to
also explicitly deny themselves write permission on some of the files in that di-
rectory (to prevent them from being changed accidentally). For example, this

situation arises in the use of the RCS version control system, which automati-

cally turns off write permission on files that have not been explicitly "checked

out" for modification.
Thus, the constraint we wish to express is this: Any non-owner of a directory

who has write permission on that directory must also have write permission on

all files in that directory. This constraint is shown in Figure 10. We should make

several points about this constraint.

First, it is the flrst constraint we have seen so far that involves permission on a
directory. Even though UNIX overloads the protection bits on files and directories,

our UNIX prober distinguishes r^rrite and read permissions on files from those

on directories. On directories, the prober instead generates the permissions in-del
(insert-delete) and list, respectively.

Second, since permissions granted on a directory are completely unrelated

to those granted on the directory's parent, it would be diffrcult for the prober to

Specifying and Checking UNIX Security Constraints 105



{write }

----x---

Figure 11. The constraint SETUID-SAFE.

represent access relations on directories directly. The prober therefore takes the

following simple approach. For each directory box, it installs a special atomic

"dummy" box inside that directory box, and it draws affows to the dummy box

so that the access relations on the directory in the file system are represented in

the instance by the relations between users and the unique dummy box inside that

directory. The prober also gives the dummy box a type of dir-dunny; this new

type is a child of the object type in the type-tree.

4.2.3. ssrvID-sAFE

Many UNIX security flaws arise from the set-userid, or "setuid," facility. This

feature of the UNIX protection semantics is a powerful tool, and it allows people

to create systems that would be difficult to create otherwise. But as Grampp and

Morris point out, "the feature is by no means tame." They suggest that setuid pro-

grams should only be used as a means of last resort, since each setuid program

introduced into the system is a potential security hole.

Grampp and Morris also state that "setuid programs that are writable by any-

one should be considered threatening." The reason is that any user can write a
copy of the shell, for example, onto the setuid program. That user can then run the

newly copied shell; since it is a setuid program, it will be running as its owner.

This bit of subterfuge thus gives a malicious party the power to impersonate the

owner of the writable setuid program.

The sBrur¡-s¡,pn constraint shown in Figure 11 reports any setuid program

writable by someone other than its owner. The prober makes the setuid attribute

true of any instance box corresponding to a file on the file system whose setuid bit

is turned on.

4.2.4. roctN-sAFE

When a user logs in and/or starts a new shell, UNIX automatically executes cer-

tain shell "scripts" in that user's home directory. For example, at login, the system

executes the frle named ".login." Suppose user u"s ".login" file is writable by some

other user z'. Then u' is free to edit the ".login" file at will. With this power, u'
can edit the script to make a copy of the shell (in some directory private to ut),
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turn on the setuid bit of that copy, and make it world-executable. Since these com-

mands will be executed when u logs in, the copied shell executable is owned by
z. Thus, once u logs in and unwittingly creates a copy of the shell owned by him,
u' can execute that copy and impersonate u.

This example clearly illustrates that scripts such as ".login" should never be

writable by anyone but their owners. The rocIN-sAFE constraint shown in Fig-
ure 12 tests for this condition. The thick part of the constraint matches two distinct
users and every file named ".login" contained in a home directory. The thin neg-

ative write arrow then requires that that user does not have write access on the
".login" file.

5. Constraint Checking Results

The constraint checker's payoff is its ability to find security holes. Even our sim-
ple experiments uncovered some problems. If we had performed more comprehen-

sive experiments, we may very well have found more. Instead, our focus was on
gathering measurements of the constraint checker's performance.

To perform our tests, we applied our UNIX prober to the /usrO subtree of a

mainframe VAX at CMU. The instance picture produced by the prober contains 46

groups, 147 users, 677 directones, 5,195 flles, and a total of t7,614 arrows. The
prober required approximately 206 seconds of CPU time and 314 seconds of real
time to produce this instance on a Micro-VAX II. The access matrix produced by
our access matrix generator on this instance picture contains a total of 2,490,033
entries; the access matrix file is approximately 348 Kbytes in size. The access

matrix generator took 78 seconds of CPU time and 87 seconds of real time to run
on a DECstation 5000. These results are suÍrmarizedin Table 1.

type : user
&& atomíc
&& name : $A

type : home
çc name # $A

type : file
&& atomic
&& name : ".login"----x-----

{write}

Figure 12. The constraint LocIN-sAFE.
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Table 1. Running times (in seconds) of preliminary tools.

Tool Machine
CPU Real
Time Time Output File "Size"

Prober DS-5000

Generator pVAX-II
206
78

314
87

23,679 total items

2,490,033 entries

'We then checked this instance with respect to each of the constraint pictures

described in Section 4. The constraint checker models the instance picture (and its

access matrix) as a database. It first compiles the constraint picture into a query

program over this database; this compilation usually takes less than a second. To

check the constraint, the checker executes the query program. We divide the time

required to execute the query program into two parts: the time to load the instance

database for that query and the time required to perform the query itself.

Table 2 shows the times required for these two phases on each of the con-

straints. These experiments were performed on a DECstation 5000 with 128 MB
of main memory running the Mach operating system. We have also run these con-

straints againstother subtrees of the same file system, such as /etc, /dev,and
/syso. From this table, we see that most constraint checks required I or 2 minutes

of CPU time. The notable exceptions were the wRITE-READ and wntr¡.nLE-DIR

constraints. These constraints took longer simply because there were more ways

to match the thick part of the constraint to the instance, so there were more cases

to check. Even so, it would still be quite practical to run these tests automatically

each night to check for new violations.
In general, we have shown that the constraint checking problem is ll!-hard

[11], which means that the problem is at least as hard as the hardest problems in
the class NP. How well the performance indicated by Table 2 scales up to larger

file systems is largely dependent on the constraints being checked. The constraint

with the worst performance-wRlTAnrn-nIn-has a running time only on the or-

der of quadratic in the number of boxes in the input.

Our experiments uncovered some constraint violations, which we suflìma-

rize here. The number of violations we report in each case is the number of thick

matchings of the constraint to the instance such that no thin matchings existed.

The checker has the tendency to produce voluminous output. We could easily im-
plement simple filters to help solve this problem, but we suspect there may be

more sophisticated and flexible solutions.
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Table 2. Constraint checker running times. Values in the "#
Elts." column indicate the number of thick, thin, and total el-
ements, respectively, in the constraint for that row (including

implicit containment arrows). Entries in [square brackets] have

trivial query times, while those in (angle brackets) indicate that

the corresponding instance is inconsistent with the correspond-

ing constraint. Inconsistencies indicate potential security holes.

Constraint Name # Elts. CPU Seconds

GRP-IN-1-V/ | 12:3 30.8 i 0.1

GRP-IN-W-ONLY 2+l:3 19.410.1
W-IS-ROOT I +2:3 20.8 I 0.0

WRITE-READ 3*I:4 39.8/194
PRMTE-MAIL 8*1:9 (44.7 145.2)

PASSWD-SAFE 6+1:7 [31.8/0.0]
WRITABLE-DIR 7lI:8 (44.1 I1,200)
SETUID-SAFE 2+l:3 [24.810.0]
LOGIN-SAFE 4 *2:6 (43.3 I 13.7)

5.1. pntvArg-l¡¡trL-43 I Volations

The diagnostic output for this constrainlinstance pair illustrates the problem with
the constraint checker's verbosity. The 438 violations reported in this case amount

to a total of only three world readable mail files. Since there are 147 users on the

system, 146 users were found to be able to read each of these three files when

they should not have.

The three files found by the constraint checker are not mail messages per se.

One of the mail systems at CMU keeps an index of messages in each mail direc-

tory. The index summarizes the mail messages in that directory including who
sent the message, when it was sent, and the subject line of the message. Even this

summary information may be considered sensitive by some users. Upon closer in-
spection, two of the three index files were also found to be writable by someone

other than their respective owners.

5.2. wnrr¡.slE-DrR-2 6,43 5 Víolations

Obviously, there were too many violations in this case to enumerate them all.

However, we can summarize some of the major security holes we found. One

user alone accounts for many hundreds of the violations. This user has left many
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of his directories writable to members of the theory group, the default group for
accounts on this machine. Since this group includes 25 of the machine's users,

giving such a large number of people the ability to delete and overwrite files at

will seems dangerous. We surmise from the names of the vulnerable directories

that some of them probably contain sensitive files. In many cases, these same files

were also readable by all members of the theory group. Perhaps most surprising

is that one of this user's mail directories is writable by the same group of people.

Perhaps the most serious security hole detected by this run of the constraint

checker is the protection on a directory containing bulletin board files. The pro-

tection bits on this directory designate it to be world wútable. Thus, any lusef on

the system can overwrite or delete any of the bulletin board files in the directory.

These bulletin board files are read by a large number of users, so this is a serious

threat. Moreover, since any user can also read these files, a malicious user could

easily make subtle changes to any of the files, and it would be impossible to track

down the culprit. It is worth noting that because this directory contains more than

100 files, and because there are approximately 150 users on the system, this one

security hole is responsible for approximately 15,000 of the reported violations.

5.3. locIN-IAFE-24 Víolations

All24 violations were produced because a single user's ".login" file was writable

by the theory group. As mentioned previously, the theory group on this machine

has 25 members, so the 24 people other than the file's owner have the ability to
maliciously alter his ".login" file.

6. Conclusions

Specifying and manipulating security specifications is not a toy problem. It is a
real problem faced by anyone sharing a computer system with other users. Our

constraint language and its associated compiler and run-time system provide a

mechanism unlike any other to solve this problem. The primary advantages it of-

fers over existing tools are its generality, flexibility, and expressive power. This

system can specify real-world security policies and detect violations of those poli-
cies. Moreover, the constraint language gives users the power to formally specify

abstract security models that closely match the way users think about their security

policies. It can thus be used to drive or configure other security modeling tools.

This work can be extended to solve other problems. For example, as it is im-
plemented now, the Miró system we have described is a static security checker.
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However, our techniques could be used to implement an automatic frle system

security checker that continuously monitors the file system for security holes. To

make such a system practical, we would have to modify our algorithms to inter-
pret incremental changes to the file system or to the security policy.

The work we have described in this paper is a specific application of a general

approach. Our approach has been to design formal specification languages for
a particular domain in the area of computer systems, and then to build efficient
algorithms to process those specifications. Our success in the application of this
technique to the domain of file system security leads us to believe that it holds

promise for other domains, such as network security, parallel algorithm design,

and computer systems management.
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