
A Distributed Look-Ahead
Workload As si gnment Al gorithm

for Interdependent Tasks

Andreas Winckler University of Stuttgart

ABSTRACT: Autonomous Decentralized Systems con-
currently work on different types of jobs. From the sys-
tem's point of view, every job consists of interdependent
tasks (sreps). Steps are characterizedby their service
requirements. It is the problem of load sharing to in-
crease the system throughput by reducing contention
between steps that seek access to the same resources.

However, traditional approaches to dynamic de-
centralized, controlled load balancing disregard job-
internal step dependencies and the need to support the
execution of jobs with different future service require-
ments in distributed systems.

In this paper, a dynamic decentralized look-ahead
workload assignment algorithm is proposed together
with a cooperation protocol for exchanging the re-
quired information. The goal is to utilize partial knowl-
edge about the internal job structure concerning future
service requirements and system state information for
dynamically arranging schedules so that some jobs can
take advantage of the inevitable waiting times of oth-
ers. This can significantly increase system performance
by reducing job waiting times.

The evaluation of the algorithm under various load
conditions is based on simulation studies. Waiting-time
reductions in sample configurations are up to 90 per-
cent for single job types at the expense of only slightly
worse response times for other job types, compared
with systems not applying the algorithm that prove the
algorithm's success.

@1994 The USENIX Association, Computing Systems, Vol.7 . No.3 . Summer 1994 361

I. Introduction

Autonomous Decentralized Systems (ADSs) are regarded as a collection of pow-

erful intelligent, autonomous components connected by a communication network.

Information exchange is the basis of decentralized controlled cooperation amongst

the components. The cooperation goal in ADSs is to utilize distributed computing

power with resPect to

. coÍrmon use of expensive and/or highly specialized resources

. reduction of contention for the resource access

. increase ofreliability and fault tolerance by distributed redundancy.

Jobs to be processed in ADSs are characterized by internal complexity. Sev-

eral interdependent tasks (s/eps) have to be performed on possibly different sites

using different types of resources (services). As an example, think of an enter-

prise's employee database, accessed in order to retrieve income lists to be sent to

an external computing center where taxes are calculated and then sent back to the

enterprise's finance department to transfer the wages. Similar structures can be

found in various manufacturing and administration applications fDayal et al. 1990;

De Souza e Silva 1991; Kruatrachue and Lewis 1988; McCreary and Gill 1989;

Ranky 1990; Shirazi et al. 1990; Wächter and Reuter 19921. Knowledge of the in-

ternal job structure is provided by a program source code, a project structure plan,

or administration regulations.

The collection of all servers supplying a certain service represents a server class.

Different jo b types are processed concurrently in ADSs. Steps of different

job types may require services from the same or different server classes for pro-

cessing, which will lead to a different utilization of different server types. In the

example frrst given, another job type to be processed concurrently might be the

access of the employee database for project accounting. With the data retrieved,

bills are printed out to be sent to the customers.

In a distributed system environment, it is desirable to equalize the usage of
resources (at least of resources of the same class), that is, to balance the load, in

order to reduce the response time of jobs and improve the utilization of resources.

362 Andreas Winckler

The load balancing problem in distributed systems is not new. Many different
approaches to different forms of this problem have been published in the past
[e.g., De souza e Silva 1991; Eager et al. 1986; Lin and Raghavendra 1992; Ra-
mamritham and Starnkovic 1989; Stankovic 1984; Tantawi and rownsley 19g5;
Theimer andLantz 1989; v/ang and Morris 19851. However, all decentralized
policies to be applied in ADSs only deal with the assignment of independent steps
to servers, disregarding the predictability of future service requirements through
knowledge of the job-internal step dependencies.

on the other hand, the requirements for the application of scheduling algo-
rithms-complete knowledge of the workload situation throughout the planning
period [Kruatrachue and Lewis 1988; Mccreary and Gill 1989; Ranky 1983; shi-
razi et al. 19901-are not met in ADSs. Result-dependent execution decisions and
unpredictable behavior of a large number ofjob suppliers prevent a reliable global
workload prediction.

Therefore, a distributed decentralized, controlled dynamic workload-
assignment algorithm for the application in ADSs is presented as an approach
to the efflcient evaluation of job-structure information available in distributed sys-
tems of cooperating components. The objective of the algorithm is to minimize a
weighted sum of delays over different job types in the system.

The statistical evaluation of the algorithm is based on a simulation study. Ad-
ditionally, it has been implemented in a workstation-based LAN environment. The
results show that with little knowledge about the current system state and the job
structures, a significant reduction of waiting times for single job types and for a
weighted sum over all job types in the system can be achieved.

The paper is organized as follows: In Section 2, the system model is described
with respect to the internal job structure and the network configuration. Section 3
introduces the problem addressed. In Section 4, an extended receiver-initiated
information-exchange protocol is proposed to support the workload assignment al-
gorithm that is explained in Section 5. In Section 6, performance figures obtained
from simulation are discussed. A brief summary in section 7 closes the paper.

2. System Model

Jobs to be processed in autonomous decentralized systems are atomic units of
work from the user's point of view. For the system, jobs consist of interdependent
steps. step dependencies represent a partial ordering of steps. In many applica-
tions, interstep dependencies describe the relationship between the successful
completion of a step and the availability of other steps of the same job [Dayal
et al. 1990; De souza e Silva 1991; Kruatrachue and Lewis 1988; Mccreary and

A Distributed I'ook-Ahead Workload Assignment Algorithm for Interdependent Tasks 363

DB: SQl-server for
database access
Print server
X-server
Comput¡ng Server
Clients
Terminals

Figure 1. Sample autonomous decentralized system.

Gill 1989; Ranky 1990; Shirazi et a1.1990; Wächter 19921: complex job-internal

structures may result from different step dependencies. In a distributed client-

server architecture, it is the client's task to synchronize and coordinate the single

step's executions, since it knows these job-internal step dependencies from a pro-

gram source code, a project structure plan, or administration regulations.

Every step is chnactenzed by its service requirements. The components of

ADSs act as servers by providing the required resources (offering a service).

Servers are classified by the kind of service offered. With ADSs growing in size,

several servers offering the same service are available. Thus, the components of

ADSs can logically be divided into server classes, each comprising one or more

servers offering the same service. Note that for the sake of simplicity but with-

out loss of generality, it is assumed in the following that a server processes not

more than one step at a time, and the execution is nonpreemptive, but the ideas

proposed below are completely independent from this assumption'

The components of autonomous decentralized systems concurrently work on

different job types. Steps of different job types may seek access to the same or to

different server classes. Figure 1 shows a sample system model'

364 Andreas Winckler

P:
X:
C:
CI:
T:

For example in a system as depicted in Figure 1, jobs of type -[submitted
from the client Cl on terminal fi retrieve income data from the distributed em-
ployee database via any of the SQl-servers DB, are sent to an external computing
center C to perform tax calculations, are sent back to the finance department, rep-
resented by terminal 73, where the wage-transfer order forms are filled in. Project
accounting jobs (ob type J) access the distributed database via any of the SeL-
servers DB and print out bills to be sent to the customers accessing one of the
print servers P.

3. The Problem

All steps with the same service requirements (no matter which job type they be-
long to) have to be assigned to servers of the same service class. This assignment
problem is known as the load-balancing, load-sharing, or scheduling problem.

In the past, a vast variety of different load balancing algorithms, static or non-
static, centralized or decentralized, for distributed systems have been investigated
[e.g., Bonomi and Kumar 1990; De Souza e Silva l99l;Eager et al. 1986; Mir-
chandaney et al. 1990; Ramamritham and Stankovic 1989; Schaar et al. l99l;
Stankovic 1984; Theimer and Lantz L9891. Static policies assign steps to servers
according to rules that are set a priori and make no use of any kind of information
about the current system state lTantawi and Townsley 1935]. Nonstatic policies
dispatch steps depending on some kind of information on the state of the system
obtained by suitable measurement mechanisms [e.g.,Lin and Raghavendra 1992:
Shivaratri and Singhal 1991; wang and Morris 19851. Nonstatic policies have
great potential to outperform static policies.

Common to all decentralized load-balancing policies is that as assignment cri-
teria, they use information about the steps to be scheduled and potential servers
for the steps, for example, step priority, deadline or execution time, the server
queue length, etc. [wang and Morris 1985]. The same information is also used by
most centralized load-balancing policies. Some centralized scheduling approaches

[e.g., Kruatrachue and Lewis 1988; Mccreary and Gill 1989; shirazi et al. 1990],
also known from manufacturing [Ranky 1983], additionally take into account in-
formation about the future workload by evaluating complete knowledge of the
internal job structure, execution times, and the overall system load. However,
this complete knowledge of the load situation cannot be assumed in distributed
decentralized systems. But partial knowledge (e.g., concerning (near-)future ser-
vice requirements) is often available or can easily be made available even in
distributed decentralized systems. Unfortunatel¡ no cooperation protocols and
dynamic-evaluation algorithms exist for an appropriate support.

A Distributed Look-Ahead Workload Assignment Algorithm for Interdependent Tasks 365

a)

b)

J1

J2

J1

J2

waiting
for idle server

Figure 2. Sample schedule.

processing
on server class

FïIïl oe W7] c Ë p

Thus, the problem addressed in this paper is how to utilize partial knowledge

of the internal job structure, here the predictability of future workload, in decen'

tralized controlled distributed systems. What makes this a problem is that neither

the complete, current system state nor all future service requirements are avail-

able on any of the system nodes, which is a prerequisite for the applicability of the

known, centralized scheduling policies.

The approach presented here is based on the idea of detecting inevitable wait-

ing situations for future workload early and arranging local schedules dynamically

so that jobs that do not have to wait are preferred. A sample schedule to illustrate

the problem is shown in Figure 2 for the job types introduced with the sample

ADS application above.

Think of a load situation in which several tax computing steps (e.g., of dif-
ferent wage-calculation jobs of type Jù are already waiting for an idle compute

server C, while the print servers P are idle. A load balancing policy that does

not take this information into account could prefer a DB-retneval step of another

wage-calculation job (ob type 4) to be assigned to a SQl-server DB that be-

comes idle at time fs, although a retrieval step of an accounting job (ob type J2)

is waiting, too (Figure 2a). After ús, both jobs find themselves waiting: the project

accounting job, since it has not been assigned to the SQl-server DB, although

it could find a print server P that is out of work, and the wage-calculation job

after the completion of the database access step, since no idle compute server C
is available. Figure 2 shows a simple schedule of this case and the alternative

366 Andreas Winckler

(choice of job type J2 at ús; Figure 2b) that would reduce the overall waiting
times in the system.

The question here is, why hurry now if you know that later you have to wait
anyway? In other words, why should-at a certain time-a step be executed on
any server and therefore consume limited resources (server time), if it is obvi-
ous that all servers required for the execution of successor steps are busy for a
while? Instead, another step waiting could be executed if steps depending on this
execution would find idle servers. This is a problem of dynamic, look-ahead load
balancing to be solved in a decentralized controlled heterogeneous environment.

obviously, the problem addressed is not a problem if the step waiting times
to access a server are low for the servers commonly accessed by steps of different
job types or for the seryers processing the successor steps.

The (average) waiting times are influenced by the load offered to the server
classes and the number of servers in a server class. In general, the problem occurs
in highly-loaded distributed systems, where job response times are a critical issue
anyway. The load level is one of the investigation parameters in Section 6, the
meaning of highly loaded is clarified by the results reported there.

As an approach to dynamically utilizing information about the job structure in
ADSs, a dynamic decentralized workload-assignment algorithm is proposed sup-
ported by a distributed cooperation protocol. The goal is to reducejob response
times by efficiently arranging schedules considering inevitable waiting times. The
cooperation protocol is an extended receiver-initiated load-balancing protocol
derived from protocols as described in Eager et al. [1986], schaar et al. [1991],
wang and Morris [1985], and winckler 11.992}It is extended in such a way that
system state information collected for load-balancing purposes can be transferred
from servers to the clients that have job-structure information. System-state and
job-structure information represent the input for the workload assignment algo-
rithm that is easy to apply. Investigations of sample configurations show that
applying this algorithm can achieve a total performance increase for the system
through waiting-time reductions of up to 30 percent, whereas the waiting time of
single job types is reduced up to 90 percent.

4. Cooperation Protocol

A substantial design aspect for autonomous decentralized systems is the choice of
the cooperation protocol for information exchange. This section presents a coop-
eration protocol to be applied by autonomous clients and servers in a distributed
system without a central control unit.

A Distributed Look-Ahead Workload Assignment Algorithm for Interdependent Tasks 367

In Eager et al. [1986], receiver-initiated protocols have been shown to be more

efficient than sender-initiated protocols in highly loaded systems because in highly

loaded systems it is hard to find idle servers, though steps to be processed are

frequently available on any ofthe clients. Since the problem addressed in this pa-

per is a problem of highly loaded distributed systems, our protocol proposals are

based on the receiver-initiated idea [Eager et al. 1986; Schaar et al. 199I: Winck-

ler 19921. As opposed to the sender-initiated approach, in which a work supplier

(client) searches an appropriate server for a step to be processed, in a receiver-

initiated, dynamic load-balancing policy an idle server is looking for work. The

server polls potential clients to find a step to be processed.

To collect system-state information, a (group) broadcast request for work sent

by the server to several or all potential clients is used. The clients answer by of-

fering all steps available for processing on the requesting server. The clients do

not answer, if they cannot offer work. After waiting a certain fime (wait-for-offer

time-out), the server chooses one of the offered steps for processing and sends

its decision to the clients that have been asked for a step offer. Together with this

decision, information about the offered workload (e.g., the number and/or process-

ing time of steps) that has not been accepted is sent back. After the arrival of the

accept message, the accepted step is transmitted to the server.

If a step is offered to and accepted by more than one server, it is assigned to

the server whose accept message arrives first at the client. A time-out mechanism

prevents the other servers from waiting indefinitely. However, mechanisms exist

that can prevent such situations [Winckler 1992].

In case no client responds to a server's request for work, the server asks again

after the wait-for-offer time-out period. It will repeat this procedure until work

has been found. However, when applied in highly loaded systems (and this is

a general assumption for the proposed algorithm), it is unlikely that no work is

available at the time a server is running idle'

The number of steps waiting to be processed on the specific service class and

their (estimated) processing time is important system-state information required

by the scheduling algorithm for calculating a server class's load level. For load

balancing decisions, advantage can be taken from (a) the possibility to compare

step characteristics and choose one step out of all steps available (as opposed to

the serial probing protocol in, e.g., Eager et al. [1986] that does not efficiently

support the scheduling of differentjob types) and (b) the availability of server load

information, updated with every step assignment to a server as basic information

forjob scheduling.

It is the task of the client's load-balancing component to keep and update the

server-class load information and to apply the job scheduling algorithm deûned in

Section 5 on steps to be scheduled.

368 Andreas Winckler

The proposed protocol in combination with the job scheduling algorithm de-
fined in Section 5 is fault tolerant in the sense that if some clients do not partic-
ipate, performance could degrade but will not get worse than in a comparable
configuration without the application of the job-scheduling algorithm.

The communication protocol uses broadcast messages to probe the poten-
tial clients in parallel and to distribute server-load information. Therefore, in
many configurations the time overhead for a step assignment to an idle server
is low (on average) compared to, say, the receiver-initiated protocol proposed in
Eager et al. [1986], in which potential clients are probed serially. The overhead
depends on various configuration parameters (number of clients and servers, low-
level communication protocol, broadcast implementation, network conflguration),
but a comparison is not in the scope of this paper. In fact, in some configurations
the performance increase reported below may be achieved at the expense of com-
munication costs.

5. The Algorithm

System-state information is provided by a cooperation protocol as described in
Section 4. To make use of this information, an algorithm is proposed that trans-
forms this system-state information and job-structure information concerning fu-
ture service requirements into a priority rating of steps. The prioritization supports
the distinction of steps of different job types. steps of the same job type will usu-
ally be rated equal by the algorithm, since their future service requirements are
the same. Therefore, the algorithm has to be applied on top of a step-scheduling
algorithm that is responsible for the choice from equally rated steps. The algo-
rithm is a distributed algorithm in a sense that no central coordination instance is
required; every server's scheduler in the distributed system applies the algorithm
in the same way.

5.1. Load Level

Server-state information is required for the detection of inevitable waiting sir
uations, expressed by the load level of a server class. The proposed distributed
cooperation protocol is symmetric in the sense that servers of the same class are
treated equally as well as (potential) clients are. Therefore, the workload offered
to any of the servers of a certain server class indicates the workload available for
processing on any other seryer of this class.

A Distributed Inok-Ahead Workload Assignment Algorithm for Interdependent Tasks 369

The load levet L(w) of a server class is deflned as the workload offered to but

not accepted by any of the servers of this class.

Note that the workload consists of two components: total amount and granularit¡

usually given by the number of steps and their (expected) processing times. In

general, both have to be considered by the prioritization algorithm in Section 5.2.

Applying the proposed cooperation protocol, load-level information is updated

with every step assignment to an idle server.

5.2. Prioritizing

For an arbitrary job type, it is assumed that step ,S¿+r is ready for execution after

the completion of step ,S¿.

If step ,9¿ is to be scheduled and the service required for the execution of step

,S¿+r is on load level L(u), then assign priority P(L) to step ,S¿.

Some sample functions L(tu) and P(L) are given with the performance evaluation

in Section 6. Note that in case no job of high priority is available, one of the low-

priority jobs will be chosen.

As already mentioned, the same priority will be assigned to steps
^9¿

of the

same job type, since they all require the same service for the execution of ,S,;+r.

Therefore, as in systems without the proposed job-scheduling algorithm, a policy

is required to choose one step out of all equally rated steps. Various policies are

applicable, for example, FIFO, random, and others lV/ang and Morris 1985].

6. Performance

This section reports performance figures of ADSs applying the proposed

workload-assignment algorithm on top of a FIFO step-scheduling algorithm and

compares them to the figures obtained from systems applying FIFO only, without

considering job information. All performance values are results from simulation;

the average job-response times for the cost calculations are within a 95 percent

confidence interval of less than 5 percent of the mean value'

The system is investigated working on a mixture of two different job types.

Each job type consists of two steps with the second to be executed when the exe-

cution of the first has finished. (Note that these two-step jobs in general represent

parts of more complex jobs consisting of several interdependent steps.) The pro-

cessing time of all steps is normally distributed. Shivaratri and Singhal t19911

show this distribution to be an adequate model for a variety of applications such

370 Andreas Winckler

server
class

B

¡ob type J.,

¡"1

)"2

job type J,

P = 95"/o

Figure 3. Asymmetrical load situation.

as process control, manufacturing, and traffic control. Thejob arrival process is
negative-exponentially distributed, a widely used assumption due to easy mathe-
matical tractability and empirical relevance in several environments [Bonomi and
Kumar 1990; Kleinrock 1976: Mirchandaney et al. 1990; Tantawi and Towns-
ley 19851. The first steps of every job type require the same service with the same
average processing time, whereas the service requirements and processing time of
the second steps are different for different job types.

In the system under consideration, servers are logically grouped into three
server classes. Server class ,4., accessed by the first steps of both job types, con-
sists of 15 servers, server class C, accessed by only job type J2 comprises 6
servers. The influence of the number of servers in class B, accessed by jobs of
type -Ir only, is the subject of the investigations to follow. (Figures 3 and 17 show
these system assumptions.)

The following different load situations have been investigated: In a first set-
ting (asymmetrical load situatior?; see Figure 3), job type "Ir frnds server class
B highly loaded (95 percent ofthe server class capacity), whereas server class
c does not induce significant waiting times for the second steps of jobs of type
J2. The offered load on server class :4., accessed by both job types, is one of the
investigation parameters. In the other situation (symmetrical load situation; see

A Distributed I'ook-Ahead Workload Assignment Algorithmfor Interdependent Taslcs 37I

P = 95"/o

server
class

c

Figure 17), both job types flnd highly loaded server classes B and C, (95 pefcent

of the server-class capacity), respectively. Note that the idea of the proposed al-

gorithm is to utilize knowledge of inevitable, predictable waiting situations for

dynamically arranging more effrcient local schedules. Therefore, the algorithm is

useless (but without negative influence on the system performance) if no waiting

situations can be predicted, that is, if the offered load on sefver class B (and C in

the symmetrical load situation) is medium or low.

The workload assignment algorithm under investigation can be based on dif-

ferent prioritizing functions P¿(.0):

P1(L):

P2(L):

The load level -L has been deflned in Section 5.1, lq is an arbitrary nega-

tive constant, and k2 the load-level threshold value. High priority is associated

with a high value of P¿. Steps with the same priority are ordered according to

a FIFO rule. The results ale compared to those obtained from an upper- and a

lower-bound strategy that are chosen to be applicable in decentralized organized

environments; however, there is a significant difference in the information used

for their assignment decisions. FIFO as the upper-bound strategy does not make

use of any information apart from the arrival time of steps
^91.1

and Sz.r ; that is,

no information concerning the respective job types is evaluated. Therefore, FIFO

is widely accepted as an easy-to-apply and fair strategy. The lower-bound strategy

is more sophisticated. It is a static prioritization algorithm based on a priori as-

sumptions about the relative number of each job type in the system, the respective

server-class capacities, and (dynamic) knowledge of the job type to which a step

belongs. High priority is statically assigned to steps Sz: in the asymmetrical load

situation; the priority of steps ,Sr.r is static and (as investigation parameter) equal

to or lower than the priority of steps
^92.1.

The systems are evaluated with respect to the average job waiting times. The

relative change in waiting time costs LC¿ are calculated in comparison to the

upper bound values as

LCi: t-i, - tu\i
Luoi,

where ú,.,¿ is the average waiting time of job type J¿, with assignment based on job

information andt*s¿ is the average waiting time of job type J¿ under FIFO only.

Additionally, since the goal is to arrange inevitable waiting times in a way

that other jobs can take advantage, a global-cost measure is introduced, taking into

consideration the waiting times of all jobs in the system. The global change in

372 Andreas Vy'inckler

kt' L,k1 (0

t high, if L < kz

I low, if L >: kz

(1)

waiting time A,Cn is calculated as

N¡r
L?s:lno[t-o-tuto¿f Q)

i:l

ú-¿ is the average waiting time of job type J¿, with assignment based on job infor-
mation. ú.,6¿ is the average waiting time of job type J¿ under FIFO only. 1fu7 is
the number of different job types accessing the server class considered. p¿ is the
relative number of jobs of type J¿ in The system.

6.1. Asymmetrical Load Situation

The asymmetrical load situation is charactenzed by two job types J¿(i, : I,2),
both accessing server class ,4 for processing step

^9¿.1,
but while servers of class B

for processing step 51.2 are highly loaded (p :95 percent), step 52.2 always finds
an idle server of class C (p low). Figure 3 shows this configuration. Here, the
server classes A, B, and C may correspond to the SQl-servers, compute servers
C, and print servers P, respectively, in the application example of Section 3 illus-
trating the problem addressed.

The proposed workload assignment algorithm is applied on load-assignment
decisions concerning offered steps ,9¿.1, the clients receive load-status information
from servers of class B and C. Since steps ,92.2 do not suffer from waiting for an
idle server, the load level of server class C is always low. Thus, the prioritization
rule of the assignment algorithm applied on steps ,S2.1 does not change their prior-
ity. Therefore, every priority function P(L) for steps

^91.1
degrades to a threshold

function with the parameters high priority (in relation to the priority of the steps

^92.1
of job Epe Jù and the threshold load level. Obviously, low priority for ,9r.r

must be lower than the priority of
^92.1,

since if server class B is overloaded, steps
of job type J2 should be preferred. High priority of ,91.r can either be higher than
or equal to the priority of 521, resulting in a preference of steps ,S1.1 or an equal
treatment.

In general, the threshold load level has to consider not only the amount of
work waiting for execution on server class B but also the granularity of this work,
that is, the number of steps waiting, because a single step with a very long pro-
cessing time on one server does not induce work to any of the other servers of the
class, although a high amount of workload is reported.

In all experiments reported below, an average step processing time of 5 time
units (úz) for steps ,S¿.r has been chosen. The system is investigated working on
different job+ype mixtures and different offered load on server class ,4. The ar-
rival rates Àr and À2 of the job types are calculated to meet these assumptions.

A Distríbuted Look-Ahead Workload Assignment Algorithm for Interdependent Tasks 373

The average processing time of ,9r.2 is chosen according to the job+ype mixture

and according to the offered load on server class .4 to meet the load assumptions

on server class B (p : 95 percent)' Table 1 gives the average processing time

of ,9r.2 for different offered load p on server class ,4 and different job-type mix-

tures. (Assuming that 52.2 always flnds an idle server, its processing time is of no

interest.)

Table l. Average step ,Sr.z processing time [úz].

Job-type mixture

\t\z
Offered load p on class A

807o 90Vo507o 957o

4tl
2n
t/2
U4

4.75

19.0

2.97

11.88

2.64

r0.56

2.5

3.0

6.0
10.0

The time required for a complete successful node negotiation, as described in

Section 4, is approximately 0.05 tu which is 1 percent of the average execution

time of steps ,9¿.r. This time includes message-transmission delays, the wait-for-

offer time-out period, and all times required for creating, sending, receiving, and

evaluating messages. Thus, system-state information is not available immediately

but with a reasonable delay. Obviously, the shorter the negotiation delay compared

to the execution time, the more precisely are decisions made.

V/ith these system assumptions, the relative change of waiting-time costs cal-

culated with equations (1) and (2) is reported using the number of steps ,Sr.z wait-

ing for execution on server class B as threshold criterion. The value -1 denotes

the lower-bound strateg¡ expressing that whenever more than -1 job is waiting

(and this is always), high priority is assigned to steps ,91.1'

6.1.1. Parameter: High Priority Value

Figures 4, 5,6, and 7 present results for the case that high priority of ^9r.1 is equal

to the priority of 52.1, whereas higher priority of ,91.1 is assumed for Figures 8,

9, 10, and 11. For all investigations in this subsection, the offered load on server

class A is 95 percent of the capacity; six servers constitute server class B.

A first observation in Figure 4 is that the proposed algorithm behaves as ex-

pected. A signiflcant waiting-time reduction for jobs of type -I2 (step ,92.2 always

finds an idle server) of up to 90 percent is achieved, whereas the waiting times

374 Andreas Winckler

for jobs of type J1 are increased just slightly. From this point of view, job+ype
mixtures with more jobs of type ./r than of type J2 in the system are interesting,
since the additional waiting time costs for jobs of type J1 a;re less than about 20
percent, and the average waiting time for jobs of type J2 is reduced dramatically.
The application of the lower-bound strategy does not give significant additional
advantages. Looking at the global waiting-time changes (Figure 5), these job-type
mixtures result in savings of only approximately 10 percent.

In case more jobs of type J2 than of type J1 are in the system, the waiting-
time savings of jobs J2 are less dramatic and the waiting time losses of jobs -r1
are more significant. However, the global waiting-time changes are substantially
better due to the larger number of jobs that "win." with these job-type mixtures,
the application of the lower-bound strategy results in extremely long waiting times
forjobs of type Jt andwaiting times for jobs of rype .l as shorr as in the job-type
mixture discussed previously. In spite of extremely long waiting times, the global
changes are the best of all.

Taking a look at the variances of the job response times (Figures 6 and 7; the
horizontal lines give the respective variance of the upper-bound strategy), these
observations are confirmed: Reductions of the average waiting times result in re-
ductions of the variance; a waiting-time increase comes with an increase of the
variances. However, for threshold values larger than 1, the variances of jobs of
type Jl already come close to the low values obtained from the upper-bound strat-
egy, whereas jobs of type .I still benefit from significantly reduced variances.

Altogether, the results show that regardless of the choice of the threshold load
level lr2, a global waiting-time reduction and waiting reductions for jobs of type
J2 can be achieved by applying the proposed workload-assignment algorithm.
Low threshold values lead to extreme changes of the individual waiting times and
the job-response time variances. High values make the system behave like the
one applying the upper-bound strategy, because only rarely do the number ofjobs
waiting for execution on server class B reach high values. (By the way, the same
happens if the offered load on server class B is low).

The application of the lower-bound strategy does not necessarily lead to per-
formance improvements; it may even lead to an extremely unpredictable timing
of jobs of type .I1. Furthermore, because the lower-bound strategy is static, it can-
not handle a change ofthe load situation on server classes B and C appropriately.
on the other hand, its major advantage is low communication overhead. So, its
application can only be recommended in predictable static-system environments
without timing constraints for jobs of type -[.

The results shown in Figures 8, 9, 10, and 11 are those obtained from a sys-
tem with priority of ^9r.r being higher than priority of ,sz.r; that is, ,gr.r is preferred
to

^92.1
if the load level of server class B is below the threshold value k2. (For the

A Distributed Look-Ahead Workload Assignment Algorithm for Interdependent Tasks 375

sake of simplicity, in Figure 8 only values from extreme job+ype mixtures are dis-

played; the values for mixtures \ l \z : I 12 and 2ll are in the range between the

values shown.)

For low threshold values, no significant difference of the algorithms' charac-

teristics can be observed to be independent of the priority setting. However, for
high threshold values, an extremely high waiting-time /oss for jobs of type Jz and

for the global waiting times has been found because the high load level on server

class B required to reach the high threshold value rarely appeafs in the system.

Thus, jobs of type fi nearly always are preferred to jobs of type J2.

Note that both job types have reduced waiting time compared to the applica-

tion of the upper-bound strategy, indicating that the algorithm supports the ade-

quate step choice by giving high priority to steps at the "right" time. Altogether,

with respect to a robust system, there is little advantage in using this priority set-

ting, since no significant improvements but poor performance may result.

376 Andreas Winckler

{: :'''':'¡"'
å"'j :'-"'

r"'i :''''''

Âci

150o/o

100"/o

50o/o

0%

'50"/o

-100%

job type mixture 1,.,/þ

1/4 .." . . .' 2/1

112 -'-.-. 411

-102468101214
threshold load level k^

[number of steps waitin¿g]

Figure 4. Job-type individual waiting-time changes;

high priority of ,5r.r : priority of ,Sz.r.

ocg

10o/o

Oo/o

-10To

-2OTo

-30o/o

-4Oo/o

job type mixture À.,/þ

1/4 ..-...-. 211

112 -.-.-- 411

-102468101214
threshold load level k^

[number of steps waitiñg]

Figure 5. Global waiting-time changes;

high priority of ,Sr.r : priority of ,S2.1.

A Distributed Look-Ahead Workload Assignment Algorithm for Interdependent Taslcs 377

20

Figure 6. Variance of average job J2 processing time;

high priority of ^9r.r
: priority of ,Sz.r.

job type mixture À.,/þ

vAR 114 "' ..-. 211

ttul2 1p -.-.-. 4/1

iob type mixture ?'1llv2

vAR 114" 211

ltu2l - jtz 4/1

job type J,

----J-------'

-10 2 4 6 I 10 12 14
threshold load level k^

[number of steps waitin¿g]

15

10

25

900

800

700

600

500

400

300

200

100

0

0

-'---t-- 5 -- -_ --, t t - - - r r a - t t a

F¡rl a A t t.'ri ¡ a¡ti i a i FJ.¡l I F.¡!t, ã t r¡.r ¡ F.

-10 2 4 6 I 10 12 14
threshold load level k^

[number of steps waitin¿g]

Figure 7. Variance of average job ./r processing time;

high priority of ,5r.r : priority of Sz:.

378 Andreas Winckler

Âci

150%

1O0o/"

50o/o

o%

-50%

-1OOo/"

-102468101214
threshold load level k^

[number of steps waitiñg]

Figure 8. Job{ype individual waiting-time changes;
high priority of

^91.1 > priority of ,Sz.r.

ocg

10%

QYo

-10%

-2jo/o

-30%

-40Yo

job type mixture ìu1/X2

1/4 .'-'. ... 2/1

112 ---'-- 4t1

-102468101214
threshold load level k^

[number of steps waitiñg]

Figure 9. Global waiting-time changes;
high priority of

^91.1
> priority of

^92.1.

job type mixture LlhZ

1/4 -.-.-. 4t1

A Distributed I'ook-Ahead Workload Assignment Algorithm for Interdependent Thsks 379

job type mixture l..t/Àt

vAR 114 " " "' 211
Dltul- 1t2 ---'-' 411

job type J,

.r'
a,.

t.'

-..' -.il'-.:'''j- " -

-10 2 4 6 B 10 12 14
threshold load level ko

[number of stePs waitiñg]

60

50

40

30

20

10

0

70

900

800

700

600

500

400

300

200

100

0

Figure 10. Variance of average iob Jz processing time;

high priority of ,9t.r > priority of 'Sz.r'

job type mixture l'.t/þ

vAR 114 """" 211

ltul2 1t2 -.-.-' 4t1

FrttrAtçrrr! r l.lr¡rtr.l.Ì I F.Llra¡aJ.t I !.

-10 2 4 6 I 10 12 14
threshold load level k,

[number of stePs waitifu]

Figure 11. Variance of average job Jr processing time;

high priority of ,Sr.r > priority of ^92.t'

380 Andreas Winckler

6.1.2. Parameter: Number of Nodes in Server Class B

The influence of the number of servers in seryer class -B is reported in Figures 12
and 13 for job-type mixtures of \f À2 : 4lI and in Figures 14 and 15 for job-
type mixtures \lÀ2 : I14. For all these investigations, high priority of ,91.1 is
assumed to be higher than the priority of Sz:. A general observation, independent
of the job-type mixture, is that the proposed algorithm is slightly more successful
if only a few servers constitute server class B. The reason is that the load-level in-
dicator, which is the number of steps offered to a server that are not accepted, is a
more precise indicator for the load level of the whole server class if the number of
servers in the particular class is low. These results are important. They suggest a
successful application of the algorithm especially in the various small clienlserver
architectures where performance is a critical issue due to a low number of servers
available.

The results show again that the influence of the job+ype mixture is signitcant
for the performance increase. with respect to the global waiting-time changes,
the algorithm performs better with a high number of jobs of type .I2, though the
average waiting-time reduction for these jobs is more significant if the contribu-
tion of jobs of type .I1 to the total system load is high. This situation is due to the
fact that, assuming the same probability for the load level of server class B to ex-
ceed the threshold value lq with both job+ype mixtures, the ratio of jobs of type
J2 being assigned high priority to the total amount of jobs of this type is higher if
the contribution of these jobs to the total system load is lower.

A Distributed I'ook-Ahead Workload Assignment Atgorithm for Interdependent Tasks 381

number of nodes in server class B

1 . , ..'." 6

number of nodes in server class B

1 . 6 -'-'-' 11

-1 0

11

Àc¡

80%

60o/o

40o/"

20/"
0%

-20"/"

'4Oó/o

-60%

-80%

-100%
-1 0 2 4 6 ö l1

threshold load levelk,
[number of steps waitiñg]

Figure 12. Individual waiting-time changes at À1f À2:4ll'

ocg

5o/o

0To

-10%

-20%

-30%

-40o/o
10

threshold load levelk,
[number of steps waitiñg]

Figure 13. Global waiting-time changes at À'1f \2: 4ll'

382 Andreas Winckler

number of nodes in server class B

1 '..'...' 6 11
AC¡

150%

1Q0To

50o/o

0o/o

-50o/o

-100%
10-1

threshold load level k^
[number of steps waitiñg]

Figure 14. Individual waiting-time changes at),1f À2 : 114.

number of nodes in server class B

1 ..'..... 6
ocg

5%

0%

-10%

-20%

-30T"

-40%
-1 02468

threshold load level k^
[number of steps waitiñg]

Figure 15. Gtobal waiting-time changes at \f À2 : ll4.

11

A Distributed Look-Ahead Workload Assignment Algorithm for Interdependent Thsks 383

6.1.3. Paranxeter: Offered Load on Server Class A

The idea of the proposed algorithm is to organize a schedule on selvers of class

A such that these servers first work on steps that can proceed immediately, be-

fore working on steps that will have to wait after the execution for another idle

server. Therefore, the algorithm will increase system performance by reducing

job waiting times only if servers of class -4 constitute a potentia"l bottleneck. Oth-

erwise, that is, if steps can be assigned to idle servels immediately or after very

short waiting times, there will be nearly no difference between a FIFO schedule

and one that is organized by the proposed algorithm. This situation is illustrated

byFigure16forajob-typemixtureof),1f\2:4llshowingthechangein
waiting-time costs for jobs of type J2 with the parameter offered load p on server

class A.
The results indicate that low or medium load on server class -4 makes the

proposed algorithm obsolete, whereas significant waiting-time reductions can

ùe found for offered load exceeding 80 percent of the server class capacity. Not

shown are the global waiting-time changes, which are in the range between 0

percent and the values given in Figure 9, and those forjobs of type Jr that are

found to be around 0 percent for medium load.

Lcz

20"/"

0o/o

-207o

-40To

-60%

-80Y"

-100%

offered load p on server class A

50% 9O"/"

B0% 95%

-1 02468
threshold load level ko

[number of steps waitiñ'g]

Figure 16. Parameter: Load on server class A-

384 Andreas Winckler

6.2. Symmetrical Load Situation

The symmetrical load situation represents the other extreme of a two-job-type
conf,guration. Here agun, both job types J¿(i, : I,2) consist of two steps with
the second to be processed after the completion of the first. The first steps ,S¿.1

of both access a server of server class A (15 servers), and though ,S1.2 requires
service -B (6 servers), Sz.z has to be processed on a server ofclass C (6 servers).
The offered load to all server classes is 95 percent ofthe server class capacity.
Figure 17 shows the setting. The difference from the example of Section 3 is that
now also the print servers P (server class C in Figure 17) accessed by project
accounting jobs (ob-type J2) are highly loaded.

Again, the system was investigated with different job-type mixtures and the
average step-processing time of S¿.2 was calculated to meet the load assumptions,
and the average processing time of steps

^91.1
is 5 ú2. (See table 2.)

Table 2. Steps ,S1.2 and Sz.z average processing time [tu].

Job-type mixture

\ lÀz St.z Sz,z

t/r
r/2
U4

4

J

2.5

4

6

10

As with the asymmetrical load situation, the average job waiting times of both
job types were measured when applying the proposed algorithm (together with
FIFO). Using equations (1) and (2), the relative change of waiting-time costs was
calculated compared with the case when only FIFO step scheduling is performed.

The performance of the algorithm was investigated when applying a thresh-
old priority function as described with the asymmetrical load situation (threshold
criterion is the number of steps waiting to be processed on server class B and C,
respectively) and when applying a linear priority function P(L) : kt . L,k1 1 0,
constant.

The results displayed in Figures 18 and 19 show that the job-type individual
as well as the global waiting-time costs in the system are still reduced, but the
reduction is less than what can be achieved with the asymmetrical load situation.
This behavior is to be expected because in the symmetrical load situation jobs of
both types are set to low or high priority at the same time. No job type exists that
represents a "basic load,o' as do jobs of type J2 in the asymmetrical load situation,

A Distributed I'ook-Ahead Workload Assignment Algorithm for Interdependent Tastr's 385

which are (nearly) always available to provide server load if it is not appropriate

to process steps of otherjob types.

Results in Figure 19 show that the threshold prioritization function performs

slightly better than the linear function. The system behavior for different thresh-

old values is comparable to the behavior in the asymmetrical load situation (see

Section 3).

job type J.'

À1

L2

job type J,

P=95%

Figure 17. Symmerical load situation.

server
class

B

server
class

c

386 Andreas Winckler

job type mixture À.,/À,

<1/1 -----x 112
Âc¡

-5%

-10%

-15%
4246810

threshold load level k^
[number of steps waitinzg]

Figure 18. Individual waiting-time changes.

job type mixture À.,/þ

41/1 -----x 112 " 114
ocg

5%

0o/o

-5Yo

-10%

-15%
a 2 4 6 B 10

threshold load level k^
[number of steps waitiñg]

Figure 19. Global waiting-time changes.

12 linear
priority
function

12 linear
priority
function

o
X

A Distributed I'ook-Ahead Workload Assignment Algorithm for Interdependent Tasks 387

7. Conclusions

This paper presented an approach to dynamic decentralized load balancing in au-

tonomous distributed systems, utilizing predictability of jobs' (near-)future service

requirements, that is, knowledge about job-internal step dependencies. However,

contrary to scheduling approaches that assume complete knowledge of the job

structure, the proposed algorithm is built on partial job knowledge, namely, on

knowledge of service requirements of a step and its successor. Obviously, this

successof knowledge may fepresent the complete job structufe, if (as in the inves-

tigated configurations) the job only consists of these two steps. But in general, this

step pair will be any predecessor-successor pair of a job consisting of an arbitrary

number of interdePendent stePs.

The proposed approach consists of a simple prioritization algorithm in com-

bination with a cooperation protocol. The protocol is a receiver-initiated load-

balancing protocol extended to support the exchange of system-state information

required by the prioritization algorithm. Both the protocol and the algorithm are

designed to be applied by autonomous components in a completely decentralized'

controlled distributed environment.

The algorithm's performance was investigated in two load situations, both

representing extremes: Very high and very low load for servers accessed by the

second step of job type J2, while the load on servers commonly accessed by the

first steps of both job types is (usually) high, as is the load on servers required for

the processing of the second step of job type Jr. The measurements show that the

algorithm reduces the waiting times for single job types dramatically (up to 90

percent) and reduces the weighted sum of waiting times over all job types in the

system uP to 30 Percent.
The proposed algorithm is based on the idea of utilizing inevitable waiting

times of steps of a certain job type by dynamically arranging local schedules in

favor of another job type's steps. Therefore, the algorithm cannot reduce waiting

times in a system where step-waiting times are already low. But, in case of low

or medium load, the proposed algorithm does not influence the step-scheduling

algorithm that is required anyway. This characteristic makes the algorithm appli-

cable in ADSs regardless of the current workload, and it helps increase system

performance in case of high workload, where in fact fesponse times are a critical

issue.

The increase in performance is achieved through additional-information,

supporting-load balancing decisions. The algorithm is easy to apply, and little in-

formation has to be stored. The information exchange could cause additional over-

head compared with other load balancing policies. However, in many distributed

388 Andreas Winckler

systems, performance is not limited by a communication bottleneck but by poor
distribution of load in the system. The significant waiting-time reductions could in
many systems be worth some additional communication overhead.

Further work will concentrate on other strategies that allow the exploration
of partial knowledge of the job-internal structure to support the dynamic decen-
tralized load balancing of interdependent steps with more complex jobs and under
various load conditions.

A Distributed Inok-Ahead Workload Assignment Algorithm for Interdependent Tasks 389

L

J.

4.

5.

6.

7.

8.

9.

10.

11.

t2.

13.

14.

15.

16.

References

Bonomi, F., and A. Kumar. Adaptive Optimal Load Balancing in a Nonhomoge-

nous Multi-server system with a central Job Scheduler. IEEE Transactions on

Computers 39(lO):1232-1250, October 1990'

Dayal, u., M. Hsu, and R. Ladin. organizing Long-Running Activities with Trig-

gers and Transactions. ACM SIGMOD' pp.204-214' l99O'

De Souza e Silva, E. Queueing Network Models for Load Balancing in Distributed

Systems. Journal of Parallel ønd Disffibuted computinS 12, pp.24-38, I99I.

Eager, D. L., E. D. Lazowska, and J. A. Zahotjan. A Comparison of Receiver-

tnitiated and Sender-Initiated Adaptive Load sharing. Ferformance Evaluation 6,

pp. 53-68, March 1986.

Kleinrock, L. Queuing systems. Vol. 2. Contputer Applications. New York John

Wilney and Sons, 1976'

Kruaffachue, 8., and T. Lewis. Grain Size Determination for Parallel Processing'

IEEE Sofiiuare, pp.23-32' January 1988'

Lin, H.-c., and c. S. Raghavendra. A Dynamic Load-Balancing Policy with a

cenrral Job Dispatcher (LBC). IEEE Trønsactions on sofiware Engineering 18(2):

148-158, FebruarY 1992.

McCreary, C., and H. Gill. Automatic Determination of Grain Size for Efficient

Parallel Þrocessing. Communications of the ACM, pp' 1073-1078' September

1989.

Mirchandaney, R., D.Towsley, and J. A. Stankovic. Adaptive Load sharing in

Heterogeneous Distributed Systems. Journal of Parallel and Distributed Comput-

ing 9, pp. 331-346, 1990.

Ramamritham, K., amd J. A. Stankovic. Distributed scheduling of Tasks with

Deadlines and Resource Requirements. IEEE Transactions on computers 38(8):

1_ll0-I123, August 1989.

Ranky, P. G. The Design and operation of FMS (Flexible Manufacturing sys-

tems¡. IF'S (Publications) Ltd., UK, North Holland Publishing Group, 1983'

schaar, M., K. Efe, L. Delcambre, and L. N. Bhuyan. Load Balancing with Net-

work Cooperatton. Proceedings of llth Internatíonal Canference on Distributed

Computing Systems, pp.328-335' May 1991.

Shirazi, 8., M. Wang, and G. Pathak. Analysis and Evaluation of Heuristic Meth-

ods for Static Task Scheduling. Journøl of Parallel and Distributed Computing IO,

pp.222-232, 1990.

Shivaratri, N. G., and M. Singhal. A Transfer Policy for Global scheduling Al-

gorithms to Schedule Tasks V/ith Deadlines. Proceedings of llth International

ôonference on Distributed Computing Systems, pp' 248-255, May 1991'

Stankovic, J. A. Simulations on Three Adaptive, Decentralized Controlled, Job

Scheduling Algorithms. Computer Networks 8, pp' 199-217, 1984'

Tantawi, A. N., and D. Townsley. Optimal Static Load Balancing in Distributed

Computer Systems. Journal of ACM 32(2):445-465, April 1985'

390 Andreas Vy'inckler

t7. Theimer, M. M., and K. A. Lantz. Finding ldle Machines in a Workstation-Based
Distributed System. IEEE Trønsactions on Sofiiuare Engineering l5(II):l4M-
1458, November 1989.

18. Wang, Y.-T., and R. T. J. Morris. Load Sharing in Distributed Systems. IEEE
Transactions on Computers c-34(3):204-2I7, iùdarch 1985.

19. Wächter, H., and A. Reuter. The ConTract Model. In Elmagarmid, A. K., ed.,
Database Transaction Models. Morgan Kaufmann Publishers, pp. 219-263, L992.

20. Winckler, 4., 1992. Tlvo System State Calculation Algorithms for Optimal Load
Balancing. Proceedings of 4th IEEE Symposium on Parallel ønd Distributed Pro-
cessing, pp. 266-273, December 1992.

A Distributed I'ook-Ahead Workload Assignment Algorithm for Interdependent Tasks 391

