
A Critique of the Inheritance
Principles of C ++
Markku Sakkinen University of Jyväskylä, Finland

ABSTRACT: Although multiple inheritance (MI) is al-
ready a feature of the C# language, there is a debate
going on about its good and bad sides. In this paper, I
am defending MI. At the same time, many of the rules
and principles of inheritance in current C# seem to
me to need improvements. The suggested modifications
are relatively simple, do not introduce many new re-
served words, and should not affect other parts of the
language.

I do not find the current rules totally adequate even for
single inheritance (SI). The problems lie in the mean-
ing of access levels and in the redefinability of virtual
functions. Additional inconsistencies in C# virtual
functions appear in so-called independent multiple in-
heritance (IMI), which is in principle the easy case

of MI. The most difficult problems are caused by so-
called fork-join inheritance (FJI), which is the most
complicated kind of inheritance.

One essential cause of complexity is private inheritance
because of its intransitive nature. The main idea sug-
gested here is that, simply put, private inheritance
should be implicitly "non-virtual" and public inheri-
tancs "virtual." This is actually a simplification of the
language, at least from the programmer's if not from
the implementor's point of view. The main rule has

@ Computing Systems, Vol. 5 . No. I . Winter 1992 69

also been generalised to arbitrary combinations of pri-
vate and public inheritance, with some restrictions on
legal combinations. I sincereþ think that the current
C# rules will be very harmful if programmers start
developing complex class hierarchies in which FJI is
applied. On the other hand, the new rules suggested
here should behave consistently even in complex situa-
tions but demonstration is so far missing, of course.
The same principles should be applicable to other
object-oriented languages beside C# .

MI increases the complexity of the language in any
case; Cargill [1991a] has therefore required good ex-

amples of its advantages to make it worthwhile. I think
that Waldo's [1991a] example is convincing enough for
IMI, but I join in the quest for equally good examples
using FJI.

I . Introduction

This article is aimed at an audience that has some previous under-
standing of both object-oriented programming (OOP) and the C#
language (some parts will require a detailed knowledge of C#). A
reader who thinks that the two are almost synonyms, or that OOP and
Smalltalk-8O are almost synonyms, should probably read one of the
good tutorials or books on OOP that are available today, first.

Be warned that I am a convinced opponent of C and all C-based
languages for general-purpose programming [Sakkinen 1988, 1992].
In spite of this, I will make several constructive suggestions for
improvements to C# in this article (of course I would prefer the fun-
damental ideas to be adopted into inherently better languages). Sec-
ondly, I am currently a rather pure theoretician, not having done any
real programming in any language for quite some time. I had some ex-

70 Markku Sakkinen

perience of C# prior to Release 2.0, and while finishing this paper,
have been able to test some questionable things on a Release 2.1 com-
piler (Hewlett-Packard).

The initial motivation for this article was to examine multiple in-
heritance (MI). There is still some debate on whether MI is at all
necessary in object-oriented systems, and whether its true advantages
outweigh the complexity that it introduces into a language, particularþ
C#. I do believe in MI, especially from a theoretical standpoint. It
was therefore surprising to me that among the 30 or so participants of
the ECOOP'911 workshop on "Types, inheritance and assignments", a

majority answered "No" when asked if they would include MI in their
next object-oriented language. Perhaps the answer was motivated
mainly by implementation considerations-I forgot to ask about that.

In C#, multiple inheritance has already been defined and imple-
mented; although every independent new implementer must suffer the
tedium of MI. As there is no official standard for the language yet,
Tom Cargill has been campaigning here [1991a] and elsewhere at least
for a moratorium against MI. He has recently been countered by Jim
Waldo fl99Ial. Here I will try to give some further arguments in fa-
vour of MI.

Unless we agree with the verdict that multiple inheritance should
be banished from C#, the next important question is how it should
be defined. Is the current approach adequate? Originally I really
liked it [Sakkinen 1989]. However, some problems have appeared

[Baclawski 1990; Snyder 1991]. I will try to elaborate on these prob-
lems in the larger part of this paper. They proved to be more numer-
ous and more complex than I had thought at the start of writing.
Another surprise was that some problems already pertain to single
inheritance (SI).

The plot of the rest of this article is as follows. I will try to sum-
marise shortly the most relevant points of Cargill and Waldo on MI in
Section 2, with some references to other literature. Section 6 draws
some conclusions, finishing in optimism on the feasibility of multiple
inheritance. At the end we have the obligatory acknowledgements and
reference list. The beef of the hamburger is in the middle.

l. Fifth European Conference on Object-Oriented Programming, Geneva, Switzerland, July
t5-19, r99r.

A Critique of the Inheritance Principles of Ca+ 7l

Section 3 treats issues that are relevant even to SI, especially ideas

and problems of inheritance-related access control. Some of the points

will not be too familiar to most readers; also, the distinction between

private and public inheritance will be essential in the ensuing analysis

of MI. Some language modification proposals will appear here.

Section 4 treats the simpler form of MI, so-called independent

multiple inheritance. I will claim that the current C# rules have a

severe defect that affects already this case. Section 5 discusses the

more complicated case of MI, so-called fork-join inheritance. It is es-

sentially more complex than would appear from the typical literature

examples containing four or five classes. Not surprisingly, here I will
present the largest number of defects, problems, and solutions.

The most important points will be emphasised in the form of six

theses and one rule in boldface. In fact, a hasty reader may look up

just these points and perhaps the conclusions. The rule, which I be-

lieve to be the most significant single contribution of this paper, will
be found in Subsection 5.4. It is followed by two restrictions.

The paper tries to be as self-contained as possible in its reasoning.

However, there are more numerous and more detailed references to

existing literature than may be conventional in this journal. Those

readers who are not interested to compare the various papers in detail

can safely ignore the references.

2. The If and the How of Multiple
Inheritance

2.1 If: the main points of Cargill and Waldo

Cargill [I99la $4] describes the complexity of current C# inheri-
tance:

[There are] six variants of inheritnnce: a choice of three access levels for
each inheritance relationship (public, protected or private), and another
choice of whether or not each base class is virtual. The real expressive

power of inheritance is delivered by iust one of the six variants: public
inheritance from a non-virtual base.

I disagree with the last statement, and will argue against it in a later

section. I agree about the complexity (see $3.2 about protectedbase

classes), and so did Waldo.

Markku Sakkinen72

Cargill goes on to show how multiple inheritance further increases

the complexity of the language. We have no argument here: Bjarne

Stroustrup himself has been the first to admit and explain the basic

complications. Note that the choice between "virtual" and "nonvirtual"
base class mentioned above was introduced because of MI.

The other main argument of Cargill ÍI99Ial is that no convincing
examples of MI had been published. I had wondered a little about that
myself, but reasoned that such examples would tend to be too long for
typical journal and conference papers. However, I had heard people

complain how impossible it was to utilise two independent, extensive

class libraries such as OOPS (currently NIHCL) [Gorlen 1987] for
"foundation classes" and InterViews [Linton & Calder 1987] for the

user interface, within the same software system using C# with-
out MI.

Waldo [991a] suggests that the MI examples cited by Cargill are

unconvincing mainly because they are based on implementation inherí-
tance. This is a very noteworthy point in my opinion. He presents an

example with interface inheriønce and "data inheritance" , in outline.
He convinces me at least that

1. the example is not artificial, but programmers can often be

confronted with similar situations, and

2. the problem could be solved only in very contorted ways if MI
were not available.

The true usefulness of multiple inheritance (in C#) has thus been

demonstrated. However, to a sceptic this only means that MI cannot

be dismissed off-hand; the tradeoff between its advantages and disad-

vantages still remains a matter of judgement.

Cargill's paper nevertheless makes a lot of sense, especially from
its chosen viewpoint of practical programming. At several places it re-

ally does not criticise so much multiple inheritance, as the common

tendency in OOP to apply inheritance even where simple aggregation

would be more appropriate; I could not agree more'

2.2 How: the different cases

Waldo lI99lal seems to perceive Cargill as quite adamant against

multiple inheritance; I have a more openminded impression. Cargill

A Critique of the Inheritance Principles of C+ 73

[l99la $6] actually sketches a class structure from which MI could not
be eliminated without serious distortion, and says:

If MI were widely used in this manner in real programs, my thesis would
collapse.

The main idea is that at least some virtual function of each base class

is redefined in the derived class so that it calls a virtual function of
another base class. Interestingly, Waldo's example is totally different
from this structure.

We can distinguish between two main forms of MI. By "independenl

multiple inheritance" (IMI) we mean that parallel superclasses have no
common ancestors, or that there is only one derivation path connecting
a class to an non-immediate base class2. The opposite case we will
call "fork-join-inheritance" (FJl), as coined in Sakkinen t19891 in an-
alogy with the forking and joining of parallel processes. I have not
seen any other compact term for this phenomenon in the literature.

Cargill [I99la $8] briefly admits the need for IMI, motivated by
multiple independent class libraries (cf. $2.1):

We may discover that MI is indeed useful, but thqt virtual base classes
are unnecessary.

He has later [1991b] paraphrased this unambiguously:

FJI is not useful and therefore the virtuql base question is moot.

Waldo does not take a stand on this issue in the article [1991a], but he

has later [1991b] clarified his position to be rather opposite to Cargill:

[...] my point might show that virtual base cl.asses are the only
candidates for multþle inheritance.

In IMI there is no difference between virtual and nonvirtual base

classes. Therefore, Cargill's original statement could have been inter-
preted thus:

FJI is usefuI, but only with non-virtual base classes;

at least out of context. This was certainly not the intention. Cargill
does not give any semantic reasons against virtual base classes; his

2. This term is obviously used in a slightly more general meaning in Stroustrup [989b].

74 Markku Sakkinen

goal is to reduce the complexity mentioned in the previous section.
We have here a similar tradeoff situation as with MI in general. Nei-
ther Cargill's nor Waldo's example contains fork-join inheritance; thus
the "no supporting evidence" argument remains valid. I will later try
to suggest some reasons in favour of FJI, but they will not be very
decisive.

Baclawski U9901 calls MI with non-virtual base classes 'multiple
independent inheritance'. This includes both IMI as defined above and
non-virtual FJI. Baclawski regards this as a peculiar variation of MI.

Another recent paper with some highly interesting points on MI-
although I do not agree with all of them-is Snyder U99ll. It has

been written with the purpose of describing the most essential proper-
ties of C# in terms of a supposedly language-independent model.
Snyder regards non-virtual FJI as an unusual corner case of the lan-
guage; he did not bother to make his general model so complex that it
could account for this situation. FJI with virtual base classes is not
treated specifically in his article.

3. Inheritance and Accessibility

3.1 Access Levels of Class Members

There were originally only two alternative accessibility levels for both
class members and base classes, public and private (and actually
no explicit specifier yet for private accessibility). The intermediate
level, protected, was added for members only in C# Release 1.2
from ATitI.

C# checks for name clashes between inherited and noninherited
members (and between members inherited from different base classes)

beþre applying access controls. I think that this is the wrong choice,
the rationale in Ellis & Stroustrup [1990 $11.3c] notwithstanding:

Making a tutme public or private will not quieþ change the meaning of a
programfrom one legal interpretation to another.

The flaw in this reasoning is that changing the access level of a class

member is a modification of the class's interface, which should always
be expected to affect the clients of the class and should not be done
too lightly.

A Critique of the Inheritance Principles of C# 75

On the other hand, adding or renaming a private member is only a
matter of the class's implementation and therefore should not concern
clients at all. As things are in C++, private members of a class cannot
be of any benefit to derived classes (and outside clients) but can cause

harm to them. The same holds for members of private base classes.

The special case of virtual private functions will be discussed in
$¡.+.

When protected class members were first introduced, their
definition was simple and sensible [AT&I 1986]. A protected member
rn defined in a class A was accessible both to class ¡ itself and to any
class e directly derived from e; unless the derivation was private, the
accessibility of m in g was the same as if rn had been a protected mem-
ber of e itself.

V/ith Release 2.0, the meaning was subtly changed. Even if a pro-
tected member m of class e is accessible to some descendant class c,
member functions of c are now allowed to access the m part of an

object only if that object is statically known to belong to class c or a
descendant of c.

The rationale in Ellis & Stroustrup [1991 p. 254] says:

[The original rule] would allow a clnss to access the base class part of
an unrelated class (as if it were its own) without the use of an explicit
cast. This would be the only place where the language allowed that.

'Unrelated' in the quote seems queer since the classes have a common

ancestor and only the common part would be accessed. Otherwise this
argument makes some sense-I assume that mentioning explicit casts

is not meant to imply that they could be used to bypass the new re-
striction.

The example on p. 255 has a class Account with derived classes

checking-account and AutoLoan-account, and it is argued:

fAccount] has information common to all kinds of accounts, including
the account balance, so a friend of Account can walk the list of all
Accounts and tell [the balances]. t...1 The member functions of
checking-accounts, however, should not be able to access the
balance in an Autolo¿rn-account. The restriction prevents that.

This also makes some sense, but not completely. If a friend function is
supposed to be able to treat the balance in all possible classes derived
from Account correctly, why should a member function of a derived
class be unable to do the same? I would much more want to prevent

Markku Sakkinen76

other people's account instances from accessing the balances of my ac-

counts (oi whatever kind), but that is not possible in C** '

In my opinion, this complication is a display of paternalism con-

trary to ihe general philosophy of C++3 (cf. $3.7). It can prevent

some obscure programming errors, but also makes a potentially much

larger numberìf perfectly sound and useful pieces of code illegal'

3.2 Modes (Access Levels) of Inheritance

There is an uncertainty on whether protected base classes should be

possible in current C]-+. Ellis & Stroustrup [1990] is inconsistent on

ihis point, with most clues leading to a negative answer. At least the

Hewiettpackard C1-¡ translator/compiler does not accept protected

base classes. On the contrary, Stroustrup t19911 makes it clear that

protected base classes are indeed meant to be possible (in some future

version?), and also describes their semantics'

Bjarne Stroustrup's books and articles try to make a clear concep-

tual distinction between public and private inheritance (derivation)'

For a long time, I was in doubt about how protected inheritance could

logically fit into this picture. Now I think that one can regard pro-

tected inheritance as a restricted case of public inheritance, in that

both these modes are ¡ansitive: any class in an inheritance hierarchy

can access all its non-immediate base classes. For the purposes of this

paper, it suffices to speak of public inheritance, and the results should

be applicable to protected inheritance as well'

Private inheritance, in contrast, is intransitive: evety class can ac-

cess only its immediate base classes. This is the kind of inheritance

that has been recommended in earlier work of Alan Snyder U9871' It

is akin to "incidental inheritance" in Sakkinen [1989], while the pub-

lic inheritance of Cl-+ corresponds to "essential inheritance."

Public inheritance is supposed to imply more or less an is-a rela'

tionship, which must be transitive. Already because of its intransitiv-

ity, private inheritance does not imply any is-ø relationship. In private

Gingìe) inheritance, the role of the base class can be very similar to

the role of a representotion in CLU [Liskov et al' 1981]'

Cl-+ differs from the majority of object-oriented languages in that

the data members of an object are directly contained in the object,

3. I would still prefer a more paternalistic general philosophy!

A Critique of the Inheritance Principles of C+4 77

independently of their type. In most other languages, an object can
contain only pointers to other objects; this is called "reference seman-
tics". Because of this property, private inheritance is much less differ-
ent from aggregation (i.e., a private base class from a data member) in
C# than in those other languages. One might suggest that private
(and protected) inheritance be eliminated: that would simplify the lan-
guage quite a bit.

I can agree with Baclawski [1990]a and Cargill t1991al that public
inheritance is the more important case and should preferably have
been the default. However, I cannot totally agree that private inheri-
tance is only aggregation with some syntactic sugar, although I had
suggested in sakkinen [1989] that incidennl inheritance could be re-
placed by aggregation and three simple constraints. Baclawski is
wrong in claiming that private inheritance in C# does not support
late binding; I had not quite realised that earlier, either. In reality, a
virtual function of a base class can be redefined even in a privately
derived class-with less restrictions than I would like (g3.4)-and its
invocations from other functions of the base class and the derived
class will be late-bound.

Because private derivation does conserye this essential property
of object-oriented inheritance, late-bound self-reference, I am at the
end not willing to have it removed from c#, in spite of the compli-
cations. It is also such a traditional feature that its elimination would
break too many pieces of existing software. protected derivation
could easily be omitted now as it is just being introduced. On the
other hand, it adds only little complexity, and can probably be useful
in some situations. It is also more orthogonal that the sets of possible
access levels are the same for members and for base classes.

3.3 Some Definitions

we will now define some terms that will be needed a little later. The
more generally used term 'inheritance' has already been used as a syn-
onym of 'derivation', which is more common in C# literature. The
words 'ancestor' and,'supercl¿ss' will be used to mean immediate or
non-immediate base class, and likewise the words 'descendant, and
'subcl.ass' to mean immediate or non-immediate derived class. (These

4. Baclawski [1991] says that this assessment was originally made by stroustrup himself.

Markku Sakkinen78

meanings correspond to 'proper ancestor' and 'proper descendant' in
Meyer t19881.)

The accessibility of ancestors to descendants is probably intuitively
clear to those readers who know enough about C# to have bothered

to read this far. The following definitions will make our concepts pre-

cise enough. For the purposes of MI we need to think about the acces-

sibility of paths, while the accessibility of (ancestor) classes would be

sufficient for SI.
Let us regard the inheritance graph of a "closed"s collection of

C# classes as a labelled directed graph, where each edgè is directed

from derived class to base class and labelled with its access mode and

sharability (virtual or non-virtual). An inheritance graph is always a

directed acyclic graph (DAG), but not in general a lattice, contrarily to
what is often incorrectly claimed in the object-oriented literature. We

will call any path (sequence of nodes and adjoining edges) in this la-

belled DAG a derivation path.
A derivation path will be called transitively accessible if it con-

tains no edge labelled private (which includes the special case of a
zero-length path), intransitively accessible lf only the first edge is la-

belled private, and inaccessible otherwise. A class A is called accessi-

ble to a class e if there is at least one accessible path from e to e (note

the direction: B is either e itself or a descendant of e), and inaccessi-

ble otherwise. When there is a danger of ambiguitY, we can use the

longer word 'inheritance- accessible' about classes.

What does this mean in practice? To any class B, e itself and its
public (and protected) ancestors are transitively accessible. The direct
private base classes of e and their public (and protected) ancestors are

intransitively accessible to B (unless also transitively accessible by an-

other path). The private ancestors of any ancestor class are inaccessi-

ble to n (unless accessible by another path). The distinction between

accessible and inaccessible ancestor classes will be crucial in the se-

quel. The distinction between transitive and intransitive accessibility

will be also be needed, but much less often.
The reader should convince him/herself that the accessibility

gained by a descendant due to inheritance in C# indeed corresponds

to the above definition. We expressly exclude friend accessibility
(which is intransitive like private inheritance) from these definitions,

5. For every class in the collection, all its ancestors must also be in the collection.

A Critique of the Inheritance Principles of Cl+ 79

for instance because friend relationships do not affect late binding. The
fact that a descendant may gain better access to an ancestor by being
declared also a friend should just be remembered.

For every single class c we define the inheritance graph of c as

consisting of all derivation paths whose first node is C. For every in-
stance of c there is a subobject graph corresponding to the inheritance
graph, where each subobject node is labelled with the name of its
class. Each subobject contains the non-inherited non-static members of
its class. All the graphs in Ellis & Stroustrup U990 $101 are subobject
graphs: the nodes are subobjects and not classes.

The correspondence between paths in the two graphs is one-to-
one. However, a class in the inheritance graph may correspond to
more than one node in the subobject graph, depending on the sharabil-
ities. That is one of the main issues of $5. For that discussion we will
need one more definition: the complete subobject corresponding to a
node N in the subobject graph shall be the subgraph reachable from N,
i.e. consisting of all paths whose first node is N.

3.4 Problems of Private Inheritance

There is a flaw in the access control principles that only affects virtual
functions. Nameþ, a derived class can redefine any virtual function of
any ancestor class, even those that it cannot invoke. V/e illustrate this
with an example:

class fop {
public: /x or

virtual

Ì;
cLass Middle:

ì.l,
cLass Bottom:

virtual
ì.t,

Example 1.

protected: *7
void workO;

private Top {

/x any mode */ Middle

void workO;

80 Markku Sakkinen

All calls of work in member functions of top without explicit class

qualification will invoke Botton: : f , within a Bottom object. Private

derivation thus does not isolate the classes Top and Bottom from each

other.
I propose in a slightly oversimplified way:

Thesis 1: A descendant class must not be able to redefine a virtual
function of an inaccessible ancestor class.

In the next subsection I will suggest the possibility of purely static

overriding, however. It may seem that we have here only a question of
taste instead of a true anomaly in the current C# rules. Stroustrup

t1991bl says that he did not want to be paternalistic. However, with-
out this restriction it is not possible to avoid the "exponential yoyo
problem" ($5.0¡.

There is an interesting consequence of Thesis 1. It obviously
makes Example 1 illegal, or at least prevents late binding from Top

to Bottom: : work. That does not change if a redefinition of work is
added to class Middle. Therefore, Middle: : work cannot be virtually
redefined further, according to the basic principle expressed in Ellis &
Stroustrup [1990 p. 2051:

For virtual functions , [. . .] the same function is called independently of
the sntic type of the pointer, reference, or name of the obiect for which it
is called.

Corollary L: A virtual function of class c whose original definition
is inherited from an intransitively accessible ancestor class, must
not be further redefined in descendants of c.

Thesis 1 was originally formulated thus: "A descendant class must

not be able to redefine a virtual function that it cannot access." Under

this rule it would not make sense to declare a member function pri-
vate virtual. Bjarne Stroustrup convinced me that there can be a

scenario in which the virtuality of a private function is useful, and that

virtuality should be independent of the access level. He could not con-

vince me that virtuality should be independent of derivation modes.
\ile thus split the accessibility of a virtual function into invokatbil-

ity and redefinabiliry. The former is initially defined by the access

A Critique of the Inheritance Principles of Cl+ 81

level and the latter by the virtuality; for an inherited function, both
are affected by the mode of derivation.

The usefulness of a private (instead of protected) virtual function
is rather marginal. Let us examine a simple example, enhanced from
Stroustrup's [1991b] by the addition of the intervening class s:

class A {
private:

virtual void fO;
public:

virtual void gO {

Il,
class public A {

no redefinition of f
ì.l,
class C: public B {

virtual void fO;
ì.J,

Example 2.

Obviously the member functions of class B cannot invoke f ; this
restriction can be desired in some situations. There is no declaration
in current C#, however, that would prevent class c from invoking
f . On the other hand, C: : f cannot invoke A: : f , nor can a redefini-
tion of g in class e invoke f , both of which would typically be wanted.
The code of A: : f should then instead be duplicated in c: : f or B: : g,
which is against the object-oriented reuse principle.

3.5 A Proposed Solution

We must search deeper in the foundations for a totally consistent solu-
tion. It appears that C# has no mechanism nor even term for han-
dling a "family" of virtual functions, i.e. the "most base" function
together with its all redefinitions. This is one of the most important
concepts in Snyder's [1991] object model: he uses the term 'operation'
in this specific meaning. One of the most diff,cult questions in that pa-

fO;]

B:

82 Markku Sakkinen

per indeed is: "What are the operations?" Pointers to member func-
tions are a partial answer (see $4.1, $4.2).

In current C#, every member6 of a virtual function family is
considered a completely independent function, except for late binding.
Therefore also the invokability of a redefined function may be differ-
ent from that of the original one. I suggest that a redefinition should
never change the invokability of a virtual function. Of course, the
mode of derivation may lower the invokability.

Thesis 2: The invokability of a redefinition of a virtual function in
the redefining class should always be the same as that of the inher-
ited function.

Note that according to Thesis 2, the function f in Example 2

would not be invokable even from class C, even though it is redefined

there. This may sound surprising, but is in a way more consistent than
the existing situation, where class g cannot invoke f although both its
superclass and subclass can. Further, I really think that the cases in
which a virtual function should be private are very rare.

There appears to be a nice way to satisfy the thesis while solving
another, related problem. The meaning of virtual function declarations
is currently quite contextdependent. An explicit virtual specifier can

mean either that a new virtual function family is being defined or that
an inherited virtual function is being redefined (this ambiguity was not
allowed originally). The omission of virtual can mean either that an

inherited virtual function is being redefined, an inherited non-virtual
function is being statically overloaded, or a new non-virtual function is

being defined. It would be much better to have a distinct keyword for
the redefinition, as e.g. in Eiffel (cf. $4.2¡.

According to Thesis 2, the invokability of a virtual function redefi-
nition would not be affected by the member access specifiers; this is
similar to friend declarations. A syntactically distinguished virtual
function redefinition would be elegant also from this viewpoint. In
Example l, the following could be added to the definition of class

Middle:

redefine void workO;

6. Here 'member' is in its ordinary meaning, not in the somewhat confusing C-t* meaning
(component).

A Critique of the Inheritance Prínciples of C++ 83

Allowing the static (non-virtual) overriding of an inaccessible vir-
tual function could be possible as an extension to the current C#
rules; it only makes sense because of the other suggestions. The func-
tion eottom: : work in Example 1 would then be legal, but only a
static overloading of top: : work and would not belong to the same

family, although itself virtual. In contrast, it will be lightly suggested

in $3.7 that the non-virtual overriding of accessibl¿ members should
not be allowed-a restriction to the current rules.

It has been conceded in $3.4 that the scope of virtual redefinabil-
ity of a member function can sometimes be larger than that of invok-
ability. Probably more often one would like to restrict the scope of
redefinability to be smaller, i.e. to prevent further redefinitions from
some class downward but retain invokability. BETA [Madsen 1987] is

one language that offers such a possibility. Let us modify Example I
again a little, with some tentative syntax:

class Middle: public Top {

freeze void workO;

t.t,

Note that the derivation from Top was changed to public. Class sot-
tom would then be able to invoke but not to redefine work.

Adding new keywords to C# is always a bit dubious, or at least

requires very good reasons. This is a general problem in languages

in which keywords are in the same space as programmer-invented
names. One could manage without new keywords by replacing vir-
tual, redef ine, andfreeze in the suggestion by, say, vir-
tual), virtual :, and virtual <, respectively. Unfortunately,
one reviewer was afraid that this alternative could cause trouble for
parsing.

3.6 Virtual Base Classes

Although the problems of virtual base classes would logically be-

long to the section on fork-join multiple inheritance, they are so cen-

tral in the discussion that we may note some points already here. To

84 Markku Sakkinen

begin, I think it has been an unfortunate choice to overload the term
'virtual' with this meaning, remotely related to the original one; for
instance 'shared' would have been a better word. Recall that the

meaning is [Ellis & Stroustrup 1990 p. 200]:

A singte sub-object of the virtual base class is shared by every [derived]7
class that specffied the base class to be virtual.

As explained by Stroustrup [1987, 1989] and Ellis & Stroustrup

[1990 $10], virtual base classes are a little more difficult and more
costly to implement than non-virtual ones. Even then they are subject

to the additional restriction that a pointer to a virtual base class cannot

be cast into a pointer to a derived class. Casts from base to derived
class are, however, extremely risky in C# even in the cases where

they are allowed, and should be avoided. The reason is the lack of
run-time type information in objects-in my opinion, insufficient ob-
ject orientation.

Stroustrup admits that writing virtual functions can be trickier in
the presence of virtual base classes. The example in e.g. Ellis &
Stroustrup [1990 p.20I-202] shows that one must often write an-

other, protected and non-virtual function for descendant classes to
call; otherwise the function in some base classes may get invoked
more than once. Cargill [991a] dislikes the complexity caused by
possible "sideways" redefinitions of virtual functions with virtual base

classes. We will treat this question in $5.5-5.6 and find that FJI with
non-virtual base classes can actually lead to much more anomalous sit-

uations.
The virtuality of base classes must be considered in object con-

struction, too. It is written in Ellis & Stroustrup [1990 512.6.2]:

A complete object is an object that is not a sub-object representing a base

class. Its class is said to be the most derived class for the object' All
sub-objects for virtual base classes are initialized by the constructor of
the most derived class.

This is obviously necessary in some situations, but in this formulation

it is a too sweeping requirement, which may cause the effects of vir-
tual derivation to propagate too far. It should be refined. Consider:

7. It actually reads 'base' in the book, but that must be a simple clerical mistake.

A Critique of the Inheritance Principles of C# 85

cLass A {
publ ic:

A (int) ;

ìJ,
cl-ass B : public virtual
publ ic:

B(int i) : A(i) {

);

Example 3.

Now all constructors of every class derived from e directly or indi-
rectly, even by single inheritance, must explicitly invoke the construc-
tor of e ! The rule also requires an ugly exception to the accessibility
rules of class members: the constructors of a virtual base class are ac-
cessible both to the virtually derived class and all its descendants, ig-
noring all access specifiers.

The effect of declaring a base class virtual is too global also in the
sense that there is only one subobject within a complete object that
corresponds to all occurrences of the same class as a virtual base. Al-
though this seems simple and logical at first, it is less logical in some
more complicated inheritance graphs. I will suggest an essential modifi-
cation to this principle in $5.4.

Thesis 3: The effects of declaring a derivation virtual should not
propagate too far in the subobject graph.

3.7 Non-virtual overriding and overloading

The philosophy of name scoping between superclasses and subclasses

in C# is the same as in Simula": the scopes are regarded as if they
were lexically nested. Variables and functions of the derived class can
thus non-virtually override (hide) those of the base class.

This philosophy originated when there was yet no mechanism
similar to the access modes of C#, and was then a sensible way to
decrease unnecessary interference between super- and subclasses.

However, now that the different access modes exits, it would be more
natural to regard the accessible members of a base class to be in the
same scrye as the members of the subclass itself.

Markku Sakkinen86

In consequence, I suggest that the overriding of accessible non-
virtual base class members should not be allowed in a derived class; it
is not very useful but can cause treacherous errors. Especially the dif-
ference between virtually and non-virtually overridden member func-
tions is quite subtle. The overloading of non-virtual member functions
would of course not be forbidden if the types of the explicit arguments
are different.

The previous suggestion is more or less tentative; the following
one is more serious. The hiding rule has been extended (I suppose in
Release 2.0) so that deûning or redefining a member function in a class

also hides any inherited, overloaded member functions with the same

name. This is another paternalistic rule (cf. $3.1) that should be re-
tracted. It tries to prevent some errors but causes much more nuisance

to perfectly good programming.
Ellis & Stroustrup t19901 give two examples as a rationale for the

rule ($13.1, p. 310-312). The first example is based on the thinking
that a client of a derived class should not need to be aware of the pub-
lic functions of public base classes. In my opinion, this is contrary to
the very idea of public inheritance. A work-around for accessing a

hidden inherited function is presented:

class X1 {
publ ic:

void f (int) ;

Ì;

/ / c}:.ain of derivations X2 X8

class X9 : public X8 {
publ ic:

void f (double);
void f(int i) { xa::f(i); }

Ì;

Example 4.

Having to write a lot of such auxiliary functions can be an unneces-

sary pain in the neck for programmers. If the hiding rule were kept as

the default, at least one should have some more convenient means to
escape it, such as:

reveal void f (int);
reveal f;

87ACritique of the Inheritance Principles of C#

The latter declaration would reveal all overloaded, inherited variants
of f . Even better, the hiding rule should not be the default, but appli-
cable by explicit hide declarations analogous to the above reveal
declarations.

The second example of Ellis & Stroustrup [1990 p. 3I2] is based

on an assignment operator:

struct B {
void operator: (int i)

Ì;

If this operator were not automatically hidden in subclasses of e by the

default assignment operator (if nothing else), it would probably cause

an incomplete assignment when applied to a subclass object. Here the
hiding rule tries to protect against sloppy programming, but succeeds

only half way: an invocation through a pointer of type s* will cause

the "incomplete" operation to be performed anyway. The operator
should absolutely be declared virtual in the first place and redefined
in the appropriate derived classes.

The above kind of reveal declaration would also be a better way

than the existing one [Ellis & Stroustrup 1990 $11.3] for restoring the

original accessibility of selected members of private (or protected)

base classes. A small but admitted defect of the current method is that
overloaded member functions with the same name cannot be treated
separately. To take the book's example:

class X {
private:

f (int) ;

publ ic:
fo;

ì
l¡
classY: privateX{
public:

X::f; // error
ì.t,

Example 5.

There is no way to restore the accessibility of X: : f O to public in v
because X: : f (int) is private.

88 Markku Sakkinen

4. Independent Multiple Inheritance

4.1 Problems in Curcent C++

Simplifying things a little, we can say that the prime conceptual prob-

lem of multiple inheritance are horizontal name clashes, i.e. those be-

tween parallel superclasses (base classes). Independent MI is a simple

and unproblematic case in principle: any such name clashes can be re-
garded as purely accidental and resolved by explicit class qualification.

Name clashes between data memb¿rs indeed cause no big trouble
in C#: one must just explicitly qualify the member name with the

appropriate class name when referring to it in a derived class. Unfor-
tunately, name clashes between function members cannot always be

handled adequately. Let us consider an example from Stroustrup

[1991 13.8]: the two totally unrelated classes window and cowboy
both happen to have a function called draw, but their meanings are

obviously quite different.

class Window {
//
virtual void drawO;

Ì;
class Cowboy {

//
virtual void drawO;

ì
lt
cfass CowboyWindow : pubtic Window, public Cowboy {

t///
ì
J¡

Example 6.

There is a similar example in Snyder [1991 Fig. 8b]. Snyder sees here

an anomaly in C#: that there is no way to denote either window's
or Cowboy's draw in the lexical context of Cowboywindow, in a way

that would not suppress virtuality and would be resilient to a later

evolution of the class hierarchy. Indeed, a simple class qualification
(cowboy: : draw or window: : draw) may need to be changed if draw
is later redefined in cowboywindow, or if some new class redefining

draw is interposed in the inheritance graph between cowboy and cow-

boyWindow (or window and CowboyWindow).

89A Critique of the Inheritance Principles of C#

Actually there is a solution to this problem, by using "pointers to

¡1e1¡þe¡s"8-a difficult new feature which happens to be discussed in
Snyder [1991] as well. Specifically, if cw is an instance of cowbov-
window, one could use

(cw. * (&Cowboy: : draw)) o

to invoke the first function, and

(cw. * (&Window: : draw)) o

to invoke the second function. As Ellis & Stroustrup [1990, p. 157]

confess, "the syntax isn't the most readable one can imagine", but it
should work exactly as Snyder wanted. Even this solution does not
work for non-virtual functions. However, if the suggestion of $3.7 to
forbid nonvirtual overriding were accepted, ordinary class qualification
would suffice for them.

This whole example would have been illegal C# and therefore

moot according to the rules of Stroustrup [1989 p. 3791: a horizontal
name conflict between virtual functions was required to be resolved by
a redefinition in the derived class. This rule has obviously been lifted,
sensibly enough.

In my opinion, the real conceptual fault appears first when one

would like to redefine one of the inherited draw functions. Namely,

it is impossible to redefine cowboy: : draw and window: : draw sepa-

rately in cowboywindow: a redefinition wlll unifu the functions. The

situation is the same whether the functions are virtual or not. This is
absolutely wrong if we assume that name clashes between indepen-

dent superclasses really are accidental. In Example 6 it is impossible to
imagine a function that could be a sensible common specialisation of
the two draw functions. An analogous situation in Snyder [1991 Fig. 8a]
is only called "challenging" there, in the sense of its modelling being
non-obvious.

Thesis 4: The language must not force functions inherited from
mutually unrelated ancestors to be unified in a common descen-

dant class.

It is interesting to note that Ellis & Stroustrup [1990 $10.1lc] recog-

nise this problem, but do not seem to consider it important. They ac-

8. Again a term that I do not really like, because those are offsets rather than pointers.

Markku Sakkinen90

tuaily write:

The semantics of this concept are simple, and the implementation is
trivial; the problem seems to be to find a suinble syntax.

Syntax concerns seem a poor excuse for leaving the problem unsolved,
especially as the syntax of C# is not so wonderful anyway.

The anomaly of the above becomes still more obvious if we think
of cases in which the two draw functions are not of exactly the same
type. If they differ only in their return type, then it is not possible to
redefine either of them in cowboywindow, as far as I can infer from
Ellis & Stroustrup U9901! If they differ in the types of arguments,
then they remain separate even in C, but if only one is redefined the
other becomes hidden ($3.2¡.

4.2 Dffirent solutions

Stroustrup [1991 $13.8] presents a work-around for redefining the
draw functions in Example 6. Cowboywindow cannot be derived di-
rectly from cowboy and window, but auxiliary intermediate classes
and functions are needed. This is Stroustrup's solution, with trivial
type errors corrected:

class WWindow : public Window {
virtual void win_drawO :
void drawO { win_drawO;

Ì;
class CCowboy : public Cowboy {

virtual void cow_draw1¡ :
void drawO { cow_drawO;

'ì

J,
cfass CowboyWindow : public Window, public Cowboy {////

void win_drawO;
void cow_drawO;

ì.t,

Example 7.

This method would work just as well even if the two draw functions
had different result types. However, it looks a little awkward, adding
complexity to the class structure. The awkwardness becomes worse if
we suppose that the classes \{window and ccowboy should be reusable,

0;
Ì

0;
Ì

A Critique of the Inheritance Principles of C1+ 9l

and that there may be more than one pair of colliding functions that

could be redefined. In order not to require every derived class to rede-

fine every function, win_draw and cow_draw should actually not be

defined as pure virtual (: o), but rather like this:

virtual void win-drawO { Window::drawO; }

More importantly, programming tools such as class browsers probably

cannot tell the programmer that in order to get a redefinition of Win-
dow: : draw in classes derived from cowboywindow, it is the function

win_draw that must be redefined.

One way to avoid the problem of mixing up unrelated functions

would be the mechanism of "titles" [Sakkinen 1990]. I had originally

thought it out earlier, and noted when the "pointer to function mem-

ber" concept was added to C# that there was a strong similarity. A
bit paradoxically, although families of virtual functions are not well

defined in C# ($l.S¡, pointers to them now exist. As Snyder [1991
p. 131 puts it:

Pointers to class function members correspond exacþ to operations in
our model of C#: such pointers cannot distinguish between individual
methods for the same operation [...]

Simplifying to the most essential for this case, a title would have a

meaning lying between a class qualification and a pointer to function

member. To try some concrete syntax, A. . f would mean "the most

specific overriding of function A: : f ". The most important difference

1s x (&A: : f) would be that this construct could be used also in redefi-

nitions. In the above case, one would use just A. . f if redefining the

function lexically within the definition of a derived class c, and

C: : A. . f outside class definitions.
Using the title could automatically take into account even non-

virtual overridings (previous subsection). If all the suggestions in $3.5

were realised, titles could be needed for the opposite purpose: to dis-

ambiguate vertical name clashes between virtual functions already in

single inheritance. Member function pointers are also adequate for that

task, though, because the need would appear only in invocations, not

definitions. Neither of these two uses would be relevant if non-virtual
overriding of accessible members were forbidden ($3.7).

Finally, in spite of what was said above, in some cases one might

want to unify two functions inherited from different superclasses. This

Markku Sakkinen92

could be done by equating their titles (possible syntax is left to the

reader's imagination), even if the original names were different. of
course, the argument and result types of both functions should be

identical.
Note that in Eiffel'* [Meyer 1938 $11.2], inheritedfeatures (Eiffel

terminology, eguivalent to 'members' in c# terms) with identical

names can be redefined seParateþ:

class Cowboy feature draw ... end

class Window feature draw .. ' end

class Cowboy\Window inherit
Cowboy rename draw as cow-draw redefine cow-draw;

Window rename draw as win-draw redefine win-draw;

... end

Example 8.

The suggestion for cJ+ mentioned in Ellis & stroustrup u990

$10.11¿i is totally analogous to this. The advantage of my "title" so-

lution is that it would not be necessary to invent new names for the

overriding functions; although even in Examples 7 and 8, both wete

renamed only for the sake of symmetry.

4.3 Private MultiPle Inheritance

The following section will present quite a lot of complications that are

caused by the presence of private inheritance in C#, in contrast to

most other object-oriented languages. Before that, let us have one

more argument in favour of private inheritance'

As explained in Stroustrup [1991 ç12.2.5], a typical simple use of

IMI is to have one public base class and one private base class which

serves as the implementation. The very first example of multiple in-

heritance in Meyer t1988 $10.4.11, already entitled "The marriage

of convenience", iS like this. If we disregard genericity, the example

defines rhe class FIXED-STACK by inheriting both the deferred (Elf-

fel term for 'abstract') class STACK, which defines the interface, and

the ordinary class ARRAY, which is used for the implementation. All
features of STACK are exported by FIXED-STACK, corresponding to

public derivation in C]-+, while no features of ARRAY are exported,

corresponding to private derivation.
This example has often been frowned upon, but actually there is

A Critique of the Inheritance Princíples of C++ 93

only one defect in it: in Eiffel nothing prevents an object of type
FIXED-STACK from being assigned to a variable of type ARRAY,
after which all ARRAY routines can be directly invoked. Here the
private derivation of C++ has an advantage over Eiffel: in C# it
would not be possible for clients to implicitly convert a pointer to
FIXED-STACK into a pointer to ARRAY. Unfortunately, an explicit
cast is always possible; but explicit casts can cause even catastrophic
effects in C#, so a wise programmer writes them only when neces-

sary and reads them in existing code as warning signs.

5. Fork-Join Inheritance

5.1 The Posítive Side

I tend to believe that many situations really demand FJI (with virtual
base classes). On a conceptual level, such situations arise whenever we

have several mutually independent classifications of the same domain.

For instance: A vehicle is either a land, water, air, or amphibious ve-

hicle; in another classification it is either private or public (not in the

C# sense!); in a third one it is powered by wind, man, animal, or
engine. Any instance of a vehicle is nevertheless one vehicle, thus

vehicle as a non-virtual base class would make no sense. This ex-

ample is perhaps not absolutely convincing, as it might be modelled

adequately without using inheritance at all.
An interesting programming style has been suggested by Paul

Johnson [1990] asfine grain inheritance, although I have not seen ex-

amples clearly showing its advantages. Very briefly, it means that

every class should define a minimal coherent set of features, and a

typical, conventionally designed class should be broken into a number

of smaller classes related by (multiple) inheritance. Fine grain inheri-
tance obviously requires a high degree of FJI with virtual public base

classes.

One very simple example of public fork-join inheritance is pre-
sented by Stroustrup [1991 $6.5.1]:

class link { };
class task: public link { };
class displayed: public link { };
class satellite: public task, public displayed { ...ì.
J,

Example 9.

Markku Sakkinen94

With this definition there will be two separate link subobjects in each

satellite object. If link were declared a virtual base class of task

and displayed, there would be only one link subobject'

In Sakkinen [1989], I criticised Eiffel because, contrarily to c#,
its rules would not guarantee the integrity of link subobjects in the

above case. Depending on how the class satellite were defined,

part of the components of link might well be shared and the rest du-

plicated. This happens on purpose in the "intercontinental drivers" e)c

àmpte of Meyer tiggs $11.6.21. The same danger seems to exist in

several other languages that support MI'
Bertrand Meyer t19901 in turn has criticised the c# principles

on an issue slightly different from subobject integrity. According to

his reasoning, there is no sense in having task and displayed decide

about the sharing or duplication of tink, since it does not affect them

but only satellite. I continue to disagree with Meyer even on this

point: it
"un

be very important for the class task to know whether it
^has

a f inl< part to itself or is prepared to share it with any other, un-

known class derived from tink'
The question that I had forgotten to pose in admiring the MI prin-

ciples of
-c++

lsakkinen 1989] was: while c# is in this respect

more disciplined than e.g. Eiffel, does even the choice between virtual

and non-viitual derivation independently of access mode, as allowed

by cl+, make sense conceptually and semantically? we will investi-

gáte this question, based in part on the analysis of Baclawski t19901.

In the following subsections, we suppose that a most derived class

c is derived from several base classes by FJI. We examine how the

subobjectgraphofC($3.3)isrelatedtoitsinheritancegraphinvari-
ous situatióni and what restrictions are needed to guarantee the con-

sistency and semantic feasibility of the inheritance structure.

5.2 Accessible Base Classes

Let us examine Example 9 further. The base class tink is supposed to

implement lists of obþcts: here a scheduler list of tasks and a display

tisi. ttre derivations from tink are therefore non-virtual, resulting in

two distinct link subobjects in a satellite'

The inheritance in the example is public, which should imply tran-

sitive is-a relationships ($3'2)' Since a satellite is a task and a task is

a link, a satellite should also be a link. However, there are two dis-

A Critique of the Inheritance Principles of C++ 95

96

tinct links in a satellite, thus one cannot say that a satellite ¿s-ø link.
Indeed the rules of C++ will not allow us to convert a pointer of type
satellite* directly to type linkx, although such conversions are al-
ways possible in public single inheritance.

There will hopefully be no argument that one of the ubiquitous FJI
examples in the literature of semantic databases is correctly modelled
in C# as follows.

class Person { };
class Student: public virtual Person { ... };
class Employee: public virtual Person { ... };
class StudentEnployee: public virtual Student, public
virtual Employee { . };

Example 10.

Of course the virtuality or non-virtuality of the immediate bases of
Studentnmployee does not matter unless further classes are derived
from it. The important thing to note is that the subobject structure
from the viewpoint of studentEnployee would not become different
if its direct bases were made private. The ancestors would only be-
come hidden from clients.

On these grounds I postulate a little imprecisely the following

Thesis 5: Accessible fork-join inheritance should always be virtual.

Note the more general qualification 'accessible' instead of 'public or
protected'. In the pure case (i.e., no private derivations in the inheri-
tance hierarchy) the thesis is sufficient and means that the subobject
graph shall be isomorphic to the inheritance graph. In particular, an
object shall contain exactly one subobject corresponding to each an-
cestor class. A precise formulation that is valid also for mixed deriva-
tions can be based on the definitions of $3.3: If class e is accessible to
class g over more than one derivation path, an instance of e shall con-
tain one complete subobject of class A that is common to all those
derivation paths. (An instance can be either a complete object or a
complete subobject.)

Now we have gotten into a conflict with Stroustrup's example,
which looked perfectly natural at first sight. At least link simply can-
not be a virtual base class there, according to the intended semantics.

Markku Sakkinen

The only way to both preserve the inheritance graph and conform to

the rule is to make link a private base class (of at least one of its im-
mediate descendants). In fact, that would be reasonable also because

otherwise it would be much too easy e.g. to put tasks on the display

list.
Pondering Example 9 a little more, we note that it is question-

able to make link a base class at all, instead of a data member' If
a task, for example, should happen to need more than one link, it
would not be possible to use inheritance. Declaring data members of
type link in task and displayed would cause different problems:

there would be no way for the link objects to refer to the objects

in which they are contained. A suggested new feature of C# that

was obviously designed especialiy for cases like this, is template class

[Ellis & Stroustrup 1990 14; Stroustrup 1991 $8]. The class link
could be declared as a template class taking a type name (here task,
displayed) as its template argument.

One unconventional property of Eiffel is that direct repeated inher-

itance [Meyer 19SB $11.6.1] is allowed: one class may appear more

than once in the immediate ancestor list of another class. This prop-

erty is often regarded as suspicious, but the possibility of public FJI

with nonvirtual bases conceptually contains it as a special case, except

for the subobject integrity problem in Eiffel (5.1). To see that, simply

imagine that the classes task and displayed in Example 9 declare

no new members, but act simply as naming aids for the two satel-
lite subobjects. Because of the renaming facility, such auxiliary
classes are not necessary in Eiffel.

5.3 Inaccessíble Base Classes

The special case of FJI where all derivations are either public or pro-

tected proved to be relatively simple in the previous subsection. The

opposite pure case where all derivations are private is also simple.

Private inheritance is intransitive, i.e. derived classes can access only

their immediate bases. I postulate the counterpart to the thesis of the

previous subsection, again as an imprecise slogan:

Thesis 6: fnaccessible fork-join inheritance should never be

virtual.

A Critique of the Inheritance Principles of C++ 97

In the pure case, this means that if A is an ancestor of B, an tn-
stance of class e shall contain a separate subobject of class ¿, for each

derivation path from B to A. In other words, the subobject graph shall

be a tree. Obviously, totally private non-virtual FJI is no more compli-
cated to understand and implement than private IMI. It would there-
fore need no very ambitious example of its utility in order to escape

"Cargill's razor".
In the mixed case, Thesis 6 needs more adjustment than Thesis 5,

because even a private path is accessible if its length is one. The com-
plete formulation will be deferred to the following subsection but we

refine the statement a bit here. As mentioned in $3.6, the virtuality of
base classes is too strong or too global in current C++. What I want
to achieve is that two separate subobjects cannot have a "hidden" com-
mon sub-subobject. Thus: If there is an inaccessible derivation path

from class B to class A, the a subobject of an instance of e corre-
sponding to that path shall be totally disjoint from all other e subob-
jects of that instance.

Combining the theses 5 and 6 we conclude that an explicit vir-
tual declaration of a base class becomes superfluous. We could thus
simplify C# by omitting the virtual specifier for base classes.

However, this holds only in principle; pragmatic needs will be sug-

gested in $5.7.

5.4 Mixed Cases

How do we get from the inheritance graph of a class c to the corre-
sponding subobject graph in the general case, in which virtual (public

or protected) and non-virtual (private) derivations can be arbitrarily
combined? The non-transitivity of private inheritance makes the prob-
lem difficult.

I present a general rule, however, which I believe to result in con-

sistent and understandable object structures even in very large and

complicated class hierarchies.

Rule: Let P and Q be two derivation paths from class B to class A,

having no common nodes except the end points. The paths P and

Q will correspond to the same complete e subobject in an instance
of e if and only if both are accessible. Otherwise the paths will
give rise to two disjoint complete subobjects.

98 Markku Sakkinen

One consequence of the rule is that no class can access more than one

subobject corresponding to each ancestor class. Multiple class qualifi-

cations (like a: : A: : x) will therefore never be necessary in order to

uniquely denote inherited members. Stroustrup [1989] noted that such

multiple qualifications would be useful under the current C# rules,

but they have not been introduced into the language for this purpose.

Instead, when the nesting of class definitions was made meaningful

(causing nested scopes) in Release 2.1 [Ellis & Stroustrup $9.7], this

syntax was employed to refer to such nested deûnitions from outside.

In current C# there are no restrictions on the legal inheritance
graph of a class, except acyclicity. There can be at most one edge

directly connecting any two nodes (classes), but that is a normal re-
quirement for proper graphs. It appears that with the new rules as

presented so far we can manage without additional restrictions on the

basic graph structure. However, we will need further restrictions on

the labelling (access modes) to assure consistency. The previous sub-

sections already effectively removed the virtuality labels.

A problem point in the rule is revealed by the following anoma-

lous example.

class A { };
class B : pubtic virtual A {};
class C : private B, public virtual A

cLass D : public virtual C {};

Example 11.

The classes R and c are accessible to class o; even according to

Thesis 1, virtual functions of A can be redefined in o, and such

redefinitions are effective also for the c subobject of an instance of u.

Because e is accessible to c, the redefinitions propagate also to the s
subobject. On the other hand, class s is inaccessible to o; by Thesis I
o should not be able to affect the virtual functions effective for its e
subobject.

The contradiction is solved by the following

Restriction 1: If a class C has both a transitively accessible and an
intransitively accessible derivation path to the same ancestor class,

no further classes must be derived from C.

A Critique of the Inherinnce Principles of C++ 99

5.5 Virtual Functions with Virtual Base

Classes

The late binding of virtual functions, often called "method lookup" in

object-oriented literature, becomes complicated in the fork-join case.

Let us first consider the case with virtual base classes, since according

to my suggestions late binding would be relevant only there.

The little difficulty that was mentioned in $3.6 can be illustrated

by augmenting Example l0 a little. This is equivalent to the example

in Ellis & Stroustrup [1990 p.201-202]:

class Person {
public:

virtual void earnO;

Ì;
class Student: public virtual Person {
public:

virtual void earnO;

Ì;
class Employee: public virtual Person {
public:

virtual void earnO;

ì
J¡
class StudentErnployee: public virtual Student,

public virtual Employee {
public:

virtual void earnO;

t.J,

Example 12.

Suppose that each version of earn has to call the inherited version(s)

in addition to doing its "own job", as is very common. At least the

classes student and ornployee must then define a separate, nonvir-
tual protected function, say own-earn, that does the "own job", and

every virtual function must call all relevant non-virtual functions:

void Student: : earnO {Person: : earnO ; own-earnO ; }
void Ernployee: : earnO {Person: ; earnO ; own-earnO ; }

100 Markku Sakkinen

void StudentEmpoyee: earnO I
Person: : earnO ; Studeni: : own-earn() ;

Employee: : own_earnO; own_earnO;
Ì

For functions with a non-void result type (even in the example we
would more naturally have virtuaf int earn O), there is the
additional problem of how to combine the results of all the different
functions.

There is a slightly erroneous rule in Ellis & Stroustrup [990
p.2351:

To avoid ambiguous function definitions, all redefinitions of a virtual
function from a virtual base clqss must occur on a single path through the
inheritance structure.

The rule could actually make sense, but it does not seem to describe
current C# correctly. Thken literally, it would make even Example
12lllegal. The intent evidently was:

[...], tf a virtual function from a virtual base class is redefined on more
than one path through the inheritance structure, there must be one
redefinition that dominates all others.

An advantage of the unlimited scope of redefinability of virtual
functions in current C# is that there is always a class where such a
dominating redefinition can be done if an ambiguity must be resolved:
at least the most derived class. Obeying Thesis 1, there could well be

cases in which there is no single most derived class in which the vir-
tual functions of a given ancestor class can be redefined. That would
happen in Example 12 if the base classes of studentEmployee were
private. To avoid that, we must make an explicit

Restriction 2: In the inheritance graph of a class C, for any ances-
tor class A that is accessible to several descendants, there must be
one among them to which all others are accessible.

The principle of dominance leads to the "sideways" inheritance men-
tioned in $3.6. Suppose that the redefinitions of earn are removed
from student and studentEmployee in Example 12. Calls of earn
in an instance of studentErnployee will then always be resolved to
Employee: earn, even when they are issued from functions of stu-

101A Critique of the Inheritance Principles of CII

dent or by clients using a pointer of type student*. Ellis & Strous-

trup [990 $10.10c] says:

A call to a virtualfunction through one path in an inheritance structure
may result in the invocation of a function redefined on another path. This
is an elegant way for a base class to act as a means of communication
between sibling classes [...]

Cargill |991a $41 sees the disadvantages as more important (re-

ferring to a similar example):

To understand the behavior o/ [Student: : earn Ol we must examine
the entire DAG reachable by ffaversing from any class derived
from fstudentl to any virtual base class o/ lstudent].

I must admit that both the advantages and the disadvantages of this
method lookup scheme look important. However, since a complete

object ($3.0¡ is primarily regarded as one single object, it seems logi-
cal that method lookup always begins this way, from the most derived
class (i.e., the root of the complete object).

5.6 Virtual Functíons with Non-Virtual Base

Classes

It has appeared to me that the method lookup in current C# is in
some ways more problematic in FJI with non-virtual base classes. In
fact, I have not succeeded to find this case explicitly described in Ellis
& Stroustrup [1990], nor in other books and papers! It is in most re-
spects like independent multiple inheritance. Note that this situation
can occur only in existing C#, not with my new rules.

Consider Example 12, modified so that all derivations are non-
virtual. Let us pretend that this could be sensible, ignoring the too ob-
vious real-world situation that a student employee is only one person.

If earn were not redefined in Student and studentEmployee, no

direct "sideways inheritance" as with virtual derivation could occur.

On the other hand, any invocation of studentEmployee: earn would
be a compile-time error; either student: : earn or Enployee: : earn
would have to be selected statically.

Suppose again from now on that the redefinitions of earn are

there. With non-virtual derivation we do not need the non-virtual aux-

102 Markku Sakkinen

iliary functions in every class, and StudentEmployee;earn need not

worry about Person: : earn. The situation thus looks much simpler:

void Student: : earnO {Person: : earnO ;

/* then they own stuff */ Ì
void Employee: : earnO {Person: : earnO ;

/* then they own stuff */ Ì
void StudentEmPloYee: : earno

{Student: : earnO; EmPloYee: : earnO;
/* then they own stuff */)

Of course, if the result type of earn were non-void, there would still

be the problem of result combination, as in the virtual case.

However, think about the case that earn is invoked by a member

function of person. This call then comes from the Person sub-sub-

object of either the Student or the Ernployee subobject, but it will
cause person: : earn to be invoked on bothPerson parts! This is

much more insidious sideways inheritance than in virtual derivation.

The effects can get even more interesting. Suppose that per-

son: : earn calls another virtual function work of Person, and work
gets redefined similarly to earn. It is easy to see that one call of earn

from person will cause work to be invoked twice on both Person
subobjects! We might call this anomaly "the exponential yoyo prob-

ls m"
-¡Irs

explanation follows.
The suggestive name "yoyo problem" was coined by Tâenzer et al'

t19891 to describe the following situation, translated from the termi-

nology of Objective-C@ into that of Cl+: Whenever virtual functions

invoke other virtual functions of the same object (*this), the method

lookup starts from the most speciflc class of the actual instance and

proceeds upward in the inheritance hierarchy until a definition is

found. The flow of control can therefore oscillate arbitrarily up and

down and be difficult to follow if the hierarchy is deep.

The yoyo problem was identified in an environment with single in-

heritance. It obviously becomes more complex with multiple inheri-

tance, as explained in the quote from Cargill in $5.5' Our new prob-

lem is clearly similar to the yoyo problem; it is exponential in the

sense that the number of invocations gets multiplied by the number of
inheritance branches on each down-and-up trip. However, the new

A Critique of the Inheritance Principles of C*| 103

case is clearþ erroneous, whereas the original yoyo problem means

only difficulties in understanding and debugging software.

The exponential yoyo problem does not appear naturally with vir-
tual base classes. To see that, let us return to Example 12, including

all function redefinitions. Let there be another virtual function work
in class studentnmployee, which is again redefined in all the other

classes just like earn. If Person: : earn invokes work, the invocation
will be late-bound to studentEmployee: : work. That in turn will
cause Person: : work and each own-work to be called exactly once;

no surprises. In order to cause multiple invocations, at least one of the

own-eârn functions must be expressly written to call work.

5.7 Further Considerations

It was noted already in $3.6 that the liability of invoking the construc-

tor for a virtual base class should not extend farther down in the inher-

itance graph than is logically necessary. Within the rules proposed so

far in this paper, the following would be adequate: For every class B

from which there are at least two disioinr accessible paths to an ances-

tor A, the accessible e subobject must be initialised directly by the

constructor(s) of e; any initialisation of e specified by classes between

R and s on the derivation paths will be ignored.

Alternatively, we could make this even simpler and specify that
the initialisation caused by that immediate base class shall prevail
which is mentioned first in the base list of e. This rule could be ac-
companied by a general ability of descendants to redefine the initiali-
sation of any accessible non-immediate ancestor.

There are important exceptions to Thesis 5. First, there can some-

times be semantic reasons for public or protected inheritance with
guaranteedly unshared subobjects. Second, the pragmatic viewpoint
should not be ignored either. Presumably even in large inheritance
graphs designed by programmers who know how to exploit the advan-

tages of MI, there will be relatively few accessibly derived fork-join
structures. Therefore one would not like to have the overhead of virtu-
ality in all derivations.

Taking into account these factors and the tradition of the lan-
guage, it is probably wisest to keep the virtual keyword but

lO4 Markku Sakkinen

enhance its implications so that the rules prescribed in this paper will
not be violated. Primarily, if class ¿. is an immediate non-virtual base

of s, it shall be illegal for any descendant class of n (including e it-
self !) to have an accessible path to e both over B and over some other

immediate descendant. Even a private virtual declaration can then

make sense, to assure that e remains a descendant of e independently

of changes in its other inheritance relationships.

As a somewhat different situation, one might like to assure that a

certain set of classes derived from a common abstract base class form

a taxonomy, i.e. that they are both exhaustive and mutually exclusive

on every derivation level. Baclawski [1990] says about the mutual ex-

clusion of subclasses:

Such a constraint cannot normally be enforced by a programming

Language t...1 It is curious that taxonomies are often cited as a

motivationfor inheritance, yetfew systerns offer the means of
constraining a set of rypes to be a taxonomy.

In the class dictionaries of the Demeter"' framework [Lieberherr et

al. l99ll, inheritance hierarchies areforced to be taxonomies.

A taxonomy does not completely prevent later fork-join inheri-
tance, if multiple independent taxonomies of the same base class are

allowed, as in the very rudimentary vehicle example of $5.1. The

C# Demeter system, contrarily to the Flavors Demeter system, at

the time of writing does not allow such multiple taxonomies, nor FJI

in general [Lieberherr l99Il.
Frameworks such as Demeter that require the whole class structure

to be defined before compilation may evidently cause additional over-

head for the incremental addition of new derived classes. On the other

hand, they can allow a much higher degree of cuslomisation ÍLea 901

and consequent run-time efficiency than more conventional ways of
object-oriented software development. In particular, in such a frame-

work it would not be necessary for programmers to specify non-virtual

derivation for mereþ pragmatic reasons. Another advantage of Deme-

ter is the automatic generation and propagation of member functions

for classes. This could probably be extended to generate such typical

virtual function patterns as presented in $5.5 for FJI.

A Critique of the Inheritance Principles of C++ 105

6. Summary and Conclusions

The discussion that this article is continuing began from the question

whether C# should support multiple inheritance or not. I now think
that there is sufficient evidence to answer "Yes" to this question, at
least for independenr multiple inheritance. Therefore it appeared more
important for me to study how MI should work.

During this work it became apparent to me that private inheri-
tance, rather a speciality of C+f , is a major cause of complexity. It
also became apparent that private inheritance is semantically such an
important and powerful tool that the complexity should be tolerated.

I found that there are some subtle inconsistencies in the current
inheritance principles of C# that affect already single inheritance.
The most important flaws could be summarised by saying that private
inheritance is not private enough. Independent multiple inheritance ex-

poses at least one further effect: the unpreventable unification of mem-
ber functions because of accidental name equality. Fortunately, all
these flaws can be corrected by a small modification to the language.

Fork-join multiple inheritance was known to be the really complex
case: it had caused the distinction between virtual and non-virtual base

classes that was one of the main targets of Cargill's critique. I believe
having made plausible enough that, on conceptual grounds, public
(more precisely: accessible) inheritance should implicitly be "virtual"
and private (more precisely: inaccessible) inheritance'onon-virtual",
and the language could therefore be simplified. Implementation rea-

sons may make this principle too expensive for public inheritance in
the cases when it is not actually needed. However, I suggested some
possibilities for optimisation.

The "exponential yoyo problem" is presented in $5.6 as areductio
ad absurdurø to show that at least the combination of non-virtual (du-

plicating) FJI with unrestricted redefinability of virtual functions, al-
lowed by the current C# principles, is unsound.

Although the suggestions of this paper would make FJI simpler
and more logical, it still remains a complicated thing for both imple-
mentors and users of the language. The main suggestions should be

applicable to several other object-oriented languages as well. We still
need good examples of FJI to convince Tom Cargill and many others

106 Markku Sakkinen

thatitisworththetrouble.Amajorreasonforthelackofgoodpub-
iirt

"¿
examples of MI is that such examples tend to be large and

complicated.
Verysimilarþ'mostoftheproblemsanddefectsintheinheritance

principlesofC#onlybecomeapparentwhenonestudiesinheritance
gr"ør essentially moå compb* ittun those in the textbooks and refer-

ãnå *unuals. such complex situations have obviously not been

sufficientlyconsideredwhenthelanguagehasbeendesigned.Ialso
,*p""r,tætt"designofmultipleinheritanceaswellasseveralother
features has been exässively driven by implementation considerations'

InmyopinionC#isnotsufficientlyobject-oriented;Ihopetoex-
pound that in Sakkinen ll992l'

Iamnowmoreoptimisticaboutmultipleinheritance.thanever:it
is a good thing in principle, ønd it can-be done right; it just is not so

rt*n* u, lnuriy of us t aue often thought' The current rules of Ct+

must urgently be revised, although a prograÍìmer who is convinced

about the theses and other suggestions of this article can realise part of

them by programming discþñne' This holds for Thesis l' Thesis 2 in

most cases and ThesiJ 5 in iimple cases; thesis 4 can be achieved by

Stroustrup'swork-around'However'Cl-l-progranìmersshouldforthe
iim" Ueirrg probably avoid MI as far as possible in- order to guard

against h[i troublá. Co-ple" combinaiions of public and private, vir-

tual and non,virtual fork-jãin inheritance are especially dangerous'

Acknowledgements

This research has been funded by the Academy of Finland' project

106 1 1 20 (Object-oriented languages and methods)'

Severalpersonshavetreþdmeindiscussionsandcorrespondence,
and by ,"nding literature thát I would not have had available other-

wise.TheseincludeatleastBjarneStroustrup(inspiteof.everything!),
Kenneth Baclawski, Douglas Lea, Peter Grogono' Juha Vihavainen'

TimothyBudd,IanHolland,AnteroTaivalsaari,KarlLieberherr,
Daniel Edelson, Alan Snyder, Tom Cargill' Peter Salus'.Jim Waldo'

and Jorma Kyppö. The càmments of the anonymous reviewers were

helpful, and have been taken into account'

A Critique of the Inherítance Principles of C# 107

The discussions in some usenet newsgroups have been very stimu-
lating and useful. The most important groups have been, of course,
'comp.lang.cl*' and 'comp.std.c#' (although I have not had the
time to follow these regularly any more), as well as 'comp.object'.
The occasions to give a guest lecture largely about the theme of this
paper both at the university of rärtu (Estonia) and at the university of
Kuopio further heþed me to clarify my thinking and expression.

108 Markku Sakkinen

References

AT&I C+ Tianslator Release 1.2 Addendum to the Release Notes, Murray
Hill, NJ: AT&T Bell Laboratories, 1986.

K. Baclawski, The Structural Semantics of Inheritance, manuscript (submir
ted for publication), Boston, MA: Northeastern University, 1990.

K. Baclawski, private communication, 1991.

T. Cargill, Controversy: The Case Against Multiple Inheritance in C#,
Computing Systems, 4(l):69-82, Winter I99la.

T. Cargill, private communication, 1991b.

M. A. Ellis and B. Stroustrup, The Annotated C# Reference Manual, Read-
ing, MA: Addison-Wesley, 1990.

K. E. Gorlen, An Object-Oriented Class Library for C# Programs, Solr-
ware-Practice and Experience, 17(8): 503-512, August 1987.

P. Johnson, Fine Grain Inheritance and the Sibling-Supertype Rule,
manuscript, Great Baddow, England: GEC-Marconi, 1990.

D. Lea, Customization in C#, Proceedings of the 1990 USENIX C# Con-

ference, pages 301-3 14, 1990.

K. J. Lieberherr, private communication, 1991.

K. J. Lieberherr, P. Bergstein, and I. Silva-Lepe, From objects to classes: al-
gorithms for optimal object-oriented design, Software Engineering
Journnl, 6(4):205-228, July 1991.

M A. Linton and P. Calder, The Design and Implementation of InterViews,
USENIX C# Workshop Proceedings and Additional Papers, pages
256-268, 1987.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Schiefler,
and A. Snyder, CLU Reference Manual, New York, NY Springer-
Verlag, 1981.

O. L. Madsen, Block Structure and Object Oriented Languages, Research
Directions in Object-Oriented Programming (B. Shriver and P. rJ/eg-

ner, Eds.), pages 113-128, Cambridge, MA: MIT Press, 1987.

B. Meyer, Object-Oriented Software Construction, Hemel Hempstead, Eng-
land: Prentice Hall, 1988.

B. Meyer, postings on Usenet (comp.lang.eiffel and comp.object), 1990.

M. Sakkinen, On the darker side of C#, ECOOP 'BB Proceedings (S.

Gjessing and K. Nygaard, Eds.), pages 162-176, Berlin and Heidel-
berg: Springer-Verlag, 1988.

A Critique of the Inheritance Principles of C++ 109

M. Sakkinen, Disciplined inheritance, ECOOP '89 Proceedings (S. Cook,
Ed.), pages 39-56, Cambridge, England: Cambridge University Press,

1989.

M. Sakkinen, Between classes and instances, aided by titles, manuscript,

Jyväskylä, Finland: University of Jyväsþlä, 1990.

M. Sakkinen, The darker side of c# revisited, manuscript in preparation,

1992.

A. Snyder, Inheritance and the Development of Encapsulated Software
Systems, Research Directions in Object-Oriented Programming (B'

Shriver and P. Wegner, Eds.), pages 165-188, Cambridge, MA: MIT
Press, 1987.

A. Snyder, Modeling the Cl+ Object Model: An Application of an Abstract

Object Model, ECOOP '91 Proceedings (P. America, Ed.), pages

1-20, Berlin and Heidelberg: Springer-Verlag 1991.

B. Stroustrup, The C# Programming Language, Reading, MA: Addison-

Wesley, 1986.

B. Stroustrup, Multiple Inheritance for C#, EUUG Spring'87 Conference

Proceedings, pages 189-207, 1987.

B. Stroustrup, Multiple Inheritance for C#, Computing Systems,2(4):
367-395, Fall 1989.

B. Stroustrup, The C# Programmíng Language, Second Edition, Reading,
MA: Addison-Wesley, I99la.

B. Stroustrup, private communication, 1991b.

D. Täenzer, M. Ganti, and S. Podar, Problems in Object-Oriented Software
Reuse, ECOOP'89 Proceedings (S. Cook, Ed.), pages 25-38' Cam-

bridge, England: Cambridge University Press, 1989.

J. Waldo, The Case for Multiple Inheritance in C# , Computing Systems,

4(2): l57ff., Spring I99Ia.

J. Waldo, private communication, 199lb.

fsubmitted Ocl. 2I,1991; revised Dec. 6, I99l; accepted Dec.23, l99l]

Permission to copy without fee all or part of this material is granted provided that the copies-

are not made or ãistributed for direct õommercial advantage, the Computíng Systems copyright
notice and its date appear, and notice is given that copying is by permission-of the Regents-of

the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

110 Markku Sakkinen

