
Recovery in Spritely NFS

Jeffrey C. Mogul

Digital Equipment Corporation

Western Research Laboratory

ABSTRACT: NFS suffers from its lack of an explicit
cache-consistency protocol. The Spritely NFS experi-
ment, which grafted Sprite's cache-consistency protocol
onto NFS, showed an improvement in NFS perfor-
mance and consistency but failed to address the issue
of server crash recovery. Several crash recovery mech-
anisms have been implemented for use with network
file systems, but most are too complex to fit easily
into the NFS design. Spritely NFS now uses a simple
recovery protocol that requires almost no client-side
support and guarantees consistent behavior even if the
network is partitioned. This work demonstrates that
one need not endure a stateless protocol for the sake of
a simple implementation.

@ L994 The USENIX Association, computing systems, vol. 7 . No. 2 . spring 1994 201

l. Introduction

NFS has been extremely successful, in large part because it is so simple and easily

implemented. The NFS "stateless server" dogma makes implementation easy be-

cause the server need not maintain any (non-file) state between RPCs and so need

not recover state after a crash.

Statelessness is not inherently good. Since many NFS operations afe non-

idempotent and might be retried due to a communication failure, to get reasonable

performance and "better correctness" the seryer must cache the results of recent

transactions [Juszczak 1989]. Such cache state is not normally recovered after a

crash, although not recovering this state exposes the client to a possible idempo-

tency failure.
A more serious problem with NFS statelessness is that it forces a tradeoff

between inter-client cache consistency and client file-write performance. In order

to avoid inconsistencies visible to client applications, NFS client implementations

(by tradition, rather than specification) force any delayed writes to the server when

a ûle is closed, thus ensuring that when clients use the sequence

ttlri-ter

openo
r¡rite o
close o

openo
reado
close o

the reader will see the most recent data, if the writer and reader explicitþ synchro-

nize so that the reader's opentakes place after the writer's close. (Actaally, even

this strategy doesn't quite work, as we will see shortly.)

Unfortunately, this means that the close operatton is synchronous with

the seryer's disk. Since most files are small [Baker et al. 1991; Ousterhout

et al. 19851, this effectively makes most file writes synchronous with the server's

202 Jeffrey C. Mogul

Reader

disk, and NFS clients spend much of their time waiting for disk writes to com-
plete. Also, although many files have very short lifetimes, are never shared, and
need never leave the client's cache, NFS still forces them to the server's disk and
so wastes a lot of effort. Finally, NFS does not guarantee cache consistency for
simultaneous write-sharing, because while a f,le is open, writes are not actually
synchronous.

NFS implementations also trade cache consistency for client file-read per-
formance. Because the client's cache would be useless if the client continually
checked with the server to see if the underlying file has been modified, practical
implementations only check every few seconds (this interval may vary based on
how recently the file was last modified). Hence, if a client has cached an old ver-
sion of a file, for several seconds after the writer's close the reader may see stale
data. That is, NFS implementations do not even guarantee consistency in the se-
quential write-sharing case. The net result is that occasional consistency errors
plague NFS users, yet NFS cannot aggressively use client caches to improve per-
formance.

The Sprite flle system [Nelson et al. 1988] solves this paradox by introducing
an explicit cache-consistency protocol. The fundamental observation is that write-
sharing is rare. It can be detected by the server if clients report file opens and
closes (not done in NFS), so the write-through-on-close policy can be eliminated.
Instead, when write-sharing does occur, Sprite turns off all client caching for the
affected file, and thus provides true consistency between client hosts.

Spritely NFS lSrinivasan and Mogul 1989] was an experiment to show thar
a Sprite-like consistency protocol could be grafted onto NFS, and to show that
the performance advantage of Sprite over NFS was in large part due to the con-
sistency mechanism rather than other differences between Sprite and UNIX. Be-
cause the cache consistency protocol introduces server state that must be preserved

across crashes, Spritely NFS (ike Sprite) requires a crash-recovery protocol. This
paper describes the design, implementation, and performance of a simple but ro-
bust recovery protocol. Even in the event of a network partition, no undetected
consistency failures can occur.

The main ingredients of Spritely NFS and its recovery protocol are

. a superset of the NFS protocol, which allows the use of existing implemen-
tations and experience, and full interoperation with NFS clients and servers

. explicit cache consistency, providing guaranteed consistency and better
performance

. server-centric recovery which simplifies the client implementation and sup-
ports fast recovery after a server crash

Recovery in Spritely NFS 203

. support for write-behind (asynchronous writes), which improves perfor-

mance, including a technique that avoids undetected failures due to lack of
server disk space

. detection and possible resolution of any failures caused by network parti-

tions.

None of these individual concepts are entirely novel. The main contribution

of the Spritely NFS project is the combination of these concepts to significantly

improve upon NFS without adding excessive implementation complexity.

l.I. Status of the Project

The original Spritely NFS experimental work was done in 1988. At that time, we

asserted (perhaps naively) that since the Sprite researchers had devised a recovery

protocol for their system [Welch 1990], the problem of recovery was solved in
principal for Spritely NFS as well. The Sprite recovery protocol, however, was not

entirely satisfactory for Spritely NFS (see Section 5), and so during the next few

years, several peoplel participated in a discussion of possible altematives.

In early 1992,I finally worked out a relatively pleasing recovery design, based

in large part on more recent work done on Sprite recovery [Mary G. Baker, per-

sonal communication, 19911; this paper design was presented at a workshop

[Mogul 1,992]. That summer, an initial implementation of the recovery protocol

was done by Bharat Shyam, an intern at my lab. Subsequentl¡ I continued the im-
plementation work to the point where the recovery protocol now works reliably

and efficiently.
This paper, therefore, describes a system that is about three-quarters com-

plete. Because it is embedded in an existing commercial implementation of NFS

(ULTRIX, version 4.3), it may require some additional tuning to yield the best

possible performance (some conservative assumptions made by the original

NFS code are no longer necessary). Also, the cache-consistency protocol may

enable several further improvements, such as directory caching and better file

locking; these are described in Section 10. However, as it stands today, it works

well enough to be used instead of NFS.

1. Mary G. Baker, Cary Gray, Rick Macklem, John Ousterhout, and Brent Welch

204 Jeffrey C. Mogul

2. Goals and Design Philosophy

The design of Spritely NFS, including its recovery protocol, is meant to meet a

number of pragmatic goals:

. Simplicity: Spritely NFS was a successful experiment partly because it re-

quired minimal changes to an NFS implementation and almost no changes

to any other code. Any improved version should avoid unnecessary com-

plexity, especially on the client side; client hosts are often underpowered

and administered by naive users.

. Consistency: Spritely NFS should provide guaranteed cache consistency at

all times. A partial guafantee is no improvement on NFS, since an applica-

tion cannot make use of a partially guaranteed property.

. Performance: Spritely NFS is not worth doing unless its performance, even

with recovery is better than that of NFS. Although Spritely NFS also

promises better consistency, that in itself would not convince many users

to switch.

. Reliability: Spritely NFS should be no less reliable than NFS or the local

UNIX file system. (Note that I am satisfied with matching the lesser of
these reliabilities in a given situation. NFS is sometimes, but not always,

more reliable than a local LINIX flle system, and Spritely NFS sometimes

must give up these NFS properties.)

. No-brainer operation: System managers should not need to do anything

special to manage a spritely NFS system. In particular, they should not

need to adjust parameter values. The timeouts in the system should reflect

the delays inherent in network communication and should never have to be

tuned to provide correct behavior in the face of slow hosts.

. Incremental adoption: Spritely NFS clients should interoperate with NFS

servers, and vice versa. Otherwise, users will not have much of an incentive

to adopt Spritely NFS, because they would have to replace large parts of
their infrastructure all at once.

The system described in this paper meets these goals.

Recovery in Spritely NFS 205

3. Review of Spritely NFS

This section summarizes the design of Spritely NFS, postponing the issue of re-
covery until Section 5. The Appendix gives a brief specification for the current
version of the protocol, including recovery. Table 1 lists the RPCs added to the

basic NFS suite and indicates where they are described in this paper.

Table 1. RPC Calls Added in Spritely NFS.

RPC name Purpose Described in

open

close

Inform server that client will use a file. Section 3

Inform server that client reference to file is no Section 3

longer needed.

Inform client that it must no longer cache a file. Section 3

Inform client that server is recovering. Section 6.3

Inform client that server recovery is complete. Section 6.3

Ask client to reopen some of its files. Section 6.3

Inform server that client was using a file prior to Section 6.3

the seryer's recovery.
Inform server that client has rebooted or is
trying to recover from a network partition.

callback
beginrecov

endrecov

reqreopen

reopen

clctl Section 6.2, 7

The original Spritely NFS introduced two new client-to-server RPC calls,
open and close. Both calls transmit the current number of read-only and read-write
references the client has to the file; because only the client increments and decre-

ments the reference counts, these RPCs are idempotent. (All Spritely NFS RPCs

can be duplicated safely by the network, including those used in the recovery pro-
tocol. Those that are not idempotent employ a monotonically increasing sequence

number, allowing the receiver to discard duplicates.)
The client data cache in Spritely NFS (as in Sprite and most NFS implemen-

tations) is organized as a set of fixed-size blocks, not as a whole-flle cache. A
Spritely NFS client maintains a flag per open ûle indicating whether blocks from
that file may or may not be cached. If a file is not cachable, all reads and writes
are done directly from or to the server. If a flle is cachable, the client may use a

cached copy of a data block, if present, to satisfy a read, and need not immedi-
ately write data through to the server.

The NFS server is augmented with a "state table," recording the consistency
state of each currently-open file. In Spritely NFS, this state table is relevant only

206 Jeffrey C. Mogul

to the open and close RPCs; all other client RPCs are handled exactly as in NFS.
When a client issues an open RPC, the server makes an entry in its state table and
then decides, based on other state table information, if the specified open-mode
conflicts with uses by other clients. If the open is conflict free, the server (via the
RPC return value) notifies the client that it can cache the file. Otherwise, the client
is not allowed to cache the file.

In some cases, a conflict may arise after a client has opened a file and has
been allowed to cache it. For example, the first client host might open a file for
write, and be allowed to cache it, and then a second host might open the same file.
At this point, in order to maintain consistency, the first client must stop caching
the file.

For this reason, Spritely NFS adds a server-to-client callbac¿ RPC to the NFS
protocol. When a server decides that a client must stop caching a file, it does a
callback to inform the client. A client with cached dirty blocks may have to write
these blocks back to the server before replying fo the callbacÈ RPC.

Figure 1 shows what happens when the server detects write-sharing. (In the

Client A

Cal,lback: write-back
and stop eaching

Client B

Open for read

i open-Reply: don't cacÏã)i

Server

open for wriÈe

CIient
reads &
writes
to its
cache

Client
writes
to the
s erver
from now
on

write dirty data

Wrít.e-Reply

W¡ite

CIient
reads
from the
server
from now
onRead-Reply

Write-Reply

Figure 1. Time line for write-sharing situation.

Recovery in Spritely NFS 207

figure, time flows down the page. Packets are shown as affows; RPC requests are

labeled above the arrow; and RPC replies are labeled below the arrow.) We see

Client A open a file for writing, at which point the server allows caching (because

no other clients are involved). Once Client B issues an open, however, the server

does a callback RPC to Client A. In response, Client A writes back whatever dirty
data it has, invalidates its cache, and disables further caching. It then replies to
the server, at which point it is safe for the server to reply to Client B's open NPC.
This reply informs Client B that it cannot cache the file; so from now on Client
B will always read from the server (and Client A will always write through to the

server).

Spritely NFS clients need not write-through dirty blocks when a file is closed.

The server keeps track of closed-dirty ûles and can ask the client to write the

blocks back if another client opens the file for reading, but otherwise the writer
client can write the blocks back at its own leisure (see Figure 2; note that the

use of two close RPC calls will be explained in Section 4). A client with closed-

dirty blocks might even remove the file before the blocks are written back, thus

Client Server

Open for write

client reads &

writes to its
cache

Cl-ose: file is dLrty

ffi

Cli-ent decides
to write back
dirty data ûlrite dirÈy data_t

Wrj.te-RepJ-y

Close: no dirty data

Ctose-Reply

Figure 2. Time line for client using write-behind.

208 Jeffrey C. Mogul

Client

write

to its cache l
I clo.u, file is dirty

open for read

Server

open for

i{Eãããply: cachans oK :
Client wriÈes ¡ .

:----i:;
ffioxi

Client reads
from its cache

C.Lose: fLle .ls dirty

Client decides
to delete file Close: no dirty data

:ffi
Figure 3. Time line for client removing file before write-back.

avoiding wasted effort (see Figure 3; note that no writeRPCs are sent). We call
this technique of writing dirty blocks after the file has been closed write-behind.

Write-behind does lead to one small semantic problem. The client does not
know how many server disk blocks will be allocated to a file until all the data is
written to the server, because the seryer's disk file system may require overhead
blocks in addition to those used for data bytes. Commands that try to determine
the storage allocation (such as du and /s -s) will underreport the value until the

write-behind has completed. It might be possible to provide a close estimate; this
is not done in the current implementation.

3.1. Perforrnance Paradoxes of Write-Behind

Consistency in Spritely NFS (and Sprite) applies to entire files, not to regions
within a file. Thus, if a client wants to read a file that is closed and dirty in

Recovery in Spritely NFS 209

another client's cache, the server will not let the reader proceed until the writer has

finished its write-back and has responded to the callback RPC. This may take a

long time (on the order of minutes if the file is large, the writer has a large cache,

and the server is slow).
This kind of delay does not occur with NFS (because the writer cannot keep

many dirty blocks in its cache) or with a local file system (because there is no

cache-consistency issue), and it may seem like a serious performance problem. It
is, however, simply the exposure of a choice that is not necessary with a local file
system and is not allowed by NFS.

Consider the example of a parallel make procedtre, which first tells a num-

ber of client hosts to compile, in parallel, the individual modules making up the

target program and then instructs one client to link the modules together. Rela-

tive to the object modules, the compiler hosts are writers and the linker host is the

reader. Using NFS, the linker can start immediately after the last compilation is

done, because at that point all the blocks of the object modules have been writ-
ten to the server. If the clients use Spritely NFS and do write-behind, the linker
will have to wait for all the write-backs to take place. In fact, it will probably

open the object modules one at a time and so could be forced to pay the penalties

serially.
Therefore, an application ought to have the ability to control when its writes

are done. In the case of a parallel make, the compiler should specify that object-

module writes take place asynchronously but as soon as possible, so that they

will mostly overlap with other activity. (If the compiler includes an optimization
pass that reads and rewrites the object file, only that pass should specify write-
ASAP behavior, because the dirty data from the first pass need never go to the

server.) During a single-host make, on the other hand, the compiler should specify
write-behind because that will reduce the elapsed time until the compiled program

is ready to use. This fact implies that the compiler must provide a way for the

parallel-make program to instruct it to request write-ASAP behavior.

It might also be possible to devise heuristics that would allow the ûle sys-

tem to decide whether write-behind or write-ASAP is appropriate. This decision

could be difficult; one would not be able to rely on past accesses to the specific

file, because (in the case of a parallel make) it has just come into existence; nor
could one rely on the past behavior of a specific process because, in this example,

a compiler process typically generates one object file and then exits. One possi-

ble approach would be to assume that files created in write-shared directories are

likely to be shared themselves.

We could also limit the write-back delay by insisting that the writing client
retum the dirty blocks in sequence and by allowing the reading client to proceed

with sequential reads as long as they did not get ahead of the writes. This method

210 Jeffrey C. Mogul

would greatly complicate the protocol and its implementation and probably would
not provide much advantage.

3.2. Cache Version Numbers

When a client reopens a closed file for which it has cached data blocks, how does

it know if these cached blocks are still valid? We solve this problem by associat-

ing a version number with each file, which increases each time the file is opened

for writing. The server retums the current and previous version numbers in reply
to an open RPC; the client remembers the current version number for each file for
which it might cache data blocks.

If the server's current version number matches the client's cached version
number, the cached blocks are obviously current. If the server's previous version
number matches the client's cached version numbe¡ and the client is performing
an open-for-write, then the change in version number was caused by the current
open operation, and the cached blocks are still current. Otherwise, some other
client may have written the file since the cached blocks were read, and they must
be invalidated.

Sprite maintains each file's version number on disk (i.e., in nonvolatile stor-
age). For Spritely NFS, which makes use of existing disk file system designs, we
decided that it would be infeasible to require the server to maintain a nonvolatile
file version number. Spritely NFS still guarantees that a file's version number will
increase on every open-for-write, as long as the server does not crash. During
crash recover¡ clients obtain new version numbers from the server for the files
they have open (or for which they have cached dirty data), but not for files that
are closed-clean. Hence, client caches of data for closed-clean files must be in-
validated on server recovery. We believe that this will not seriously reduce the

effectiveness of the client cache.

A Spritely NFS server stores a file's current version number in the correspond-
ing state table entry. While the file is open, this entry is guaranteed to persist, but
(because server memory is bounded) the state-table entry for a closed file may be

kicked out to make room for a new active entry. If a client then reopens the file,
the server no longer remembers the file's current version number. We preserve cor-
rect behavior in this case by assigning a new version number that is known to be
higher than any previously issued, forcing the client to invalidate its old cached
blocks even though they might be valid. This should not cause much performance
loss unless the server's state table is nearly full.

The simplest way for the server to ensure that a file's version number in-
creases, even if the file is not listed in any table, is to use a global counter and
increment this counter whenever a file is opened for writing. If the server performs

Recovery in Spritely NFS 2ll

an open-for-write once each millisecond (probably the rate would be much lower
than this), a 32-bit counter would roll over after about seven weeks. At that time
the server could simply invoke its crash-recovery mechanism to force the clients

to obtain new version numbers.

The server could avoid incrementing the global counter on each open-for-write
by incrementing instead only the values in active state-table entries. V/hen a state-

table entry is replaced (and hence its value is about to be lost), the global counter

must then be updated to be the maximum of its current value and the value in the

deleted entry. It could then never be less than the proper value for a "forgotten"
entry. This would probably reduce the rate of counter wraparound, although the

worst-case behavior would not change.

3.3. Choice of Update Policy

A system that delays writing data to the disk or file server should not delay these

writes forever. A mechanism that writes out dirty blocks older than a certain age

limits the potential damage caused by a crash and may also improve read latency

by maintaining a pool of clean blocks.

The traditional UNIX update policy is to write out all dirty blocks every 30

seconds, along with all the modified metadata (that is, structural information about

the file system, including superblocks and inodes) [McKusick et al. 1984]. This
simple "periodic update" (PU) policy has been shown in a simulation study [Car-
son and Setia 19921 to increase read-latency (and especially the variance in read-

latency), because at twice a minute the disk queues can become quite long. The

same study suggests that the "individual periodic update" (IPU) policy, in which
each block is written as its age reaches a threshold, should provide better perfor-
mance (essentially by spreading the write load more smoothly).

In practice, it is simpler to approximate IPU by checking the age of dirty
buffers every few seconds, rather than managing a precise timer for each dirty
buffer. This means that, in the best case, one I/i30 of the dirty blocks will be writ-
ten every Iy' seconds, which (for small N) keeps the variation in queue length

much smaller. In the worst case, when the system manages to dirty the entire

cache during a period of N seconds, IPU and PU perform identically.
Sprite originally used a modified version of the PU policy [Nelson et al. 1988].

It now uses a policy similar to IPU: Every ûve seconds, the system iterates

over modified files and writes out all the cached blocks of any flle whose oldest

dirty block is at least 30 seconds old [John H. Hartman, personal communica-
tion, 19931.

The motivation behind this version of the IPU policy was not, apparently, to

reduce read latency by reducing peak queue length but rather to maximize the

2I2 Jeffrey C. Mogul

average write-back delay without increasing the worst-case exposure to crashes.
Increasing write-back delay should improve performance if, as the Sprite designers
believed [Ousterhout et al. 1985], many files have lifetimes so short that they need
never be written out to the disk or server. (The original UNIX policy can write out
blocks aged anywhere between 0 and 30 seconds and so will often write blocks
from short-lived files.) Since the Sprite policy ignores the ages of the individual
blocks, if a large file is written gradually into the cache, after about 30 seconds

all of its blocks will suddenly be forced onto the output queue. Sprite's policy
therefore approximates IPU only for small or rapidly written files.

The current implementation of Spritely NFS uses a simple mechanism that
closely approximates IPU: Once a second, any dirty block older than 30 seconds
is written out. As in the current Sprite method, a block's age is measured from the
time it is first made dirty, rather than from the most recent modifrcation.

Because NFS does not often delay writes, it is essentially insensitive to the
update policy. Spritely NFS introduces delayed writes, and so it does benefit from
an IPU polic¡ although the protocol does not specify any particular update policy.
In Section 8.1, I will show that IPU provides a small but measurable performance
advantage.

3.4. Avoidíng Unbounded Timeouts during Callbacks

One aspect of the callback mechanism requires some ingenuity in order to avoid
complex timeout issues. Because it may take a client an arbitrarily long time to
respond to a callbacfr (during this time, it may have to write a lot of data to an
aúitrarily slow server), the server cannot infer from a timeout on a callbac¿ RPC
that the client is down.

The solution to this predicament involves several tricks. First, we note that
the RPC layer normally reissues a request several times before telling the caller
that the request has timed out. Consider a client that, because it is busy doing the
write-back, fails to reply in time to the first instance of a callbacfr RPC. When
the server retransmits the callback, the client notices that a callbacfr is currently
in progress for the specifred file, and replies to the retransmitted RPC with a "try
later" error code. The server, upon receiving this code, delays for a while and tries
again. (The protocol might be more robust if it allowed the server to determine
that the client is making "reasonable progress," to avoid deadlocks resulting from
communications error.)

This mechanism could fail if the server's first few RPC requests really are
dropped (by a lossy network or a busy client), and so the server uses an additional
mechanism to avoid prematurely declaring a client to be dead. If the callback
RPC times out, the server issues a null RPC, to which a live client should respond

Recovery in Spritely NFS 213

immediately. If the client does respond, then the server retries the callback RPC
(but with a longer timeout); otherwise, the server declares the client dead.

While the server is waiting for the callback to complete, the client that issued

the open that caused the callback is also waiting for the server, and its RPC might
also time out. We solve this by allowing the server to return the "try later" error
code in response to a prematurely retransmitted open, which causes the client do-

ing the open to delay for a while and then retry. Unless the reply to the original
open is somehow dropped, the final retransmitted open is redundant, but because

open is idempotent, no real harm is done.

Figure 4 shows an example in which both the seryer and the client doing the

open must wait longer than their RPC timeouts while another client writes back

its dirty data. This example represents more or less the worst case; the point to

observe is that no matter how long the write-back takes, none of the participants

will give up.

3.5. Automatic Recognítion of Sprítely NFS Hosts

I argued that without a path for incremental adoption, users will have little in-
centive to install Spritely NFS, because all-at-once changeovers cause major
disruption. A sudden change to a new, untried system makes system managers

nervous.

Spritely NFS uses the same RPC program number and version as NFS and

can easily coexist with pure NFS hosts. The two problems to solve are automatic

configuration (so that network managers need not worry about who is running
what) and maintenance of consistency guarantees (so that NFS clients get at least

the level of consistency that they would if all clients were using NFS).

When a Spritely NFS client mounts a file system from a remote server, the

first RPC that it issues (after having gone through the mount protocol) is a clctl
(client-control) RPC. (The details of this RPC are related to crash recovery and

are discussed in Section 6.2.) lf the server speaks only NFS, it will respond to

this with a PROC-UNAVAIL error code. The client records this fact (in a per-

filesystem data structure) and treats the file system as a purely NFS service. If the

server responds to the clctl RPC, then it must be a Spritely NFS server, and the

client then follows the Spritely NFS protocol.
A Spritely NFS server recognizes Spritely NFS clients because they issue

c/crl RPCs before anything else. Spritely NFS servers keep track of the addresses

of their Spritely NFS clients, to be used for crash recovery (see Section 6.3) and

space reservation, but otherwise act identically to NFS servers.

In principle, we can establish rules that allow Spritely NFS hosts to detect

when their peers change flavor (i.e., upgrade from NFS to Spritely NFS or change

214 Jeffrey C. Mogul

Client A Server

Open for wrJ.te :

Callback-Reply S1: OK

O¡ren for read f,1

Open for read #2

Reply to #2 I Try Later

Serwer drops
Iate reply

Server stops waiting
and retransmits

Open-Reply f,l:
don't cache

O¡ren for read #3

don't cache

Client B

CJ.j.ent
wrltes
lots of
daÈa to
its
cache

(Time passes)

: Catlback reurmsmít *2 : Seryer Èimes

ñ out and retransmits

CLient times
out and
retransmits

! Callback retransmLt. *3 l

I

! catluaclc-R"prvJñ?'ri

Client drops
Iate reply

Client sèops
waiting and
retransnits

i write di¡ty data

ffi

-i

Reply to *2¡ Try Later

û{rlte dirty data

Figure 4. Time line for timeouts during callback.

Recovery in Spritely NFS 2I5

from Spritely NFS back to NFS). Some speculations on how this might be done
were presented in an earlier paper [Mogal 1992].

3.6. Consistency between Spriteþ NFS and NFS Clients

A Spritely NFS server should provide consistency between NFS and Spritely NFS
clients write-sharing a file (as much as possible). The server does this by treat-
ing each NFS RPC referencing a Spritely NFS file as if it were bracketed by an

implicit pair of open and close operations. (The actual implementation should be

more clever, bypassing the Spritely NFS state transition machinery when possi-

ble, to avoid adding excess delay to NFS operations. Also, it should not attempt to
send a callback to an NFS client that has a file "open.")

This gives Spritely NFS clients nearly perfect consistency (since NFS clients
use write-through, more or less). The NFS clients get no-worse-than-NFS consis-

tency, since any reads they do to the server return the latest copy of the data. (NFS

clients cannot get perfect consistency, for they sometimes read from their caches

when their caches are stale.)

An NFS client attempting to access a ûle for which a Spritely NFS client is

currently caching a lot of dirty data might run into the kind of delay described in
Section 3.1. That is, the Spritely NFS client might take a long time to write back

its dirty data; so the server might not immediately respond to the NFS r¿ød or
write RPC.

In Section 3.1, this was described as a performance issue, because Spritely
NFS clients are willing to wait indefinitely for an open to complete. With an NFS

client, however, we cannot use the mechanism'described in Section 3.4, returning
a special error code saying "try again later," because NFS clients will not recog-

nize this code. The upshot is that a NFS client using a "soft mount" (which turns

RPC timeouts into failures) could report a transient error when reading or writing
a file being written by a Spritely NFS client. This can happen only if the file is
large and the Spritely NFS client has written it quickly, causing a sizable backlog
of dirty blocks to accumulate in its cache.

3.7. Evolution of the Spritely NFS Protocol

The Spritely NFS protocol has evolved somewhat since our original publication

[Srinivasan and Mogul 1989]. In addition to the recovery mechanisms, we found
that we had to make several changes to the cache-consistency protocol itself.

The original specification for the open RPC, instead of passing read and write
reference counts, passed a boolean flag indicating whether this new reference

216 Jeffrey C. Mogul

would be used for writing. The server was responsible for increasing the refer-
ence counts as each open was received. This design was flawed in that it was not
idempotent; a duplicated RPC would cause the server's counts to be wrong. A
race between a duplicated open RPC and a close RPC could cause serious prob-
lems. In the new design, the client maintains the reference counts and simply
reports them to the server. The old design meant that we could not use a single
method for both open and reopen, because reopen inherently needs to pass refer-
ence counts.

Similarly, the close RPC originally passed a boolean flag indicating if the
reference being closed had been open for writing. V/e replaced this with a pair
of reference counts. We also added a count of the number of cached dirty bytes to
support the space-reservation mechanism.

We also added the possibility for the open and callbaclc RPCs to return a new
status code, meaning "try again later." This strategy avoids the need to bound the
amount of time needed for a client to write back its dirty blocks, as a result of a
callback (which in turn is always the result of an open).Instead, all the parties
involved now know to keep retrying an operation until it succeeds, fails, or times
out. A timeout now indicates a host or network failure and cannot be the result of
having too much work to do in a fixed amount of time.

This technique would not have been practical without the change to an idem-
potent open RPC. Using the old protocol, it would have been tricky to keep track
of the half-completed open operations to avoid incorrectly increasing the reference
counts. Also, the new protocol avoids the need to lock a state table entry while a
callback is in progress; this eliminates a possible deadlock if the called-back client
decides to close the file as a result of the callback.

4. Dealing with ENOSPC

One problem with the write-behind policy is that one or more of these writes
might fail. In NFS, because the client implementation forces all writes to the
server before responding to the close system call, an application which checks
the return value from both write and close calls will always know of any write
failures. Not so in Spritely NFS, because the failure might occur long after the ap-
plication has released its descriptor for the file (or even after the application has

exited). This could cause trouble for applications that do not explicitly flush their
data to disk.

Three categories of error can occur on a client-to-sewer write operation:

Recovery in Spritely NFS 217

1. Communications failure: The network is partitioned or the server crashes,

and the RPC times out before the failure is repaired.

2. Server disk hardware error: The disk write operation fails, or the disk fails
after the write completes.

3. Server out of disk space: No space is available on the server disk.

The first error can be turned into a delay by simply retrying the RPC until the

server responds.2 If the client crashes in the interim, then the dirty block is lost,

but this situation is no different from a normal local-filesystem delayed write in
UNIX.

The second error is not generally solvable, even by a strict write-through pol-
icy. It is true that the NFS approach will report detectable write failures, but these

are increasingly rare (because techniques such as bad-block replacement can mask

them). Again, normal UNIX local-filesystem semantics does not prevent this kind
of error from occurring long after a flle has been closed.

The third enor (ENOSPC, in UNIX terms) is the troublesome one. We want
to report this type to the application, because it might want to recover from the

condition and because there is no obvious way for the underlying file system

mechanism to recover from ENOSPC. (Also, unlike the other two kinds of er-

rors, one cannot avoid ENOSPC errors through fault-tolerance techniques.)

Sprite does not completely solve this problem; that is, Sprite applications can

believe their writes are safe but the delayed writes pile up in a volatile cache be-

cause the server is out of space [Mary G. Baker, personal communication, 1992],

AFS apparently follows the same approach as NFS, forcing modified data back to
the server when the file is closed lKazar 19881.

Spritely NFS solves the ENOSPC problem by reserving disk space for the

remaining dirty data when the file is closed. That is, when a dity file is closed,

the client counts up the number of dirty bytes and requests that the server reserve

that much disk space for the file. The server may respond with an ENOSPC error
at this point, in which case the client can revert to a write-through on close pol-

icy. Note that the server may respond to close with ENOSPC even when enough

space does exist; so the client must attempt the writes and report an error to the

application only if a write actually fails.
A client cannot exactly determine the amount of space required to write a set

of dirty buffers. Server file system space is typically allocated in units of blocks,

2. This point is not true if the client uses a "soft mount," which tums RPC timeouts into emors rather than retries.
Soft mounts are generally thought of as living dangerously, although delaying writes after a c/osø does make

them even more dangerous. Perhaps soft-writes-after-close should be made "harder" as long as the client has

enough buffer cache to avoid interference with other operations.

218 Jeffrey C. Mogul

not bytes. NFS does provide the block size to the client; so the client's reservation
request conservatively rounds up the size of every dirty buffer to a multiple of the
block size. Also, because the underlying disk file system may require overhead
space (such as "indirect blocks"), the server must increase the reservation by its
own conservative estimate of the number of overhead bytes.

Because the space reservaúon is a conservative overestimate, when the client
is done writing back the dirty data, some residual space will probably still be re-
served at the server. Also, a client might truncate or remove a file before writing
back the dirty buffers. At some point the client must release the excess reserva-

tion, or else the server's disk would gradually become committed to phantom data.
The client does so by sending a final closeRPC, which "reserves" zero bytes for
the file (see Figures 2 and3). This also causes the server to change its state-table
entry from closed-dirty to closed, which allows the table storage to be reclaimed.

The bookkeeping for the space reservation made by a close RPC involves
maintaining two separate counts. The Spritely NFS server layer keeps track of
the remaining reservation for the given file in the corresponding state-table entry.
It must also arrange with the underlying disk file system to reserve some of the
remaining free space for the file in question. The file system need not actually
allocate space on disk for the reservation; rather, it only needs to keep a count of
the number of free bytes and the number of reserved bytes, and ensure that the
difference never becomes negative. The reservation counts need not be kept on
stable storage, since they will be recovered during the server crash-recovery phase
(see Section 6.6). Thus, the overhead of maintaining these counts is quite low.
Note that the ûle system must enforce the reservation against local applications as

well as against remote clients.
When a server handles a write RPC for a closed file, it decreases the reser-

vation in the state-table entry and must also tell the underlying file system to
decreases its count of reserved bytes. (If a client in the closed-dirty state tries to
use more space than its reservation allows, the write will fail.) Both counts are de-
creased by the amount of new space actually allocated as a result of the write, not
the transfer count of the write RPC (which may be either larger or smaller than the
actual new space required).

This procedure is difficult to implement correctly in the highly layered
ULTRIX server code (typical, probably, of other NFS implementations) because
there is no straightforward way to determine how much space is required for a

file-system write without actually performing the write. The current implemen-
tation makes this determination by assuming the worst possible space allocation,
making this space available for writing by deducting it from the reservation, per-
forming the write, and then seeing how much space was actually allocated. The
difference between the worst-case value and the actual value (i.e., the amount of

Recovery in Spritely NFS 219

reservation that was deducted before the write but not used) is then added back to
the remaining reservation. This results in correct bookkeeping and does not require

any restructuring of the traditional disk file system code, but it does leave a brief
window where another writer could "steal" the last remaining blocks of free space

on a disk. A race-free solution to the problem seems feasible but will require a
much deeper understanding of the disk file system implementation.

One subtle problem can occur with this scheme if two processes on one client
are writing the same file. After one successfully closes the file (i.e., the server

grants a reservation), if the other process extends the tle so much that the server

runs out of disk space, some part of the file might not be written to the server.

This example is not entirely contrived; the frle might be a "log," appended to by
multiple processes. The client implementation could preserve correct semantics in
such a case by ordering the disk writes so that none of the blocks dirtied after the

close are written to the server before the other dirty blocks of that file. The current

client implementation simply forces all dirty blocks to the server before reopening

a closed-dirty flle for write; this is correct but wastes the benefit of write-behind
for frequently opened flles.

If a client crashes while holding a reservation, or simply never makes use of
it, the space could be tied up indefinitely. Thus, the server should set a time limit
on any reservation grant (perhaps in proportion to the number of blocks reserved;

if a client reserves space for a billion bytes, it is unlikely that they could all be

written back within a short interval. A server might also refuse to honor a reser-

vation for more than a few seconds' worth of disk writes). When the time limit
expires and if space is low, the server can reclaim the reservation by doing a call-
back (to force the client to write back the dirty blocks).

A client that fails to respond to the callback, perhaps because of a network
partition, might end up being unable to write dirty blocks if the server reclaims

its reservation. Because a partition might last arbitrarily long, there is not much

that can be done about this: conceptually, this is the same as partition during a

consistency-callback; in either case the write-caching client is unable to write its
modifications back to the server. Section 6.1 will discuss how the protocol deals

with such contingencies. To avoid unnecessarily provoking this problem, a server

should refrain from reclaiming timed-out reservations as long as sufficient free

space remains.

If, after the partition heals, the server has sufficient disk space and has not

allowed a conflicting open, the client could transparently recover from the parti-
tion (see Section 7). On the other hand, if recovery is impossible, because no disk
space is left or because conflicting access has been allowed, then the client host

may have no way to notify the application that wrote the file. The application has

already closed the file and may even have exited. In this case, the modified data

220 Jeffrey C. Mogul

would be lost, just as if a disk sector had been comrpted; applications that cannot
afford data loss should be taking measures to defend against it, whether caused by
local-disk or network failure.

The space-reservation mechanism, in summary, appears to provide the correct
failure semantics without seriously compromising performance. The change to the
protocol is quite simple; however, this feature does complicate both the client and
server implementations in a number of ways and for that reason is not entirely
satisfying.

5. Overview of the Recovery Protocol

Several different recovery mechanisms might have been used for Spritely NFS.
The original recovery mechanism used in Sprite [Welch 1990] depends on a fa-
cility implemented in the RPC layer that allows the clients and servers to keep
track of the up/down state of their peers. When a client sees a server come up, the
Sprite file system layer then reopens all of its files.

This approach provides more general recovery support than is needed for
Spritely NFS, and it has several drawbacks. First, it would require changes to
the RPC protocol now used with NFS, some additional overhead on each RPC
call, and some additional timer manipulation on the client. In other words, it com-
plicates the client implementation, which is something we wish to avoid. Second,

recent experience at Berkeley [Baker and Ousterhout 1991] has shown that such

a "client-centric" approach can cause massive congestion of a recovering server.

Sun RPC has no way to flow-control the actions of lots of independent clients
(a negative-acknowledgement mechanism was added to Sprite's RPC protocol to
avoid server congestion [Baker and Ousterhout 1991]). Third, the server has no
way of knowing for sure when all the clients have contacted it; even if all the
clients actually respond quickl¡ the server still must wait for the longest rea-

sonable client timeout interval in case some client has not yet tried to recover.
This requirement can make fast recovery impossible. Fourth, if a partition occurs
during the recovery phase, partitioned clients may never discover that they have
inconsistent consistency state.

Another possible approach is the "leases" mechanism [Gray and Cheri-
ton 19891. A lease is a promise from the server to the client that, for a specified
period of time, the client has the right to cache a file. The client must either re-
new the lease or stop caching the file before the lease expires. Since the server
controls the maximum duration of a lease, recovery is trivial: once rebooted, the
server simply refuses to issue any new leases for a period equal to the maximum
lease duration. A server will renew existing leases during this period; the clients

Recovery in Spritely NFS 221

will continually retry lease renewals at the appropriate interval. When the recovery
period has expired, no old lease can conflict with any new lease, and so no seryer

state need be rebuilt.
The problem with leases is that they do not easily support write-behind. Con-

sider what can happen if a client holding dirty data is partitioned from the server

during the recovery phase (not an unlikely event, since a network router or bridge
might be knocked out by the same problem that causes a server crash), or if the

server is simply too overloaded to renew all the leases before they expire. In either
case, the client is left holding the bag: the server will have honored its promise

not to issue a conflicting lease but will not have given the client a useful chance to
write back its dirty data before a conflict might result.

Another potential problem with leases is that the duration of a lease is a pa-

rameter that must be chosen by the server. The correct choice of this parameter is

a compromise between the amount of lease-renewal traffic and the period during
which a recovering server cannot issue new leases, and it is unlikely that the av-

erage system manager will be able to make the right choice. The original Sprite
protocol has a similar parameter, the interval between "are you alive?" null RPCs,

which again trades off extra traffic against the duration of the recovery phase. V/e

would like to avoid all unnecessary parameters in the protocol; these force people

to make choices that might well be wrong. (Also, timer-based mechanisms force
increased timer complexity and overhead on the client.)

Spritely NFS uses a'oserver-centric" mechanism, similar to one implemented
for Sprite, that relies on a small amount of nonvolatile state maintained by the

server lMary G. Baker, personal communication, 1991]. The idea is that in normal
operation, the server keeps track of which clients are using Spritely NFS; during
recovery the server then contacts these clients and tells them what to do. Since the

recovery phase is entirely controlled by the server, there is less chance for conges-

tion (the server controls the rate at which its resources are used). More important,
the client complexity is minimal: rather than managing timers and making deci-

sions, all client behavior during recovery is in response to server instructions. That
is, the clients require no autonomous "intelligence" to participate in the recovery

protocol.
For this proposal to work, the use of stable storage for server state must be

quite limited, both in space and in update rate. The rate of reads need not be lim-
ited because a volatile cache can satisfy those with low overhead. Stable stor-

age might be kept in a nonvolatile RAM (NVRAM), but if the update rate is low
enough it is just as easy to keep it in a small disk file, managed by a daemon pro-
cess. Updates to this disk file might delay certain RPC responses by a few tens of
milliseconds, but (as you will see) such updates are rare.

222 Jeffrey C. Mogul

6. Details of the Recovery Protocol

The stable storage used in this protocol is simply a list of client hosts, with a few
extra bits of information associated with each client. One is a code saying whether
a particular client is an NFS client or a Spritely NFS client. Only Spritely NFS
clients participate in the recovery protocol, but we keep a list of NFS clients be-

cause it could be useful to a system manager. Another flag records whether the

client was unresponsive during a recovery phase or callback RPC, allowing us to
report to the client all network partitions, once they are healed.

6.1. Normal Operation

During normal operation the server maintains the client list by monitoring all
RPC operations. If a previously unknown client makes a clctl RPC, then it is
obviously a Spritely NFS system. If a previously unknown client makes any
file-manipulating RPC, then it is an NFS client. If a host thought to be an NFS
client does a clctl, then it presumably has become a Spritely NFS client and will
participate in the Spritely NFS protocol from now on (see Section 3.5).

The client list changes only when a new client arrives (or changes between
NFS and Spritely NFS). Such a change is an extremely rare event (most servers

are never exposed to more than a few hundred clients), and so it does not matter
how expensive it is. In the current implementation, the client list is kept in a disk
file and the update cost is a few disk accesses, that is, comparable to the basic cost

of a file access.

On the other hand, the server must check the cached copy of the client list on

almost every RPC. This check is done quite cheaply by keeping the client list as

a broad hash table and by keeping a one-entry look-aside buffer (because in many
cases, the seryer will receive several RPCs in a row from the same client). The
overhead should be less than is required to maintain the usual NFS transaction
cache.

Note that the server's volatile copy of the client list need not contain the entire
list of clients but could be managed as an LRU cache, as long as it is big enough

to contain the working set of active clients. This approach might conserve memory
if there are a lot of inactive clients on the list.

If a client fails to respond to a callback (or during the server recovery phase,

described in Section 6.3) then the server marks it as "embargoed." This failure
could occur because the client has crashed, but it might be because the client has

been partitioned from the server. As described in Section 3, the server goes to

Recovery in Spritety NFS 223

some lengths to ensure that a callback does not time out if the client is actually
alive and reachable.

When an embargoed client tries to contact the server, the server responds to
the RPC with an error code saying "you are embargoed." The client thus knows
that it was partitioned during an operation that might have left its state inconsis-
tent and can take action to repair things (or at least report the problem to the user).

See section 7 for more details.

6.2. Client Crash Recovery

When a client crashes and reboots, we do not want to leave the server believing
that the client has files open, which could lead to false conflicts and thus reduced

caching. The server could discover some false conflicts if, when it does a callback,

the client replies "but I don't have that file open." In other cases the false conflict
would not cause a callback (i.e., if caching is already disabled) and would not
be discovered. Also, these "false opens" waste resources, namely, entries in the

server's state table and reserved space on the local file systems.

Spritely NFS solves this problem by using the clctl RPC, issued by a Spritely
NFS client when it mounts a file system, to detect client reboots. The clctl F.PC

arguments include an op-code that in this case indicates that the client might have

rebooted and an epoch number that allows the server to determine if a reboot has

actually occurred. The client must generate an epoch number that increases mono-

tonically on each reboot and otherwise does not increase at all. The server records

the client's epoch number in the corresponding client list entry. If the epoch re-

ceived in a clctl RPC is greater than the previously recorded epoch, the server

closes all Spritely NFS tles opened by that client and releases all associated space

reservations.

The simplest way for a client to generate a monotonically increasing epoch

is to use the time at which it booted. Most computer hardware now includes a
battery operated clock, but the client could also use any of several simple time-
seryer protocols to obtain the current time upon booting. If the client uses a clock
with a resolution of one second, this means that it cannot reboot more than once

per second, which is not likely to be an onerous restriction.
If the client uses NVRAM to keep dirty blocks across a crash, it should also

use it to preserve a list of all writable file handles. When rebooting, it must first
write back the dirty blocks, and then it can send the clctl RPC. Alternatively, the

protocol might be modified to add a new clctl op-code that says "close all the files

for which I have read-only references," allowing the client to write-back and close

the writable files in the normal way.

224 Jeffrey C. Mogul

If a client reboots while a server is down (or unreachable because of a net-
work partition), the client simply keeps retrying its mount operation until the

server recovers (or becomes reachable), just as is done in NFS.
When a client reboots and sends a clctl specifying "close all my open ûles,"

the server should also clear an embargo against the client (if one has been set).
This is because a client starting with a tabula rasa does not care about the consis-
tency state of files it previously had open.

6.3. Server Crash Recovery

V/hen a seryer crashes and reboots, it first obtains the client list from stable stor-
age and reloads it into volatile memory. The server then enters a recovery phase

consisting of several steps, herding the clients through these steps by issuing
a series of recovery-specific callback RPCs. The steps, diagramed in Figure 5,
are

Server Client A Client B

BeginRecov-reply

Step tr:
Ask each client
to reopen all of
is files

EndRecov

EndRecov-RepLy

Step I:
Inform clients
recovery is in
progress;
detect de¿d or
partitioned
clients

Step ltr:
Inform clients
recovery is
complete

BeginRecov

Figure 5. Time line for server recovery.

Recovery in Spritely NFS 225

l. Initiate recovery: The server contacts each nonembargoed Spritely NFS
client on the client list. The beginrecov callback RPC tells the client that
the recovery phase is starting; until the recovery termination step is com-
plete, clients are not allowed to do new open oÍ c/os¿ RPCs and cannot
perform any data operations on existing files.

When a client responds to this RPC, the server knows that the client
is participating in the recovery protocol; clients that do not respond are

marked as embargoed. During the rest of recovery, embargoed clients are

ignored, and we can assume that the other clients will respond promptly.

However, during this step long timeouts may be needed. On the other hand,

beginrecov can be sent to all clients in parallel, so the worst-case length
of this step is only slightly longer than the maximum timeout period for a
single client.

At the end of this step, we can update the stable-storage client list to
reflect our current notion of each client's status.

2. Rebuild consistency state: The server contacts each nonembargoed client
and instructs it to reopen all of the files that it currently has open, using the

reqreopen (Request Re-open) RPC. If the clients do not cheat, the resulting
opens will have no conflicts, because before the server crashed there were
no conflicts, and no new opens could have taken place since the crash. See

Figure 6 for an example of this step.

Since each server may have to open multiple files, and flle-open oper-
ations are moderately expensive (requiring manipulation of the state table),
the server may want to do these callbacks serially rather than in parallel (or
semiparallel, to limit the load to a reasonable value). This should not result
in too much delay, for we are reasonably sure that the clients involved will
respond.

Files are reopened with the reopen RPC, which is similar in form to
the open RPC except that it allows several files to be opened in one call.
Also, in addition to conveying read-only and read-write reference counts

for each file, it also conveys the number of dirty bytes for closed-dirty files,
allowing the server to recompute space reservations. (See Section 6.6 for
more details.)

During this step, a client may have to reopen an arbitrary number of
files, and so the seryer cannot bound the amount of time required to finish
the process. Therefore, the reqreopen RPC authorizes the client to issue

only a small number of reopen RPCs. The client's response to reqreopenin-
cludes a flag saying "I'm done" or "I have more files to reopen"; the server

loops issuing the reqreopen F.PC until the client responds "I'm done." In

226 Jeffrey C. Mogul

Figure 6, Client A has 11 flles to reopen and must reopen them in two sep-

arate batches; Client B has no files to reopen and immediately replies "I'm
done."

Thus, the server can use the normal RPC timeout mechanism to decide

if a client has died or become unreachable. If a client fails to respond to
reqreopen, then the server marks it as embargoed and updates the stable-

storage list. Otherwise, once the client responds "I'm done," the server is

sure that all the client's files have been reopened.

At the end of this step, the server has a complete and consistent state

table, listing all of the open and closed-dirty files. In the current version of
the protocol, closed-clean files are not reopened, because that is not neces-

sary for correctness.

3. Terminate recovery: The final step is to inform each client that recovery is
over. Once a client receives the endrecov RPC, it can do any operation it
wants. As in the recovery initiation step, the seryer can do these callbacks

in parallel, but in any case because the clients are unlikely to time out, the

duration of this step should be brief.

Note that NFS server hosts typically export a number of file systems, and a
client may mount several file systems from a given host. All Spritely NFS re-
covery operations refer to hosts and files, not specific file systems. This approach
works fine, and is simpler than the alternative, which would be to do recovery on
a file system-by-file system basis.

Recovery in Spritely NFS 227

Server Client A Client B

! Reopen 4 fLles :

ñ
R€open-Reply

Reopen 4 fileszfi

Figure 6. Time line for Step II of server recovery.

Reopen-Reply

ReqReopen-Reply: more

R.eopên 3 flles

:<GÇffi;""-R"pry: done

228 Jeffrey C. Mogul

6.4. Crashes duríng Server Recovery

It is possible that the server may crash and reboot during the recovery phase. For
this reason, we need a mechanism to ensure that the client reopens all of its files
following the most recent reboot. To support this, the beginrecov and endrecov
RPCs carry a monotonically increasing sequence number. The client simply ig-
nores all stale and duplicated beginrecov and endrecov RPCs.

The condition that these sequence numbers are monotonically increasing must

hold true across server crashes. One way for the server to generate the sequence

number safely is to start with the time-of-boot, and increment the counter as sub-

sequent beginrecov and endrecov RPCs are generated. (A system manager may
want to trigger the recovery process even if the server has not crashed, in cases

where the server's state may have become damaged.) As with the client epoch

value, if the server uses a clock with a one-second resolution, the server cannot

successfully reboot more than once every two seconds.

When the client receives a beginrecov with a new sequence number, it marks
all of its open (or closed-dirty) files for that server as in need of reopening. When
a reqreopen RPC arrives, the client searches its data structures for files still
marked as in need of reopening. Thus, if the server crashes and reboots at any

stage in this process, the client is assured of reopening all of its frles before recov-
ery ultimately terminates.

If a client crashes and reboots during server recovery, then of course it need

not reopen any files. The server detects that the client has revived when the client
sends its clctl R.PC,

6.5. Log-Based Recovery

Because the recovery protocol is server-centric, it leaves the implementor of the

server considerable freedom to choose different strategies. V. Srinivasan lSrini-
vasan, personal communication, 19921has pointed out that nothing in the protocol
prevents the server from using additional stable storage to obviate part or all of
the recovery protocol. The server could, for example, log all opens and closes to
stable storage. Since the "open lifetime" of files is fairly short (often less than 100

milliseconds [Baker et al. 1991]), it would not make sense to log every such event
to disk. Instead, the server could keep the head of the log in NVRAM, which
would allow it to elide the short-lived opens before writing the log to the disk.3

Some sort of log-cleaning algorithm, analogous to that required by a log-structured

3. Or it could keep the entire state table in a huge NVRAM [Baker and Sullivan 1992]; see Section 11.

Recovery in Spritely NFS 229

file system [Rosenblum and Ousterhout 1991], would be necessary. Alternatively,
the on-disk information could be structured as a database, which would take more
work to update but would not need cleaning. Using the log or database, the server

could recover its consistency state without any help from the clients.

A much simpler approach would be to keep track, in the client list, of those
clients that have any files open at all. During crash recovery, the server could ig-
nore any client known to have no open files, thus speeding recovery and perhaps

avoiding timeouts for clients that have been removed from service. This modi-
fication would increase the update rate for the stable-storage copy of client list.
However, the server could delay the update on a client's last close, anticipating a

subsequent open in the near future, because this delay would not affect the cor-
rect behavior of the recovery protocol. A delay interval of, say, one minute would
probably avoid almost all extra updates without significantly increasing the cost of
recovery.

6.6. Recovery of Space Reservations

Because the server host's count of reserved disk blocks may be updated quite of-
ten, it does not make sense to keep it in stable storage. (Maintaining a stable accu-

rate value could approximately double the latency of disk writes for closed-dirty
files.) Instead, we recompute this value during the recovery phase. V/hen recov-
ery starts, the server sets the value at zero. The clients then tell the server what
their remaining reservations are, using the reopen RPC. Once recovery is done, the

server has a consistent count of the total reservation requirements.

During recovery, a client cannot simply request a reservation for the number

of dirty blocks it currently holds, because the server might have denied the reser-

vation when it was initially requested. The client must remember when a close

failed to obtain a reservation for a frle, and when reopening that file must not re-
quest a reservation for it.

Note that it is not necessary for a client to compute how much of the re-

quested reservation actually remains to be used, because no new application-level
writes can be made to the file (even by the same client) while a client holds a
reservation. In order to make new writes, the client must first reopen the file,
which voids any pending reservation.

If the network is partitioned during recovery, we might end up in a state in
which the server does not know of a client's reservation requirements and so gives

the space away once recovery is over. If the partition heals, we may discover that
no conflicting open prevents the embargoed client from writing its dirty blocks,

but there is no longer any space to hold them. If so, the client host will at least

230 Jeffrey C. Mogul

know what has happened (because the reservation request carried inthe reopen

RPC will fail).
One (rather crude) approach to this problem is to set aside some disk space in

anticipation of it. For example, some file systems, such as the Berkeley Fast File

System [McKusick et al. 1984], reserve a certain amount of free space in order

to obtain better perfoÍnance. This free-space reserve, which can be used up by

super-user processes on BSD systems, might also be employed to store blocks

written back from embargoed clients. This solution, however, is at best a stopgap

and can lead to some tricky management problems. For instance, what do you do

when this space also runs out?

6.7. Congestion Avoidance during Recovery

The primary mechanism to avoid server congestion during recovery is the server-

centric approach, in which the server tells clients to perform their recovery oper-

ations rather than helplessly accepting RPCs from all clients at once. The server

may choose to do things entirely serially (that is, allow only one client at a time
To do reopen RPCs), or it may send reqreop¿n RPCs to several clients in paral-

lel. This latter approach will probably reduce the elapsed time of the recovery
phase, although some care will be necessary to set the right level of parallelism.

The server may be able to monitor its load during recovery and adjust the number

of parallel operations accordingly. Because reqreopen sets a "credit limit" on the

number of files a client is allowed to reopen, the server is able to react quickly
when the load gets too high.

During the recovery phase, the server must not honor nonrecovery RPCs, or

else inconsistencies might arise. In our implementation, the server simply drops

such RPCs during recovery rather than sending an effor reply. Not only does this

protect vanilla-NFS clients from unexpected errors; it also reduces the load on the

server, since clients will have to time out before retrying these RPCs.

The clients also try to reduce the server load during recovery, by suppressing

the transmission of nonrecovery RPCs. They can do so by setting a flag in the

appropriate data structure, causing the RPC transmission code to block on any

RPC except reopen. When the client host receives the endrecov RPC, it unblocks

any processes waiting to send RPCs to the server.

7. Resolving Embargoes

A server embargoes a Spritely NFS client because it believes that the client's state

may have become inconsistent as the result of a communications failure and that

Recovery in Spritety NFS 231

the client may not be aware of it. When a client attempts to use a server that has

embargoed it, the server returns a specific error code for all RPCs except clctl.
The client must then resolve the embargo before continuing to use the server. Em-
bargo resolution means determining which open files might be inconsistent and
reestablishing access to files for which consistency still exists.

Note that any scheme for embargo resolution that detects all true conflicts will
also give false positives; that is, a client may decide that a conflict exists when
it does not. This means that the Spritely NFS client code must inform applica-
tions (or users, or system managers) about all potential inconsistencies, and let
some higher intelligence decide what to do. Any "silent" failures could cause un-
acceptable enors; the embargo-resolution algorithms are meant to err on the side
of caution.

The mechanisms described in this section are not yet implemented, but they
do not seem to involve much complexity.

7.1. Clearing an Embargo

When the client finds out that it has been embargoed by the server, it must first
clear the embargo condition using the clctl RPC. A scenario exists, however,
where a simple version of this mechanism could lead to an inconsistent state. Sup-
pose that the server tries to contact the client, times out, and declares an embargo
at time

"1.
At time 72, the server receives an RPC from the client and returns the

error code saying "you are embargoed," which causes the client to send a clctl
RPC to clear the embargo. Suppose now that a duplicate of this RPC is delayed
in the network. The first copy reaches the server at time 73, which clears the em-
bargo, and then unsuccessfully tries to contact the client again. The server declares
a new embargo at time 74, and then the delayed duplicate clctl arnves, causing the
server to believe that the client has cleared the second embargo. The client, how-
ever, does not realize that a second embargo has been declared and could end up
with an inconsistent cache.

We could solve this problem by doing a three-way handshake between the
client and server, but instead we use a method based on synchronized clocks. It is
safe to assume that the clocks are synchronized to within a few seconds. This is
necessary anyway for proper operation of NFS, and is more than possible using a
protocol such as NTP [Mills l99ll, which normally achieves clock skews on the
order of milliseconds.

In this approach, the server records (in volatile storage) the time at which
a client is declared as embargoed. The client passes its current time in the clctl
RPC; only if the RPC was issued after the embargo was declared will the server

232 Jeffrey C. Mogul

accept it. If the client's clock is slower than the server's, it can keep retransmitting

the RPC (with a new timestamp) until the server accepts it.
If the client's clock is much faster than the seryer's, this method could still

fail. The condition for correctness in the worst case is that the clock skew must

be less than the amount of time it takes the server to declare an embargo. Since

this is on the order of several seconds, with reasonable clocks, it should not be a

problem.

7.2. Detecting Potential Inconsistencies

The client needs an algorithm for deciding if the server granted conflicting access

to an open file while the client was embargoed. A conflicting access is any write-
access to a file open only for reading, or any access to a file for which the client

has cached dirty data. Of course, we do not want the conflict-detection scheme to
give more false positives than necessary.

There are two different ways a client can become embargoed by a server: a

callback RPC to the client could fail, or the client could fail to respond during

recovery. In the first case, the server explicitly knows that the embargoed client

may have an inconsistency with respect to a specific file. In the second case, the

server has no knowledge that the client is using a specific file, which forces us to

find an algorithm that relies only on information available to the client.
What the client needs to know is whether a conflicting access has been made

to the file following the client's last successful access. As it happens, the NFS pro-

tocol already provides this information. The standard NFS r¿ad and wrir¿ RPCs

always retum the current attributes of a file, and the returned attributes include the

last-access and last-modification timestamps (atime and mtime, respectively).

To detect a potential conflict, the embargoed client must obtain the current at-

tributes from the server and perform the appropriate comparison. The timestamps

offer at least one-second resolution. Therefore, to prevent the client from drawing
the wrong conclusion, the server must wait at least one second before declaring an

embargo (we would hardly expect the RPC timeout period to be shorter than that).

The server must also ensure that updates to the timestamp attributes survive

across crashes. Otherwise, the following scenario will lead to an undetected incon-

sistency:

1. Client A, with exclusive write access to a file, caches dirty data.

2. T\e server crashes and recovers, failing to contact client A.

3. Client B opens, reads, and closes the file.

4. The server crashes before atime is updated on stable storage.

Recovery ín Spritely NFS 233

5. The server recovers, and client A realizes that it is embargoed. It samples

the atime of the file, decides that no conflicting access has been granted,

and writes its cached data back to the file.

Unfortunately, Client B's view of the flle may not be consistent with the dirty
data that client A writes.

V/e would rather not insist that the server update atime on stable storage be-

fore replying to every read RPC; it would make read access much slower. This is
not necessary; the server need only stably update atime in two situations:

1. on the first read access to a file after embargoing a client using that file

2. on the first read access to any ûle after rebooting, if any client was embar-
goed during recovery.

Since embargo declarations are rare, we can simplify the first situation to be "the
first read accesses to all files after any client has been embargoed." Then the two
cases may be combined into a simple mechanism: the server keeps a global time-
stamp reflecting the most recent reboot or embargo declaration. If, on a read RPC,
the initial access time of a file is less than this timestamp, the attributes must be

made stable before responding to the RPC.
As for the mtime attribute, the server normally updates its value whenever a

write R.PC causes any change to the amount of disk space allocated to the file.
Still, there are times when mtime is not necessarily updated immediately (e.g.,

with writes that do not change the file size). The conflict-detection algorithm re-
quires that mtime be made stable on the first write access to a file after a client
using that file is embargoed, or after rebooting if any client was embargoed in
recovery. In other words, we can use a policy analogous to that used for the

atime attnbute: if, on a write RPC, the initial modify{ime of a file is less than

the global timestamp, the attributes must be made stable before responding to the
RPC.

Note that the file version number returned by the Spritely NFS open RPC is
not sufficient to detect possible conflicts, because it is not updated on read-only
accesses to a file.

7.3. A Resolution Algorithm

When a client learns that it has been embargoed by a server, it goes through the

following sequence:

1. Mark, in its table of active files, all open and closed-dirty files on that
server as needing embargo resolution.

234 Jeffïey C. Mogul

2. Internally inhibit any RPCs to the server, except for those issued by this
resolution algorithm.

3. Perform a clctl RPC on the server, with an op-code that means "clear my
embargo"; the server then will let the client perform normal RPCs.

4. Run through the set of files needing embargo resolution, performing an

openRPC on each one. Two consequences follow:
a. If the server has crashed and recovered, it now knows that the client

wants access to the files. For closed-dirty files, the client should
open them as if for write access.

b. The client obtains the current attributes for each of the files.

5. As the current attributes for the files are obtained, the client compares the
atime and mtime values against its cached copies of the attributes. If a con-
flicting access has occurred, the file is put into an error state.

6. When checking what was a closed-dirty file, which is now open for writing:
a. If no conflicting access has occurred, put the file back into the

closed-dirty state, using the close RPC to reserve sufflcient disk space.

b. If a conflict was detected, close the file without reserving any space.

7. After all files have been checked, reallow all RPCs to the server.

If the server reembargoes the client during this sequence, it can be restarted
safely from scratch when the network partition heals.

7.4. Repairing Inconsistent Files

After the embargo resolution algorithm has been run, some of the client's files
might be marked as being in an inconsistent state. (If the embargo occurred be-
cause a sp¿rce reservation expired, it may be impossible to write the modified data
back to the server). I do not pretend to know how to solve this problem, and in
general it cannot be solved without some knowledge of the particular application.
The LOCUS distributed system [Popek et al. 1981] knew how to resolve parti-
tioned updates to directories and mailbox files. The "reintegration" techniques
used in the Coda system [Satyanarayanan et al. 1990] might also prove useful.
The best solution is to build robust networks so that partitions are rare and the
problem seldom arises.

Recovery in Spritely NFS 235

B. Performance

Our original goal with Spritely NFS was to improve performance over NFS. Since

NFS does not need to support a recovery protocol, we must show that the added

recovery overhead in Spritely NFS does not eliminate our advantage. Note that the

original, nonrecovering version of Spritely NFS did better than NFS on realistic

benchmarks even though NFS does not have to do any open and close RPCs; that

is, Spritely NFS saves enough through better use of the client cache to make up

for the extra RPCs.

The recovery protocol has two kinds of costs: in normal operation, a small

overhead on each RPC and after a server crash, a recovery phase. Since NFS has

no recovery phase, it will always be faster at continuing after a server reboot.

These events should be rare, so the cost of recovery will be amortized over a long

period of useful work. At any rate, the server-centric approach should allow us

to do efficient recovery since we are not put at risk of server overload during the

recovery phase.

8.1. Performance of Spriteþ NFS in Normal Operation

In the original paper on Spritely NFS [Srinivasan and Mogul 1989], we presented

some measurements showing that Spritely NFS outperformed NFS, even though

it may have to do extra RPCs (open and close). Spritely NFS, through its use of
delayed writes, achieved more parallelism (and sometimes fewer total wrire RPCs)

than NFS. In the intervening years, the state of the art in NFS implementation has

improved considerably. The most important changes have reduced the cost of NFS

write operations, and so one might expect the relative advantage of Spritely NFS

to drop. In many cases Spritely NFS also uses fewer read and getattr RPCs. The

use of faster disks, faster server CPUs, and bigger file caches should also reduce

this relative advantage.

There are few good benchmarks of overall file system performance. (The

LADDIS [Keith and Wittle 1993] benchmark is not appropriate, because it specif-

ically tests the performance of an NFS server and not that of the entire client-

server system.) Our original paper used the "Modified Andrew BenchmarK'

[Ousterhout 1990], a single-client benchmark that simulates a software develop-

ment task but produces numbers that are independent of the host's native compiler.

This paper uses the same benchmark, although it is not necessarily representative

of typical applications. I modified it slightly to write back all dirty blocks before

timing is started (that is, to start with a clean buffer cache) and to execute certain

236 Jeffrey C. Mogul

frequent commands (grep, r¿c) from the local /tnp directory rather than via
NFS.

I ran the benchmark on various combinations of three different configurations:

Slow: DECstation-3 100 (approximately 1 1.3 SPECmarks), 24 Mbyte RAM,
RZ23 disk

Medium: DECstation-5000/200 (approximately 18.5 SPECmarks), 48 Mbyte
RAM, RZ58 disk

Fast: DECstation-5000/200 (approximately 18.5 SPECmarks), 48 Mbyte
RAM, RZ58 disk, NVRAM.

The "Fast" system is in fact the same system as the "Medium" system, except that
it also has PrestoServe nonvolatile RAM. This means that, when it is acting as

a server, NFS writes do not need to be synchronous with the disk. The systems

were connected over an Ethernet, which bore little additional traffic during the
benchmark trials.

Both systems ran identical software and could act as either client or server.

The ULjTRIX 4.3 NFS seryer implementation supports the "write-gathering"
technique, which allows several write RPCs in a row to be satisfied while only
performing one update of the file system's overhead data.4 Identical kernels were
used in all tests; a flag variable was used to enable or disable Spritely NFS behav-
ior. Another flag controls whether local-disk writes are delayed; although by de-
fault in ULIRIX this flag is cleared, during these benchmark trials delayed writes
were enabled.

Each system provided four NFS server threads and four "block-VO daemon"
threads; these are default values. Folklore suggests that using more threads im-
proves performance (especially with the write-gathering technique), but I mea-

sured no significant performance change when using 20 of each kind of thread,
probably because the benchmark uses relatively small files, and so extra paral-
lelism in the form of asynchronous writes is not available.

The benchmark has five phases:

1. directory creation

2. file copying

3. recursive directory operations

4. scanning of all ûles

5. compilation and linking.

4. This technique appears to have been independently invented by several people Uuszczak 19941. Epoch's
HyperWrite was apparently the first such product to ship [Bowen 1990].

Recovery in Spritely NFS 237

Very little user-mode CPU time is expended during the first four phases. The last

phase, compilation, does require substantial user-mode computation: approx-

imately 71 seconds on the Slow system, and 42 seconds on the Medium/Fast

system.

Table 2. Performance on Modified Andrew Benchmark. Num-

bers are time in seconds, averaged over five trials; differences

of less than one second are not significant.

Client Server Type Update Phase I
policy mkdir

Phase 2 Phase 3 Phase 4 Phase 5

copy ls -R find make
Total
time

Fast

Fast
Medium
Medium
Slow
Slow
Fast Slow
Fast Slow
Fast Slow
Fast Slow
Slow Fast

Slow Fast

Slow Fast

Slow Fast
Slow Medium
Slow Medium
Slow Medium
Slow Medium

Local PU 0.2

Local IPU 0.4

Local PU 2
Local IPU 2

Local PU 4
Local IPU 4
NFS PU 3

NFS IPU 4
SNFS PU 4
SNFS IPU 4
NFS PU I
NFS IPU 1

SNFS PU 1

SNFS IPU 1

NFS PU 3

NFS IPU 3

SNFS PU 2

SNFS IPU 3

75773
65570
76788
66483
t4 126 171
11 Ll7 158

6 97 134
6 96 134
8 t6 109

7 74 105

14 tt4 154
t4 113 154
15 111 151

14 111 148
15 t28 176
t4 123 r70
15 118 161

t4 lr4 156

36
37
57
56
t2 15

ll 14

2t '7

2t7
158
147
811
917
618
615
L3 l1
13 L7

10 16

915

Table 2 shows the results for various combinations of client and server and

for two different update policies (see Section 3.3). Times are given in seconds

and averaged over five trials for each conflguration. From the last column of the

table, one can see that the Individual Periodic Update (IPU) policy is a clear im-

provement over the Periodic Update (PU) policy, especially when the disk is slow

(the RZ23 disk has a specified average access time of 26.8 msec, and the R258,

18.1 msec). Only in the case of NFS, where few writes are delayed, is the update

policy mostly irrelevant. (The IPU policy does speed some of the NFS-based con-

figurations somewhat, but only because the compilation phase writes considerable

data to /tmp, which is a local disk in all cases.)

238 Jeffrey C. Mogul

The relative performance advantage of Spritely NFS, based on the overall

elapsed time for the benchmark, is summarized in Table 3. (These ratios are cal-

culated from the results of the trials using the IPU policy.) With a slow server,

Spritely NFS provides a distinct performance improvement (about 267o onthe
overall elapsed time). With a fast server, the improvement is smaller (about 4Vo

overall). In practice, server speed is not solely a function of server hardware; a

load placed on the server by other clients should also increase the relative advan-

tage of Spritely NFS.

Table 3. Elapsed Time Ratios on Modified Andrew Bench-

mark.

Client Server NFS Total Time SNFS Total Time Ratio

Fast

Slow
Slow

Slow
Medium
Fast

134 sec

170 sec

154 sec

105 sec I.26
156 sec 1.09

148 sec 1.04

These trials were run with the /tnp directory on the client's local disk, which

seems to be a realistic configuration now that people are less enamored of fully
diskless workstations. Since the compilation phase does a number of write-read-

remove sequences on temporary files, one might expect Spritely NFS to show an

even larger advantage on diskless clients.

One can also gain some insight into the effects of the cache-consistency pro-

tocol by counting the number of different RPC operations performed, as shown in
Table 4. The table shows the mean RPC counts for the configuration that gained

the most from Spritely NFS (Fast client, Slow server, and the IPU update policy).

The RPC counts for the nominally local case are also shown, because I was un-

able to entirely prevent the client from doing a few remote operations. The counts

in this column are fairly small; investigation shows that these background RPCs

are due to the use of the NFS automounter [Callaghan and Lyon 1989] and do not

actually go over the network.

Spritely NFS uses fewer getattr, read, and write RPCs than NFS does, at the

expense of a number of open and close RPCs. The total number of RPCs used by

Spritely NFS is somewhat lower, but the real performance advantage comes from
write-behind and from more frequent client cache hits. Many of the reads done

by NFS actually try to retrieve data beyond the current end-of-ûle; Spritely NFS

can avoid these reads because, while a file is open and cachable, the client reliably

knows the length of the file.

Recovery in Spritety NFS 239

Table 4. RPC Operation Counts for Modified Andrew Bench-

mark.

RPC type Local Disk NFS Sprirely NFS

getattr

setattr

lookup
readlink
read

write
create

remove

rename

mkdir
readdir
open

close

callback
Total

307

0

62

t26
0

0

0

0

0

0

0

r,225
22

810

0

1,186

476

96

6

4

20

r57

259
22

535

0

836

t92
96

6

4

20

157

703
764

0

3,595495 4,002

Spritely NFS, in this benchmark, performs almost as many lookup and getattr

operations as read and write operations. It thus seems likely that improving the

caching of directory entries and file attributes could significantly improve perfor-

mance; see Section l0 for some thoughts on how it might be accomplished.

8.2. Cost of Client List Maintenance

The additional per-RPC overhead in Spritely NFS comes from the maintenance of
the client list. I argued earlier that this overhead is negligible; most of the time,

we simply do a hash-table lookup to discover that the client is already known and

not embargoed.s Very rarely, we must update stable storage, but it is unlikely that

a server would see such a high rate of new clients that this overhead becomes

measurable.

In a simple test (repeated invocations of the NFS nøl/ RPC, using a fast

server), the client list check added an average of about 28 microseconds, or about

5. The per-RPC operations in the original Sprite recovery mechanism apparently made a small but measurable

difference in the RPC overhead, perhaps because on each RPC request and reply, the code was forced to
manipulate timers.

240 Jeffrey C. Mogul

2.3 percent. On actual RPC requests, the server performs far more work, so the
overhead ratio would be even lower. The per-RPC overhead for client-list checks

does not cause a measurable difference in Spritely NFS performance on realistic
benchmarks.

8.3. Cost of Server Recovery

The cost of server recovery is essentially proportional to the number of files re-
opened in step II, since there are likely to be many more open files than active
clients. When a client reopens N files, the number of reqreopen and reopenRPCs
used is about 2 x I N I Ml, where M is the number of flles that can be described
in one reopen request. M could be as high as 96, but the current implementation
uses M : 4 to facilitate debugging. The server may have to go to the disk for
each file reopened, so there may be O(ll) server disk accesses during recovery.
In practice, the number of disk accesses could be much lower, since caching and

spatial locality often obviate the need to read the disk each time a file is opened.
To get an idea of how long recovery might take, I induced a client host to

keep 393 files open at once, did enough activity on the server to flush out its disk
cache, and then triggered the recovery protocol. The complete recovery procedure
took about two seconds of elapsed time, suggesting that recovery takes about 5-7
msec., on average, for each open file, but we cannot safely extrapolate from this
simple nrcasurement to predict how long it might take to recover a heavily used

server.

8.4. Space Overhead

One disadvantage of "stateful" seryers is that they require storage space to keep
track of client state. A Spritely NFS server needs to keep a state-table entry for
each file opened (or closed-dirty) by any client. The size of the table entry is pro-
portional to the nurnber of clients who have the file open. Thus, in the worst case,

the state table requires storage proportional to the sum of the size of the "file ta-
bles" on all of the possible clients.

In our implementation of the server, state table entries consist of a fixed-length
record describing the file state, possibly pointing to a linked list of smaller records
recording client references to the file. Eac*r of the file-state records uses 72 bytes;
each of the client-state records uses 20 bytes. V/ith some clever encoding, the ûle-
state record could be shrunk to perhaps 48 bytes and the client-state record could
be shrunk to 16 bytes, but even so the space requirements are Rot insignificant.

For example, suppose that a server has 100 clients, each of which has 1,0O0

different files open. This would require the server to rnaintain 100,000 records

Recovery in Spritely NFS 241

of each type, using up more than 9 megabytes of kernel memory (or 7 Mbytes if
better encodings are used). Although memory densities and costs improve rapidly
from year to year, that is not an inconsequential amount of storage. Also, after a
server crash it must all be reconstructed by the recovery protocol, which might
take some time.

Nor is this necessarily a worst-case scenario. If clients are allowed to cache at-
tributes of files that they do not currently have open (see Section 10), the potential
òize of the state table could be proportional to the number of files in the server's
frle system multiplied by the number of clients.

John Ousterhout [Ousterhout, personal communication, 1992] has suggested
that if the server runs out of space in its state table, it could select certain entries
(perhaps using an LRU scheme) to be discarded. Before discarding an entry the
server would inform the relevant clients via a callbacfr RPC. Clients with cached
dirty data would have to write it back to the server at this point. Once a client
has been told that a ûle's entry has been discarded, it could not cache or access

that file before reopening it; this means that no potential cache inconsistency is
introduced.

This mechanism would work like a demand-paged memory system, except
that in this case the "backing store" consists of the clients' file tables rather than
stable storage. Ifthe server crashes, during recovery the clients would not have to
reopen these "paged-out" entries, and so the duration of the recovery phase might
be shortened. Of course, just as with demand-paged memory if the working set is
larger than the available storage, the system will thrash.

9. Software Complexity

Since I have described this recovery profocol as "simple," it seems appropriate
to describe how much work it would take to convert an NFS implementation to
support Spritely NFS with recovery. The original Spritely NFS implementation
was written in the course of a month or so by a programmer who had never before
studied the LfNIX kernel. A prototype implementation of the recovery protocol
also took about a month. Several more months were spent cleaning up these proto-
type implernentations, revising the protocol, and finishing off loose ends.

This section sketches the existing Spritely NFS implementation. Space does
not permit the discussion of many tricky details, which are present in any dis-
tributed file systern implementation.

242 Jeffrey C. Mogul

9. I . Client Implementation Overview

Starting with the ULTRIX 4.3 client NFS implementation, the modifications nec-
essary to support Spritely NFS are fairly straightforward. The open and close
operations have to be implemented, the per-file data structures need to include
cachability information, and the data access paths need to observe the cachability
information. The most complexity by far comes from dealing with write-behind,
since this involves a number of asynchronous operations and violates assumptions
made all over the original NFS code.

The client needs to run a daemon process to handle callback requests. It turns
out that the existing NFS server daemon does this just fine; the NFS seryer code
in the client kernel handles the new callback RPCs. Some care has to be taken
to avoid tying up all the daemon threads handling callbacks, or else two Spritely
NFS systems serving each other might deadlock.

Very few changes are needed in other components of the client operating sys-
tem. The code that manages the table of open and closed files (the equivalent of
the UNIX inode table) must inform the Spritely NFS client code when a closed-
dirty flle is being removed from this table to make room for a new entry. The
space-reservation mechanism requires a mechanism to count the amount of cached
dirty data. It is also useful to provide a mechanism to remove dirty blocks from
the file cache, for use when the file that contains those blocks is deleted; this im-
proves performance by eliminating useless write-backs. we also had to fix a few
bugs that were only tickled by Spritely NFS.

9.2. Server Implementation Overvíew

The changes to the server are in some ways simpler than the client changes, al-
though they involve more new lines of code. For spritely NFS without recovery,
the changes were quite localized: the existing RPC server procedures were not
touched, and all the new code related to handling the open and close Rpcs and
performing callbacks.

To support recovery, the server code that dispatches RPC operations must
check (and, rarely, update) the client list on each RPC. Almost all of the remaining
recovery protocol is implemented in a user-mode daemon program, which pro-
vides two services:

' 'When the kernel wants to update the stable copy of the client list, the dae-
mon transfers the information to a simple database it maintains in a disk
flle.

. All of the RPCs generated by the server during the recovery phase (that is,

Recovery in Spritely NFS 243

beginrecov, reqreopen, and endrecov) are issued by the daemon process.

During recovery, the server's kernel code handles the reopen RPCs.

These two functions are done in separate processes to simplify the concurrency

issues.

To allow these functions to be done outside the kernel, the kernel code does

have to provide an interface by which it communicates with the user-level dae-

mon. This is done using a number of ioctl commands. One of these passes client
list modifications to the daemon process. The rest are used to control the kernel's

internal client list database, to obtain the current recovery epoch (for use in the

beginrecov and endrecou RPCs), and to suppress handling of nonrecovery RPCs

during the recovery phase.

The space-reservation mechanism adds some code to the handler for the write
RPC. It also requires some support from the underlying local file system, about 40

lines of new code, to do the necessary bookkeeping.

In order to provide full consistency between Spritely NFS clients and local file

system applications running on the server, there would have to be some additional

linkages between the local file system's open and close operations and the Spritely

NFS state-table mechanism. For example, the opening of a file by a local process

might require Spritely NFS to change a client's cachability information for that

file.

9.3. Code Complexity Metrics

There are many ways to measure the complexity of a software system, but I will
rely on just two: the number of lines of source code and the number of instruction

bytes. By either measure, Spritely NFS is about 50 percent more complex than

vanilla NFS.

The original ULTRIX 4.3 implementation of NFS comprises t2,283lines in
14 kernel source files (not counting the RPC layer). This implementation of
Spritely NFS comprises 19,419 source lines in 22 sowce files, for a net increase

of 7,136lines, or 58 percent. (Source line counts include comments and blank

lines.)
The ULTRIX NFS code compiles into 8 object modules, containing 75,472

"text" bytes. The Spritely NFS code compiles into 14 modules containing 119,264

text bytes, also for a net increase of 58 percent.

The current Spritely NFS code is actually larger than it might be in a final

implementation, because it is somewhat more heavily commented than the NFS

code, it includes blocks of the original NFS code "#ifdef'ed out," and it includes

244 Jeffrey C. Mogul

numerous debugging statements. On the other hand, several features left to be
implemented will also affect the code size.

The modules added for Spritely NFS are

Client callback/recovery code: handlers to serve the callback RPC and
recovery-related RPCs (827 lines)

Server client-list and daemon interface: code to maintain client list in kernel
and to interface to user-level, client-lislrecovery daemon (696+90 lines)

New server RPCs, space reservation, and callback: handlers for the open,
close, reopen, and c/cll RPCs, support for space reservation, and code
to perform consistency callbacks (940 lines)

Miscellaneous subroutines: for both client and server code (344 lines)

State table: code to maintain the seryer's state table database (920+96lines)

State transitions: code to handle open and close state transitions (847 lines).

The bulk of the new modules is concentrated in server code; there are 3,589
lines of new server-side modules versus just 827 lines in one new client-side mod-
ule (and 344lines in one shared module). However, the changes made to existing
modules are mostly to client code: l,L2l lines were added to client modules, 343
lines to server modules, and 9l2lines to shared modules.

The user-mode daemon process, which provides stable storage for the client
list and manages the recovery procedure, is about 1,300 lines of source code. This
code is not particularly complicated, and the main code of the recovery proto-
col itself requires less than 200 lines. This implementation of the daemon does
recovery one client at a time. To support parallelism in the recovery procedure,
the daemon would have to manage multiple threads and so might be considerably
more complicated.

9.4. Pirfalls

The fact that most of the changes to existing code were in client-side modules
confirms our experience that the conceptual complexity is mostly in client code.
In particular, it turned out to be quite tricky to add write-after-close to the exist-
ing NFS implementation, since the NFS code makes many assumptions about the
quiescence of a file after it is closed. Bugs resulting from violations of these as-
sumptions proved to be the most difficult to discover and repair.

The ULTRIX kernel supports symmetric multiprocessing and so uses explicit
locks to protect kernel data structures. The existing locking design does not sup-
port some of the situations arising in Spritely NFS very well, and there are still a
few races in the code that should be protected by new locks.

Recovery in Spritely NFS 245

For example, when the client receives a beginrecov RPC, it must go through

the table of open-file descriptors or "gnodes," looking for gnodes that must be

reopened. During the process of examining one of these gnodes, we would like to
be able to lock it, because some other process may decide to trash it while we are

looking at it (which might cause us to dereference a dangling pointer and crash).

However, we cannot use the normal gnode locking mechanism, because the gnode

might already be locked by another process; that process may be blocked waiting
for the server to finish recovery, and so if we tried to acquire the gnode lock at

this point we would probably deadlock.

Obvious solutions exist that involve the use of additional locks, but these solu-

tions add extra locking overhead to all file system operations. It would be nice to
find a solution that did not have much extra cost except during recovery.

10. Future Extensions

Spritely NFS currently provides explicit consistency only for file data and for the

attributes of currently open files. The protocol could be extended to provide true

consistency for directories, for attributes of nonopen files, and perhaps for file
locks. Although these extensions have not yet been implemented, they do have

implications for the recovery mechanism.

For additional discussion of directory caching and attributes caching for
Spritely NFS, see [Mogul 1992].

10.1. Directory Caching

A large fraction of NFS traffic consists of directory lookups and listings. Many
NFS implementations cache directory entries, but because NFS has no consistency
protocol these caches must time out quickly and even so can become inconsistent.

Recent measurements on Sprite suggest that it is better to cache (and invali-
date) entire directories than to cache individual entries, since a directory is often
the region of exploitable locality of reference lshirriff and Ousterhout 1992]. In
this regard, Sprite nicely matches the Spritely NFS model; the client simply does

an open on a directory before doing readdir RPCs, and keeps the result of the

readdir in a cache. When the client removes a directory from its cache, it does a

c/os¿ RPC to inform the server. If a different client modifies the directory (using

an RPC such as create, remove, rename, etc.), then the server does a callback to
cause the first client to invalidate its cache.

246 Jeffrey C. Mogul

V/hole-directory caching is especially effective at satisfying lookups for
nonexistent entries. It can significantly improve performance because some ap-

plications (particularly compilers and command shells) often lookup names that

do not exist, as they follow a "search path" looking for a file. Such "negative"
caching requires guaranteed consistency in order to provide safe results for dis-

tributed applications.

Should clients write-through directory changes (i.e., creations, renames, or re-

movals), or could changes be done using write-back? Write-back is far more com-
plex, especially because it makes it much harder to provide the failure-atomicity
guarantee that UNIX has traditionally attempted for directory operations. If only
write-through is allowed, then open on a directory always allows the client to
cache; it serves solely to inform the server of which clients might need callbacks

when an entry is changed.

Moreover, during server recovery the clients can simply flush their directory
caches. When, subsequent to recovery, a client needs to read a directory it then

does a fresh open to notify the server that it wants to see callbacks. Reloading the

directory caches, rather than revalidating them (as is done with cached data), is

unlikely to be expensive because even a small directory cache yields a high hit
rate [Shiniff and Ousterhout 1992].

V/rite-through also avoids having to coordinate the allocation of frle identifiers
between the client and the server when new files are created. The client transmits

the create operation to the server, which allocates a flle identifier, inserts a new

directory ent4r, and returns the new identifier to the client. The client can then up-

date its cached copy of the directory. A write-back scheme for file creation would
be much more complex.

10.2. Attributes Cøching

Spritely NFS provides consistency for file attributes (length, protection, modiflca-
tion time, etc.) only for open flles. Some applications (for example make, 1s -1,
and du) use the attributes of files that they will not (or cannot) open. Because at-

tributes are read so often, NFS implementations are forced to provide "attribute
caching" using a probabilistic consistency mechanism: cached attributes time out
after a few seconds.

Spritely NFS could be extended to support consistent caching of attributes,

using some sort of open-for-attributes-read RPC. This RPC, which might be

called openattr, would return the current attributes, thereby avoiding the need

for a getattr RPC, and would also tell the client if the attributes were cachable or
not. The lookup, and optionally the close, operations could also indicate that the

client wants to cache a file's attributes. The server would then use a callback to

Recovery in Spritely NFS 247

invalidate a client's cache entry when some other client changes the attributes of
the corresponding file.

It is not clear that consistent attributes caching is necessary; experience with
NFS has shown that weak consistency is usually sufficient, because few applica-
tions depend on strong consistency for unopened files. (Weak attribute consistency
on open files causes errors when two client hosts simultaneously attempt to ap-

pend to the same frle, because they have an inconsistent view of the length of the
flle.)

It is unclear if introducing consistent attributes caching will help or hurt per-
formance. It might obviate many of the getattr calls now done by NFS (see Sec-

tion 8.1), but it also might greatly increase memory requirements at the server, for
tracking the state of cached attributes (see Section 8.4).

If consistent attributes caching is added to Spritely NFS, clients would pre-

sumably still write-through all attributes changes.6 It would not be possible to use

a write-back policy for attributes changes without making widespread changes

to the client NFS implementation, and it probably would not be worth the effort
(since explicit attribute modifications are rare).

As with directory caches, use of write-through for attributes means that during
server recovery the clients only need flush their caches of attribute information for
nonopen files. After recovery a client wishing to cache a file's attributes would
again do an openattr RPC on the file. It would not be cost effective to do a reopen
during recovery for every attribute-cache entry because the cost of the reopen
would be no less than the cost of simply doing the openattr. Doing the work after
recovery shortens the recovery phase and avoids reloading cached information that
might not be needed.

10.3. File Locking

Although write-sharing is normally rare, when processes do write-share a file,
they often use a locking mechanism to serialize access to the file. Because the
basic NFS protocol does not provide file-locking primitives, a separate "NFS
locking protocol" is often used [)(/Open Company 1992]. This protocol is typi-
cally implemented in user-Ievel processes on both the client and server. When a

client application issues a lock command, the client kernel forwards the lock oper-
ation to the lock daemon process on the server via the local lock daemon process.

The client kernel also marks the file as uncachable, in order to avoid consistency

6. Except for fileJength changes caused by writes, which would destroy the performance advantage of write-
behind. A client would not be allowed to cache attributes of a file currently open for writing (or closed-dirty)
by another client.

248 Jeffrey C. Mogul

problems. An associated status protocol detects host reboots and causes the lock
daemons to resubmit their lock requests.

For Spritely NFS, with its explicit consistency protocol and recovery mecha-

nism, it would make sense to design a locking mechanism that is part of the main
protocol. This was not done for NFS presumably because it would have intro-
duced server state, but it would solve a number of performance problems with the
current locking mechanism:

. When NFS clients do lock operations, the lock server must participate be-

cause the clients have no way of knowing if other client hosts are involved.
In Spritely NFS, if a client host has the right to write-cache a file, then it
need not contact the server to do lockinS, since no other client host could
be using the file. When the file becomes shared and the server does a call-
back, the client would then forward its lock status to the server.

. NFS clients disable data caching when using locking, because this strongly
implies that another client may be using the file and their caches might be
inconsistent. Spritely NFS clients can continue to cache as long as no write-
sharing is taking place.

. Because NFS locking is implemented outside of the kernel, every lock op-
eration causes at least a pair of context switches on the client host, and
several extra domain-crossings (between kernel and user) on the server.

This extra overhead can make locking quite costly. If Spritely NFS pro-
vided locking as part of the main protocol, it would be implemented using
the kernel-to-kernel RPC path and would not require extra domain crossing
or context switching.

Spritely NFS would not need a separate protocol for recovering client lock status

after a server crash. During the second step of the recovery phase, clients would
be told to resubmit their lock requests to the server after they have reopened their
files. Unlike the NFS status protocol, in which clients rely on timeouts to dis-
cover seryer recovery in time to rebuild their locks, the Spritely NFS recovery
protocol guarantees that clients will be able to rebuild locks before recovery com-
pletes.

In UNIX, writes to regular files are atomic: even if a given write system call
involves multiple disk blocks, if another process issues a single read system call
for a subset of the region being written, that read will return either only old data
or only modified data. NFS cannot make this guarantee, because the server cannot
lock a frle against reads during a multiblock write. Spritely NFS, in its current
form, also does not directly provide atomicity. For both NFS and Spritely NFS,
atomicity could be provided using a locking mechanism. Spritely NFS has the

Recovery ín Spritety NFS 249

advantage that the extra locking overhead is necessary only if write-sharing is

actually taking place.

10.4. Security

NFS does not provide much in the way of security, but in principle one can use

cryptographic techniques to prevent illicit access to ûle datafKazar 1988; Taylor
and Goldberg 19861. Spritely NFS introduces the possibility of malicious interfer-
ence with the cache-consistency and recovery protocols. Fortunately, the worst that

could be done would be to slow down legitimate clients (perhaps by forcing them

to stop caching the files they are using, or wait for spurious callbacks to time out).

One probably could add authentication mechanisms to the Spritely NFS pro-

tocol to prevent an intruder from interfering with access to a file that it was not
otherwise authorized to use, and to reject spurious callbacks. But because they

would not eliminate the threat of denial-of-service attacks and could add consider-

able overhead to the protocol, they are probably not worth the effort.

10.5. Memory-Mapped Files

Many operating systems support memory-mapped files: an entire file appears in
the region of a process address space, and file reads and writes occur as the result
of virtual-memory operations instead of explicit system calls. Memory-mapped
files are a convenient way to implement distributed shared memory if an efficient
consistency mechanism is available. NFS does not provide sufficient consistency

for shared memory applications. Sprite (as well as Spritely NFS) provides con-

sistency but not efficiently, because when a file is write-shared, Sprite forces

the clients to contact the server on every access. That is, Sprite does not allow a
distributed-shared-memory application to use page-level caching to t¿ke advantage

of locality of reference.

The Mether-NFS system [Minnich 1993] uses the standard set of NFS remote

procedures to implement a cache-consistent, distributed shared memory. Unlike
Sprite, MNFS allows clients to cache pages from a write-shared file. The MNFS

server keeps a map recording the current readers and writer of each page of the

file. When a client wants to use a page for which it does not currently have appro-

priate access rights, it contacts the server (using an NFS read RPC), using some

high-order bits in the file-offset argument to indicate if it wants to read or write
the page. The server in turn contacts the current writer ofthat page and retrieves

the current value, using an NFS r¿¿d RPC as a sort of callback. The server may

also cause any cached copies at other clients to be invalidated, if the client intends

to write the page.

250 Jeffrey C. Mogul

One could extend Spritely NFS to support the MNFS approach to write-shared
files. This would require a recovery mechanism for the server's page-map. A sim-
ple way to accomplish this is to start by using the current recovery algorithm to
rebuild the server's state-table entry for the write-shared files. Then, the server

would callback each client using a write-shared f,le, forcing them to write-back all
dirty pages for the frle and to invalidate all cached pages for the file.

At this point, because no clients are caching pages from the file, the server

can recreate its page-map for the file as an affay of "empty" records, which is a
consistent state for the page-map. This approach pages the entire mapped file out
to the server's disk and then pages it back in as clients start to use it again, so it
could be quite slow.

It would be more efficient to rebuild the server's page-map directly, using

information held by the clients. In this approach, clients would not write-back or
invalidate their shared-file pages. Instead, the server would callback t'o each client
to obtain the status of the pages in a given file. The client would return a list of
the pages it holds in its cache, indicating which of them are writable.

All MNFS files are backed by actual server disk flles; because MNFS follows
NFS semantics for server writes, any pages written back to the server would sur-
vive crashes. However, a dirty page held by a failed client would be lost, making
it impractical for MNFS (or a similar extension to Spritely NFS) to protect appli-
cations from client crashes.

10.6. Preventing Modification of Busy Text Files

When a process is executing a program, UNIX normally prohibits modiflcations
of the program text file. This prevents the executing process from seeing the in-
consistencies that could arise if, for example, a page-fault resulted in reading a
page from the modifled file into an instruction stream made up of pages from the

original file.
Because one NFS client cannot know that some other NFS client is currently

executing from a flle, this guarantee cannot be fully preserved in an NFS environ-
ment.

The current version of Spritely NFS is also unable to prevent modification
of an active text file; in fact, by guaranteeing consistency, Spritely NFS might
make things worse than NFS does. If an NFS client executing the program is
lucky enough to have the entire text in its memory, it will not have to fault in
any pages from the server. A Spritely NFS client with a "unified buffer cache"
will immediately discover that its cache is invalid, and so will immediately comrpt
its instruction stream.

Recovery in Spritely NFS 251

The Spritely NFS protocol could be modified in at least three different ways to
solve this problem:

l. The open and close RPCs, in addition to specifying the number of readers

and writers, could also indicate if the client intends to execute the file. The
server would return the ETXTBUSY error code in reply to any attempt to
open an executing file for writing. Sprite uses this approach [Ousterhout,
personal communicati on, 19921.

2. The client kernel could use the file-locking protocol to prevent modification
of a file that it is executing. This, however, requires a mandatory locking
protocol; many UNIX systems do not support mandatory locking.

3. The server could reject an attempt to open an executable file for write ac-

cess if the file is already open for reading. This is slightly more restrictive
than necessary, but is easy to implement.

11 . Other Related Work

Several interesting papers related to recovery in distributed file systems have never
been published. Rick Macklem worked on "Not Quite NFS," an attempt to use

the leases model to provide recovery for an NFS extended with a Sprite-like con-
sistency protocol [Macklem 1994]. Meanwhile, the Echo file system project at

Digital's Systems Research Center has grappled with a number of similar issues,

especially those related to write-behind [Mann et al. 19931.

Mary G. Baker and Mark Sullivan describe a similar approach to state recov-
ery [Baker and Sullivan 1992], using a "recovery box": stable storage for selected
pieces of system state, to allow a system to reboot quickly. In their approach, a flle
server would store all the open ûle handles in stable storage, with the assumption
that these are unlikely to be comrpted by (or just prior to) a crash. Spritely NFS is
more conservative, because it does not require a large chunk of low-latency stable
storage, and it makes far weaker assumptions about the effects of a crash. Their
system, however, leads to much quicker recovery.

12. Conclusion

Adding cache consistency to NFS was an interesting experiment, but without a
recovery protocol Spritely NFS was not suitable for production use. The recovery
mechanisms described in this paper should be enough to make Spritely NFS a real

252 Jeffrey C. Mogul

alternative to NFS. The recovery mechanism is so simple, especially on the client
side, that one can no longer claim that only a stateless protocol admits a simple

implementation.

Even if Spritely NFS never becomes widely used, I believe that this simplified
approach to recovery will be useful in other contexts. A similar approach is being

used now in Sprite, and their experiences should help to validate the design.

Acknowledgments

The design in this paper has evolved (sometimes discontinuously) in lengthy ex-
changes among many people, including (in alphabetical order) Mary G. Baker,

Cary Gray, Chet Juszczak, Rick Macklem, Larry McVo¡ John Ousterhout,

V. Srinivasan, Garret Swart, and Brent Welch. Most of these people have talked

me out of at least one bad idea. V. Srinivasan and Bharat Shyam each contributed

an entire surnmer to this project and were responsible for much of the implemen-
tation. Cary Gray, John Ousterhout, and the anonymous reviewers made numerous

suggestions that improved the paper.

Appendix A: Protocol Specification

One should read the body of this paper before attempting to understand the fol-
lowing brief specification for the Spritely NFS protocol, which reflects the state

of the Spritely NFS implementation at the time this paper was written. Because

the actual protocol changes constantly, the specification should be viewed as a

research prototype, not as a standard. The original NFS specification [Sun Mi-
crosystems 19891 is included as a subset and is not repeated here.

A.l. New Error Codes

The stat enumeration includes several new values:

NFSERR-TABLEFULL= 100,
NFSERR-CALLBACKFAIL=10 1,

NFSERR-NOTRECOVERING= 1 02,
NFSERR-EMBARGOED= 1 03,
NFSERR-I NCONS I STENT= 1 04,
NFSERR-TRYLATER=105

Recovery in Spritely NFS 253

The meanings of these values are:

NFSERR-TABLEFULL: The seryer's state table is full and no new files may

be opened.

NFSERR-CALLBACKFAIL: An NFSPROC-CALLBACK RPC from a seryer to a
client is rejected because it is malformed or out of sequence.

NFSERR-NIOTRECOVERING: An NFSPROC-REOPEN RPC is rejected because

the server is not currently in its crash-recovery phase.

NFSERR-EMBARGOED: The client is embargoed from further operations

until it takes steps to clear the embargo. This code may be issued in re-

sponse to any RPC, except for NFSPROC-CLCTL.

NFSERR-INCONSISTENT: Some violation of the cache-consistency protocol

has led to a state that is either inconsistent, or would be inconsistent if the

requested RPC were to be executed.

NFSERR-TRYLATER: An NFSPR0C-CALLBACK or NFSPR0C-OPEN RPC can-

not be completed without deadlocking or blocking for a long interval. The

RPC should be retried after a few seconds. The intent ofthis stafus code is

to avoid having an unbounded delay on any RPC call.

A.2. New Data Types

The openargs data type is used with the NFSPROC-OPEN RPC (and indirectly with
the NFSPR0CJEOPEN RPC) to communicate the client's current open-for-read and

open-for-write reference counts.

typedef struct {
fhandle file;
unsigned mdev;
unsigned rcount;
unsigned wcount;

] openargs;

For the specified fi1e, the client's current count of read-only opens is rcount,
and the current count of read-write opens is wcount. The mdev field is used to dis-

ambiguate a file handle during a callback. The server does not otherwise interpret

the ndev field.
The openres data type is used in the reply to an NFSPROC-0PEN or

NFSPROCJEOPEN RPC.

254 Jeffrey C. Mogul

typedef union süTitch (stat status) {
NFS-OK:

struct {
unsigned cacheVers;
unsigned oldCacheVers ;

boolean cacheEnabled;
fattr attributes;

Ì
default:

struct {}
] openres;

The cacheVers field carries the current version number of the file, which changes
on each open-for-write. The oldCacheVers field carries the previous version
number. This allows a client to decide if its cached data from the file is still valid:
if it matches the cacheVers field, then this file has not been opened for write
since the data was cached; if it matches the oldCacheVers ûeld, then the version
changed because of the client's current open-for-write operation.

The cacheEnabled field indicates whether the client is allowed to cache the
file.

The attributes field contains the current attributes values for the file.
If the file is cachable, this allows the client to avoid doing a subsequent
NFSPROC-GETATTR.

The reopeninfo data type is used with the NFSPROC_REOPEN RPC to pass

information about a file that a client currently has open (or for which it has cached
dirty blocks).

typedef struct {
oPenargs oPenargs;
unsigned dirtybytes;

) reopeninfo;

The openargs field contains the information needed by the server to rebuild its
state-table entry for an open file. The dirtybytes value is necessary when
rebuilding a state-table entry for a closed-dirty file; see the description of
NFSPROC-CLOSE for more details.

Recovery in Spritely NFS 255

A.3. Existing RPC Server Procedures

None of the RPC definitions in the original NFS specification [Sun Microsys-

tems 19891 have been changed in Spritely NFS. The only exception is that a

Spritely NFS server may return a status value of NFSERR-EMBARGOED in reply
to any RPC request (but only if the client is known to be using Spritely NFS).

A.4. New RPC Server Procedures

These procedures are added to the NFS server to support Spritely NFS consistency

and crash recovery.

18 NFSPROC-0PEN (file) returns (reply)
openargs fi-leargs;
openres reply;

This RPC is used to inform the server that the client is increasing one of its open-

f,le reference counts for a specified file. It may not be used to decrease the refer-

ence counts. Because the client's current value of the reference count rather than

the net change is transmitted, this RPC is idempotent.

19 NFSPROC-CLOSE (file, mode, rcount, sÍcount, dirtybytes)
returns (status)

fhandle file;
unsigned rcount;
unsigned wcount;
unsigned dirtybytes;
stat status;

This RPC is used to inform the server that the client is decreasing one of its open-

file reference counts for the f ile. The rcount argument carries the number of
read-only references; the wcount argument carries the number of read-write ref-

erences. The dirtybytes argument is used only when the reference counts are

both zero, and the file had been both open for writing and cachable. The value of
dirtybytes must be an upper bound on the number of bytes that the client has

buffered for subsequent write-back for this file.
If the value of dirtybytes is non-zero, and the server replies with NFS-0K,

the client is responsible for eventually issuing another NFSPROC-CLOSE RPC when

all the dirty data has been written back. This final NFSPROC-CLOSE may be elided

if the client opens the file again.

256 Jeffrey C. Mogul

Note: this RPC should be modified to pass the current length of the file, in
addition to the number of dirty bytes, in order to allow implementation of space-
reservation by a server whose local file system does not support the concept of file
holes. In such a file system, it is not possible to estimate the number of blocks that
will be allocated, knowing only the number of bytes of data to be written, because
a single delayed NFS write might extend the length of a file by several gigabytes.
(A server may avoid implementing the space-reservation mechanism, at the ex-
pense of reduced performance. Such a server would always return NFSERR-N0SPC

if dirtybytes is non-zero.)
If the server returns NFSERR-N0SPC in response to this RPC, the client

should try to write all the buffered dirty data (using NFSPR0C_I,IRITE), which
might succeed. The client should then repeat the NFSPR0C-CLOSE operation with
dirtybytes equal to zero.

21 NFSPROCIE0PEN (epoch, files) returns (rep1y)
unsigned epoch;
reopeninf o f iles<REOPEN-MAXFILES> ;

union switch (stat status) {
openres results(REOPEN_MAXFILES> ;

) reply;

This RPC is used only during server recovery and only in response to an
NFSPROC-REQREOPEN RPC, described in section 4.5. The client uses it to report
the current reference-count state of any files that it has open on the server, and the
number of dirty bytes (see the description of NFSPR0C-CLOSE) for files that it does
not have open but for which it still has cached dirty data. The f iles array carries
one entry for each flle to be reopened.

The server replies with an array of result values, coffesponding to the flles
listed in the request RPC. Note that the server may change the cache-version num-
bering for a file after a crash, and so the client must update its view of the cache
version as a result of this operation. Thus, cached data for files that the client does
not reopen (i.e., closed, all-clean files) must be discarded during recovery since
the cacheVers returned by a subsequent NFSPROC_0PEN cannot be compared
against the value held by the client.

The epoch argument is meant to carry the client's view of the server's re-
covery epoch (see NFSPR0C-BEGINREC0V) to prevent the server from accepting
requests from a previous recovery phase. This might be superfluous.

The value of REOPEN-MAXFILES is arbitrarily ser to 96 to keep the size of
the reply under 8k bytes. However, a client host normally should not try to re-
open so many files at once, but should limit the size of each RPC and its reply so

Recovery in Spritely NFS 257

that they fit into a single network packet. Also, the client must not reopen more

ûles than specified by the nf ilesperreopen argument provided in the server's

NFSPROC_REQREOPEN RPC.

25 NFSPROC-CLCTL (flags, epoch) returns (status)
unsigned flags;
uasigned epoch;
stat status;

This RPC is used by a Spritely NFS client when it reboots and when it is clearing

an embargo . The flags argument is a set of bits:

001 Clear embargoed state

Client just rebooted.

The epoch value is used to make this RPC idempotent. When the RPC is used to

report a reboot, the epoch must be higher than reported for any previous incarna-

tion of the client; this informs the server that it can discard all of its state related

to this client. The client should not retransmit this RPC with an increased epoch

value, because its state will be lost.

When this RPC is used to clear an embargo, the client should set the epoch

value to the current time, in seconds since midnight January t, 1970 UTC. (This is

the same format used for the seconds f,eld of the timeval- data type') The server

must then check that the value is greater than the time that the embargo was de-

clared for this client; if it is not, the server should reply with NFSERR-EMBARG0ED.

The client should continue to retransmit with an updated epoch value until the

server accepts the RPC.

A.5. New RPC Callback Procedures

These callback procedures are handled by the Spritely NFS client. That is, for

these procedures the "RPC client" is the Spritely NFS server, and the "RPC

server" is the Spritely NFS client.

20 NFSPROC_CALLBACK

fha¡d1e file;
unsigned code;
unsiga.ed ndev;

258 Jeffrey C. Mogul

(file, code, ndev, attr)
returns (status)

001

fattr attr;
stat status;

This RPC informs the client that it no longer has permission to cache the f ire
because some other client is now sharing it. The code argument is a set of bits,
which may be ORed together:

002

write back dirty blocks

stop caching this file.

The mdev argument is the value that was passed by the client in its NFSPROC-OPEN

RPC and is used by the client to locate its state related to the file. The attr argu-
ment provides the current attributes for the flle.

23 NFSPR0C-BEGINRECOV (epoch) returns (sratus)
unsigned epoch;
stat status;

This RPC is used to initiate recovery. The server sends it to each known Spritely
NFS client. After receiving this RPC, the client should refrain from sending any
RPCs (except NFSPR0C-REOPEN, when prompted with an NFSpROC_REQREOPEN)

until an NFSPROC-ENDRECOV is received. The client should also refrain from tim-
ing out pending RPCs.

When this RPC is received, the client should somehow record or mark the set
of files that it has open (or closed-dirty) on this server so that it knows what needs
to be reopened.

The client must reject this RPC if the epoch value is not greater than the
epoch argument of the most recent NFSPR0C-ENDRECOV RPC (if any have been
received since the client booted).

24 NFSPROC-ENDRECOV (epocb) returns (status)
unsigned epoch;
stat status;

This RPC is used to conclude recovery. Once this RPC has been received, the
client may resume normal use of the server.

The client must reject this RPC if the epoch value is not greater than the
epoch argument of the most recent NFSPROC_BEGINREC0V RPC.

Recovery in Spritely NFS 259

22 NFSPROC-REQREOPEN (epoch, nreopens, nfilesperreopen)
returns (reply)

unsigned epoch;
unsigned nreopens;
unsigned nf ilesperreopen ;
union switch (stat status) {

boolean done;

) repty;

This RPC is used only during server crash recovery. The server uses it to tell
the client to reopen some of its files. The client may issue up to nreopens
NFSPR0C-RE0PEN RPCs to the server, each specifying up to nf ilesperreopen
files. It then replies with the boolean value done set to TRUE if it has no more

files left to reopen. If the client has not reopened all of its files, it replies with
done set to FALSE, and the server issues another NFSPROCJEOPEN RPC.

The client must reject this RPC if the epoch value is not the same as the

epoch argument of the most recent NFSPROC-BEGINREC0V RPC.

t.

References

Baker, Mary G., John H. Hartman, Michael D. Kupfer, Ken W. Shinifl and John

K. Ousterhout. Measurements of a Distributed file System. In Proceedings of the

I3th Symposium on Operating Systems Principles, 198-212. Pacific Grove, CA,
October 1991.

Baker, Mary G. and John Ousterhout. Availability in the Sprite Distributed File
System. Operating Systems Review 25(2):95-98, April 1991.

Baker, Mary G. and Mark Sullivan. The Recovery Box: Using Fast Recovery to
Provide High Availability in the Unix Environment.ln Proceedings of the Summer

1992 USENIX Conference,3l-43. San Antonio, TX, June 1992.

Bowen, Ted Smalley. Software update speeds NFS write process on server. Digital
Review 7(30):17, August 6, 1990.

Callaghan, Brent and Tom Lyon. The Automounter. In Proceedings of the Winter
1989 USENIX Conference, 43-5I. San Diego, CA, February 1989.

Carson, Scott D. and Sanjeev Setia. Analysis of the Periodic Update Write Pol-
icy For Disk Cache. IEEE Transactions on Sofiiuare Engineering l8(l):44-54,
Jamary 1992.

Gray, Cary G. and David R. Cheriton. Leases: An EfÊcient Fault-Tolerant Mech-
anism for Distributed File Cache Consistency. ln Proceedings of the l2th Sympo-

sium on Operating Systems Principles,202-210. Litchfield Park, AZ, December
1989.

5.

J.

6.

7,

260 Jeffrey C. Mogul

8.

9.

10.

11.

12.

13.

t4.

15.

16.

Juszczak, Chet. Improving the Performance and Correctness of an NFS Server.
ln Proceedings of the Winter 1989 USENIX Conference, 5343. San Diego, CA,
February 1989.

Juszczak, Chet. Improving the Write Performance of an NFS Server. In Proceed-
ings of the Winter 1994 USENIX Conference,24T-259. San Francisco, CA, Jan-
uary 1994.

Kazar, Michael Leon. Synchronization and Caching Issues in the Andrew File
System. ln Proceedings of the Winter 1988 USENIX Conference, 27-36. Dallas,
TX, February, 1988.

Keith, Bruce E. and Mark Wittle. LADDIS: The Nexr Generarion in NFS File
Server Benchmarking. In Proceedings of the Summer 1993 USENIX Conference,
111-128. Cincinnati, OH, June 1993.

Macklem, Rick. Not Quite NFS, Soft Cache Consistency for NFS. In Proceedings
of the Winter 1994 USENIX Conference,26l-218. San Francisco, CA, January
1994.

Mann, Timothy, Andrew Binell, Andy Hisgen, Charles Jerian, and Garret Swart.
A Coherent Distributed File Cache with Directory Write-behind. Research Report
103, Digital Equipment Corporation Systems Research Center, June 1993.

McKusick, Marshall K., William N. Joy, Samuel J. Leffler, and Robert S. Fabry.
A Fast File System for UNIX. ACM Transactions on Cornputer Systems 2(3):181-
197, August 1984.

Mills, David L. Internet Time Synchronization: The Network Time Protocol. IEEE
Transactíons on C ommunic ations 39(10):1482-1 493, October I 99 l.
Minnich, Ronald G. Mether-NFS: A Modified NFS Which Supports Virtual Shared
Memory. In Proceedings of the USENIX Symposium on Experiences with Dis-
tributed and Multiprocessor Systems (SEDMS IV), 89-107, San Diego, CA,
September 1993.

Mogul, Jeffrey C. A Recovery Protocol for Spritely NFS. In Proceedings of the
USENIX File Systems Workshop,93-109. Ann Arbor, l|ill, I|;lay 1992.

Nelson, Michael N., Brent B. Welch, and John K. Ousterhout. Caching in the
Sprite Network File System. ACM Transactions on Computer Systems 6(l)L34-
154, February 1988.

Ousterhout, John K. Why Aren't Operating Systems Getting Faster As Fast As
Hardware? ln Proceedings of the Summer 1990 USENIX Conference,24T-256.
Anaheim, CA, June 1990.

Ousterhout, John K., Herve Da Costa, David Harrison, John A. Kunze, Mike
Kupfer, and James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2
BSD File System. ln Proceedings of the l0th Symposium on Operatíng Systems
Principles, 15-24. Orcas Island, WA, December 1985.

Popek, G., B. rilalker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G. Thiel.
LOCUS: A Network Transparent, High Reliability Distributed System. ln Pro-
ceedings of the \th Symposium on Operating Systems Principles, 169-11l . Pacific
Grove, CA, December 1981.

17.

18.

t9.

20.

2t.

Recovery in Spritely NFS 261

22. Rosenblum, Mendel and John K. Ousterhout. The Design and Implementation of a
Log-Structured File System.In Proceedings of the 13th Symposium on Operating
Systems Principles, 1-15. Pacific Grove, CA, October 1991.

23. Satyanarayanan, Mahadev, James J. Kistlet Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, David C. Steere. Coda: A Highly Available File System for a
Distributed Workstation Environment. IEEE Transactions on Computers 39(4)447-
459, April 1990.

24. Shirritr, Ken W. and John K. Ousterhout. A Trace-Driven Analysis of Name and
Attribute Caching in a Distributed System. In Proceedings of the Winter 1992
USENIX Conference,3l5-33I. San Francisco, CA, January 1992.

25. Srinivasan, V. and Jeffrey C. Mogul. Spritely NFS: Experiments with Cache-
Consistency Protocols. In Proceedings of the l2th Synposium on Operating
Systems Principles, 45-57. Litchfield Park, AZ, December 1989.

26. Sun Microsystems, Inc. NFS: Network File System Protocol Specification. RFC
1094, Network Information Center, SRI International, March 1989.

27. Taylor, Bradley and David Goldberg. Secure Networking in the Sun Environment.
In Proceedings of the Winter 1986 USENIX Conference, 28-37. Atlanta, GA, June
1986.

28. Welch, Brent B. Naming, State Management, and User-Level Extensions in the
Sprite Distributed File System. Ph.D. thesis, Department of Electrical Engineering
and Computer Science. Technical Report UCBiCSD 901567, University of Califor-
nia, Berkeley, February 1990.

29.)lOpen Company, Ltd.)AOpen CAE Specification: Protocols for)AOpen Internet-
working: XNFE Issue 4. Reading, Berkshire, UK, 1992.

262 Jeffrey C. Mogul

