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ABSTRACT: As the design of shared-memory shared-
bus multiprocessors is heading toward employing
megabyte second-level caches, how to optimize the
design of the second-level caches in order to mini-
mize the traffic on the shared memory bus and thus
improve system scalability is of great interest. This
paper presents a comprehensive study on this issue
through extensive trace-driven simulation. The simula-
tion results show that a good cache design could mean
a reduction of bus traffic by more than 80 percent or,
equivalently, an increase of system scalability by more
than five times. Furthermore, they show that a few
simple design guidelines can be derived because the
optimal choice of cache configuration metrics exhibits
a high degree of invariance over system-conf,guration
variations.
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l. Introduction

In recent years, the shared-memory shared-bus architecture has become a favorite

scheme for building multiprocessors. One of the major issues in the design of

such systems is how to minimize the trafflc the CPUs would induce on the shared

memory bus so that more CPUs can be incorporated. In this regard, a number

ofpapers discussing how to achieve the goal with better cache designs and/or

cache coherence protocols have been published [Archibald and Baer 1986; Karlin

et al. 1988; Sites and Agarwal 1988; Eggers and Katz 19891. Nevertheless, a com-

prehensive investigation on optimal design of megabyte second-level caches for

minimizing bus traffic in shared-memory shared-bus multiprocessors is yet to be

carried out. This issue is of significance because employing megabyte second-level

caches will soon become a cornmon practice in computer design due to two recent

developments:

1. The introduction of commodity megabit memory chips makes the imple-

mentation of megabyte caches no longer unaffordable for most systems.

2. As computer architects turn to two-level cache design to overcome the

widening gap between the CPU and main-memory speeds, the incorpo-

ration of megabyte caches at the second-level of the cache hierarchy is

favored for maximizing system performance [Hennessy and Patterson 1990;

Bugge et al. 19901.

Motivated by these observations, we carried out the study presented in this pa-

per. In this study, we conducted extensive trace-driven simulation to determine the

optimal organization of megabyte second-level caches under various system con-

figurations. The system conflguration metrics that we varied in the simulation runs

include number of CPUs, width of the shared-memory bus, and main-memory ac-

cess latency. The data collected in the simulation runs reveal several significant

results. They show that a careful design could mean a reduction of bus traffic by

more than 80 percent or, equivalently, an increase of system scalability by more

than five times. Furthermore, they show that a few simple design guidelines can
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be derived because the optimal choice of cache configuration metrics exhibits a

high degree of invariance over system-configuration variations.
The rest of the paper is organized as follows. Section 2 discusses the method-

ology used in this study. Sections 3 and 4 present the simulation results and elabo-
rate interesting observations, and Section 5 concludes the study.

2. Methodology

When discussing multiprocessor design optimization, we must take into account
how the multiprocessor will be put into use, since multiprocessors installed for
different purposes may run applications that have very different characteristics
and behavior. In this paper, we concentrate on multiprocessors that are positioned
to improve system throughput in a multiple-user/multiple-task environment. The
reason is that multiprocessors serving this kind of purpose may account for the
largest share of multiprocessor installations to this point. The study is carried out
through a trace-driven simulation in which we used a collection of 15 traces, de-
tailed in Appendix B, generated by SPARCSim [Sun 1939]. The effecr of multi-
tasking is simulated by having a fixed context switch interval of 16,000 memory
references for all the traces. That is, each CPU is assumed to execute a section
of code equivalent to 16,000 memory references from a task/process during each
context switch interval. As far as process scheduling is concerned, we assume two
different policies. The first policy assumes unrestricted process migration and that
the system maintains one global ready queue for all the CPUs. Under this policy,
processes are scheduled in the global ready queue based on a round-robin strat-
egy. Unrestricted process migration means that processes are not stuck to any CPU
or any group of CPUs. In other words, a process in the global ready queue will
be scheduled to run at any available CPU regardless of the process's past trace
of CPU visit. In contrast to the first policy, the second policy implements pro-
cess affinity. with process affinity, the system maintains one ready queue for each
CPU. A process is assigned to a CPU when it is created, and the process is stuck
to the designated CPU during its life span.

Figure I shows the machine model used in the simulation. As one may note,
the machine model has only one level of cache memory. This seems to contradict
a previous argument claiming that the move toward employing two-level caches is
a major reason behind the popularization of megabyte caches. However, as pointed
out by Przybylski U9901, the existence of the lower-level caches can be ignored in
the study of the behavior ofhigher-level caches as long as the higher-level caches

are several times larger than the lower-level caches. V/e find this condition to be
generally true because the typical size of first-level caches ranges from 4K Bytes
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Figure 1. Machine model used in the simulation.

to 16K Bytes, whereas the size of second-level caches of interest in this paper is 1

megabyte or larger. Therefore, the machine model in Figure 1 is able to accurately

reflect the behavior of the local second-level caches as observed from the shared-

memory bus.

In the simulation, we assumed that the shared memory bus is a synchronous

bus and executes the M Bus cache coherence protocol [Cypress 1991]. The M
bus protocol is actually based on MOESI cache states proposed in [Sweazey and

Smith 19861. The basics of the M Bus protocol is summarized in Appendix A. In

order to conduct a comprehensive study, we varied system configuration metrics

in the simulation. These metrics include number of CPUs, width of the shared-

memory bus, and main-memory access latency. We assumed the system had either

4 or 8 CPUs. The width of the shared memory bus refers to the number of data

bits on the bus. We varied bus width from32 bits, 64 bits, 128 bits, to 256 bits.

We varied main-memory access latency to cover discrepancies in main-memory

design, for example, differences in main-memory speed and degree of interleaving.

We further assumed the following timing specifications:

. 2 clock-cycles latency for starting a new bus transaction

. a total of 6 clock cycles, including the 2 clock cycles for starting a new bus

transaction, for executing an invalidation operation

. 1 clock cycle for transferring a piece of data over the shared-memory bus in

the burst mode

. 4 clock cycles for accessing the second-level caches.
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Table 1. Bus traffic in systems with 4 CPUs, a 64-bit bus, and
a main memory with a latency of 30 clock cycles.

Cache size
Block size Set association 1M 2M 8M4M

t6

32

64

t28

256

512

1.3633642

9935848

8754462
8259730

9637928

6865514

5871494

5493342

7862372

5508930
4568466

4232144

7680542
5402564
4361608

3970084

9167r48
6478272

522t894
4621.3t6

t2427602
8825924

7264188
6339s52

223860s6
13239876

1r102462
97331.90

10678216

8674758

7963t40
7814290

7373534

5807608
5213292

5091186

5948s90
4516668

3955690

3845882

5786994
4299744

367t172
3559048

6885258

5062362
42t9666
4077286

9310830

6767630

5656548
5432t08

17155884

10270036

8385648
7957402

9371434
79971,58

7819630

7788290

6334436

5241752

5091194

5057038

4999730

4001318

3837914
3802880

4800154

3741966
3539966

3495486

5685808

4311282
4038384

3979634

7719284
5785270

5353184

5273356

12794600

85r9834
7786710

765t286

8652226
7852498
7789416
7788052

57627t4
5t07802
5057784

5056534

4488760

3852792
3803132
3801842

4235424

3547214

3494420

3493252

4909054

4049386

3976408

3974472

6569004

s387976
5266136
5262708

9714350
7858452
7635352
7627500

1024

In this study, the amount of traffic on the shared-memory bus is measured
by the number of clock cycles taken to complete all bus operations in a simu-
lation run. This measurement can more accurately reflect the real situation than
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just counting total number of bytes transferred over the bus because some coher-

Lnce operations such as invalidation do not involve data ffansfer. What is missing

in this measurement is the time taken to carry out bus arbitration when multiple

bus masters issue requests at the same time. Table I shows a sample of the data

collected in the simulation. Each entry in the table represents the amount of bus

traffic measured under a specific cache configuration and a specific system con-

figuration. For example, the data in Table 1 were collected assuming the system

tra¿ ¿ CpUs , a 64-bitbus, and a main memory with a latency of 30 clock cycles'

As mentioned earlier, we conducted simulation runs under a wide range of system

configuration variations and two process scheduling policies, process migration

and pìocess affinity. Therefore, we actually created 48 such tables and derived the

observations discussed in the following sections based on these tables'

3. Optimization of Cache Design

This section and the next elaborate optimal design of megabyte second-level

caches for minimizing bus traffic in shared-memory shared-bus multiprocessors.

This section presents simulation results assuming unrestricted process migration,

and the next addresses the effect of process affinity.

3.1. Significance of Optimal Design

The flrst observation on the collected data is that good cache design is crucial

for minimizing bus traffic in shared-memory shared-bus multiprocessors with

megabyte second-level caches. Table 2 shows the bus-traffic ratio between two

cache designs under various system configurations. The first design, the denomi-

nator, is a 1 megabyte cache with direct mapping and 16-byte blocks' The second

design, the numerator, is a 4 megabyte cache with 2-way set associativity and

tZç-byteblocks. Table 2 reveals that a reduction of bus traffic up to more than 80

percent would result due to a good cache design.
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Tabte 2. Bus trafftc ratio between two cache designs under
various system configurations. The first design, the denomi-
nator, is a 1 megabyte cache with direct mapping and 16-byte

blocks. The second design, the numerator, is a 4 megabyte

cache with 2-way set associativity and 128-byte blocks.

Bus width CPU #=4 CPU #=8

32 bits
64 bits

128 bits
256 bits

47.37o

33.6Vo

25.7Vo

22.ÙVo

53.27o

37.87o

28.8Vo

24.7Vo

(a) Main-memory access latency = 20 bus cycles.

Bus width CPU #=4 CPU #=8

32 bits
64 bits

128 bits
256 bits

38.2Vo

27.5Vo

2l.SVo

18.7Vo

43.27o

31..l.Vo

'24.470

2L.2Vo

(b) Main-memory access latency = 30 bus cycles.

Bus width CPU #=4 CPU #--8

32 bits
64 bits

128 bits
256 bits

32.7Vo

23.9Vo

19.lVo

1.6.87o

37.2Vo

27.2Vo

21..8Vo

19.2Vo

(c) Main-memory access latency = 40 bus cycles.

3.2. Figuring Out Optimal Cache Design

Having learned the significance of good cache design, the next issue is to figure
out the optimal choice of cache metrics, that is, cache size, degree of set asso-

ciativity, and block size, for various system configurations. Based on the general
perception, we may anticipate that the amount of bus traffic would decrease as

cache size and degree of set associativity increase. This perception is confirmed
by the data collected in the simulation runs. However, the data also show that the
decrease of bus traffic achieved by increasing cache size and degree of set asso-

ciativity gets saturated beyond certain points. If we vary cache size and degree of
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Set AssociativitY
Cache Size in Bytes

1M 2M 4M 8M

1-way

2-way

4-way

8-way

Figure 2.The region where the reducing of bus traffic due to

larger cache size and higher degree of set associativity gets

saturated.

set associativity and use 10 percent as the criterion of saturation, then, the shaded

region in Figure 2 marks the combinations of cache size and degree of set asso-

ciativity that consistently yield less than 10 percent more traffic than the selection

of 8 megabytes with 8-way set associativity, which is the largest cache size with

the highest degree of set associativity in our simulation runs. It is interesting to

observe that the same saturation region occurs no matter what the combination of

block size, number of CPUs, bus width, and main-memory latency is. This result

is significant since it implies that caches with the following two combinations of

cache size and degree of set associativity are in general the most cost-effective

choices with respect to minimizing bus traffic:

' 2 megabyte with 4-way set associativity

. 4 megabyte with Z-way set associativity.

Once the cache size and degree of set associativity are fixed, the remaining

cache metric yet to be determined is block size. An important observation from

the simulation output data is that the optimal choice of block size is virtually inde-

pendent of CPU number, cache size, degree of set associativity, and main-memory

latency as long as the 2-tuple of cache size and degree of set associativity is in

the saturation region as shown in Figure 2. The optimal block size is, however, a

function of bus width. Figure 3 plots the amount of bus traffic versus block size

in systems that have 8 CPUs, 2-megabyte 4-way set-associative caches, and a

main memory with a latency of 20 clock cycles. For systems with a wider bus,

the optimal choice of block size tends to be larger. This effect is expected be-

cause the wider the bus is the less the time needed to transfer a block of data over

the bus. Table 2 summarizes the optimal choice of block size for systems with a
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CPU# = 8, Cache Size = 2M B¡es,
Set Assoc. : 4-way
Main memory access latency = 20 clock cycles
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Figure 3. Bus traffic versus block size in systems that have 8
CPUs, 2-megabyte 4-way set-associative caches, and a main
memory with a latency of 20 clock cycles.

combination of cache size and degree of set associativity that falls in the shaded
area of Figure 2.

In the preceding discussion, we did not take into account the cost and sys-
tem performance impacts of employing a larger cache or a higher degree of
set associativity. one of the reasons is that it is impossible to derive a general
cost/effectiveness ffadeoff since costs of hardware components depreciate all the
time. what we can say here is that whenever we can use a less complicated de-
sign, for example, smaller caches or lower degree of set associativity, and still
achieve the same effect, we should adopt it. This is what the saturation region
shown in Figure 2 is about. As far as system performance is concerned, this is-
sue is of less significance since our discussion is about the second-level caches
rather than the first-level caches. In contemporary computer systems, the first-level
caches must match the CPU speeds to deliver a good system performance. The
speed of the second-level caches does not play an important role in determining
the overall system performance as long as the second-level caches are not unrea-
sonably slow.
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Table 3. Optimal choice of block size for systems with opti-

mal choice of cache size and degree of set associativity.

Bus width 32-bit 64-bit 128-bit 256-bit

Optimal block size 64 bytes 128 bytes 128 bytes 256 bytes

4. The Effect of Implementing Process Affinity

In Section 3, we discussed optimal cache design for minimizing bus trafflc under

an unrestricted process-migration policy. Under this policy, a process in the global

ready queue will be scheduled to run at any available CPU regardless of the pro-

cess's past trace of CPU visit. Sometimes, due to other considerations, one may

want to implement process affinity. v/ith the process-affinity policy, the system

maintains one ready queue for each CPU. A process is assigned to a CPU when it
is created, and the process will only run on the assigned CPU during its life span.

In this section, we will discuss optimization of second-level megabyte caches un-

der the process-affinity PolicY.
In the simulation, the 15 traces were evenly distributed to the CPUs. The

frrst phenomenon one would observe from the simulation output data is that the

amount of bus traffic is significantly reduced with process affinity. The percentage

of reduction ranges from 40 percent to 70 percent depending on system configura-

tion. This effect is expected due to the following reasons:

1. Process migration induces more compulsory cache misses [Hennessy and

Patterson 19901 as a process migrates to a CPU that the process has never

visited.

2. Process migration means that l/ processes contend for space in each CPU's

cache, instead of N lK processes, where K is number of CPUs. Thus,

process migration increases the interprocess interference [Sites and Agar-

wal 19881.

3. Process migration also means that a large number of read-only blocks end

up with multiple copies in multiple caches, effectively reducing the total

system cache size [Sites and Agarwal 1988].

As far as optimization of cache design is concerned, an interesting and im-

portant observation is that the same saturation region as plotted in Figure 2 also

applies here. Thus, optimal choice of cache size and degree of set associativity

regarding minimization of bus traffic is not affected by the implementation of pro-

cess affinity. Hence, the remaining cache metric that needs to be determined is
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cache block size. With process affrnity, the optimal block size tends to be larger.
The increase of optimal block size when process affinity is implemented is due to
a reduction of data sharing among caches. Because process affinity causes no data

sharing induced by process migration, the effect of false sharing is reduced. Since
false sharing is a negative factor for employing large cache blocks, the reduction
of false sharing means that the trade-off is inclined to having larger blocks.

5. Conclusion

This paper presents a comprehensive study on optimal design of megabyte second-
level caches for minimizing bus traffic in shared-memory shared-bus multipro-
cessors. It focuses on the coÍlmon multiple-user/multiple+ask workload, since
the majority of multiprocessors are installed for improving system throughput un-
der this kind of environment. The results from the simulation runs are significant.
They show that a careful design could mean a reduction of bus traffic by more
than 80 percent or, equivalently, an increase of system scalability by more than
flve times. Furthermore, according to the simulation results, optimal choice of
cache configuration metrics are invariant under several system configurations. This
leads to the development of a few simple design guidelines, the most important of
which are the following:

1. A good design of megabyte second-level caches could mean up to 80 per-
cent reduction in bus traffic.

2. The following two combinations of cache size and degree of set associativ-
ity are in general the most cost-effective choices for minimizing bus traffic:
2 megabyte with 4-way set associativity or 4 megabyte with 2-way set asso-
ciativity.

3. The optimal choice of block size is virtually independent of CPU number,
cache size, degree of set associativity, and main-memory latency as long
as a combination of cache size and degree of set associativity that mini-
mizes bus traffic, that is, in the saturation region as shown in Figure 2, is
selected. The optimal choice of block size, however, is a function of bus
width and also depends on whether process affinity is implemented. With
process affinity implemented, the optimal choice of block size tends to be
larger due to less false-sharing effect.
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Appendix A

The M Bus cache coherence protocol [Cypress 1991] is based on MOESI cache

states proposed in [Sweazey and Smith 1986]. The M Bus protocol employs the

write-back and write-invalidate policies. The key of the M Bus protocol is the

ownership mechanism lKatz et al. 19851. The possession of the ownership of a

block of data by a CPU module means that the CPU module has the exclusive

right to update the block of data and the responsibility to provide a duplicated

copy of the data to another CPU module if requested. Multiple copies of a block

of data can co-exist in more than one CPU module but only one CPU module can

be the owner at one time since the right to update is exclusive. The owner of a

block of data is also responsible for writing back the data to the main memory

when the data is to be expelled from its cache memory. CPU modules that cache

duplicated copies of data of which they are not the owner do not need to perform

the write-back operation. The M Bus protocol has five cache states, namely,

1. Invalid: The cache block contains no valid data.

2. Exclusive Clean: The cache block contains the only copy of the data among

all CPU modules. The copy is clean but the CPU module is not the owner

of the data.

3. Shared Clean: The cache block contains one of the multiple copies of the

data among all CPU modules. The copy is clean but the CPU module is not

the owner of the data.

4. Exclusive Modited: The cache block contains the only copy of the data

among all CPU modules. The copy is dirty (modified), and the CPU module

is the owner of the data.

5. Shared Modified: The cache block contains one of the multiple copies of
the data. The copy is dirty (modified), and the CPU module is the owner of
the data.

Figure 4 shows the state transitions in the M Bus protocol. Not included in

Figure 4 are edges from each of the valid states to the invalid state in response to

an invalidation request.
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acquire a copy
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Another CPU
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a duplicaæd copy
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On awiþ hit
invalidate duplicated
copies of the data in
other CPU modules

On aread miss,
acqriæ a ürplicabd

On a lead miss,
aoqrirc a sole copy
ol ü¡e data
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Shared Clean
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Shared Modified
Exclusive Modified

Figure 4. St¿te transitions in the M Bus protocol.
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Appendix B

The characteristics of the 15 SPARCSim traces used in the simulation ile pre-

sented in Table 4, where

. CS is a cache simulator.

. SC is a superscalar compiler.

. PSC is a preprocessor of a superscalar compiler.

. Othello is a chess game.

. zip is a file-compression program.

. Compress is a file-compression program.

. Diff is a UND( utility that compares two files and lists their difference.

. Find is a UND( utility that sea¡ches files in a directory.

. GO is a Chinese chess program.

. Less is an enhanced UNIX utility of More.

. Indent is a formatter.

. CPP is a preprocessor of a C compiler.

. Bison is a Yacc-like package.

. GAS is the GNU SPARC assembler.

. Ispell is a UNIX utility that checks spelling enors.
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Table 4. Characteristics of the fraces used in the simulation.

SPARCSim
traces

Total instructions
executed

Supervisor instructions
executed

User instructions
executed

CS

sc
SPC

Othello
zip
Compress

Diff
Find
Go

Less

Indent
CPP

Bison
Gas

Ispell

4770171

6728246

5208786

5117904

2667238
4414012
3385299

4610356

4820332

3496604
3812538

571,4003

4700577

4845604

5278586

691

3320
Lz498
275503

359

729

lt39
9867

2186
3244

1909

709r
28107

1059

5025

4769480

6724926

5084288

484240t
2666879

4413283

3384160
4600489

4818146

3493360
38t0629
5166912
4672470

4844545

5273561
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