
Architectural and Operating
System Support for Orthogonal
Persistence

John Rosenberg University of Sydney, Australia

ABSTRACT: Over the past ten years much research ef-
fort has been expended in attempting to build systems

which support orthogonal persistence. Such systems al-
low all data to persist for an arbitrary length of time,
possibly longer than the creating program, and support
access and manþlation of data in a uniform manner,
regardless of how long it persists. Persistent systems

are usually based on a persistent store which provides
storage for objects. Most existing persistent systems

have been developed above conventional architectures
and/or operating qystems. In this paper we argue that
conventional architectures provide an inappropriate
base for persistent object systems and that we must
look towards new architectures if we are to achieve ac-

ceptable performance. The examples given are based

on the Monads architecture which provides explicit
hardware support for persistence and objects.

@ Cornputing Systems, Vol. 5 . No. 3 . Summer 1992 305

1. Introduction

Over the past ten years much research effort has been expended in at-
tempting to build systems which support orthogonal persistence [1, 2,
4, 5, 6,71. The idea behind persistence [12] is simple: that all data in
a system should be able to persist (survive) for as long as that data is
required. Orthogonal persistence means that all data types may be per-
sistent and that data may be manipulated in a uniform manner regard-
less of the length of time it persists. Orthogonal persistence is not
found in contemporary operating systems, nor most programming lan-
guages or database systems. In these systems, long lived data is treated
in a fundamentally different manner from short lived data. Tiadition-
ally, long term data is maintained in a database or file system and
short term data is managed by a programming language.

A number of experimental systems supporting persistence have
been constructed [3, 10,25,51]. These usually provide a large store
within which concurrent processes may manþlate persistent data. In
the more advanced of these systems, the stores contain all data includ-
ing procedures, graphics objects, processes and their associated state.
Perhaps the most important feature of persistent qystems is that this
store is both resilient and stable. Persistent systems that have been
constructed to date, with a few exceptions [23, 53], have been con-
structed on top of traditional operating systems and conventional ar-
chitectures. In addition these systems have concentrated mainly on
language issues and it is only recently that there has been more inter-
est in providing support at a lower level.

It is common to find a notion of objects associated with persistent
systems. That is the persistent store is an object store, containing ob-
jects which have an associated type. Usually this store is maintained in
a type secure fashion, so that objects can only be accessed in a manner
appropriate to their type, although this is difficult in a multi-lingual

306 John Rosenberg

system. Most persistent systems do not support inheritance, although
Connor has been investigating a generalised subtyping facility for the
persistent language NapierSS [22].

A further area of interest is security in the sense of control of ac-
cess to data, as distinct from the protection provided by a type system.
In a conventional system security and protection are provided by two
mechanisms. The first mechanism is support for some form of separate

per process address space which is usually implemented using hard-
ware assistance. This restricts access to data in virtual memory on a
coarse grain basis. The second form of security is provided by the file
system which controls access to long term data. In a persistent system
there is no file system; instead all data is stored in the persistent store.
It is therefore essential to provide alternate security mechanisms to al-
low users to control access to their data. This will be further discussed
later.

In this paper we review the support required for persistent object
systems. It is shown that considerable architectural and operating qys-

tem support is required in order to construct scalable and efficient per-
sistent object systems. The paper concludes with a brief description of
a new machine specifically designed to support persistent object sys-

tems and some suggestions for the requirements of future persistent
systems.

2. Background

To place the remainder of the paper into an appropriate context, in
this section we provide some background on persistence. A definition
of orthogonal persistence is given and we define the use of the term
object in the context of existing persistent systems.

2.1 Persistence

Atkinson et al lI2) have identified three principles which underþ the
concept of orthogonal persistence. They are:

. Persistence independence. The manner in which data is created
and manipulated is independent of the time for which that data

Architectural and Operating System Supportfor Orthogonal Persistence 307

persists. Programmers have no control over the transfer of data

between long and short term storage; such transfers are

performed transparently by the system itself.
. Data type orthogonality. There are no types of object for which

special cases apply; all types (including code) are allowed the

full range of persistence.
. Persístence identification. The mechanism for providing and

identifying persistent objects is orthogonal to the type system,

computational model and control structures.

Unfortunately many so-called persistent systems fail on one or
more of these criteria. All persistent systems support the first principle
by definition. Some persistent system designers have taken a pragmatic

approach and have only allowed particular types to persist in violation
of the second principle. For example, Pascal/R [55] only allows first
order relations to persist, and then only if they do not contain pointers.
This creates a discontinuity in the system, makes it more difficult to
understand and means that applications which do not fit into the rela-
tional model cannot be implemented without resorting to an external
file system.

In many persistent systems persistence is determined by reachabil-
ity from some form of persistent root [13, 15, 19]. Thus all persistent
objects can be found by computing the transitive closure of that root.
Other systems have taken the approach of associating persistence with
type [40, 50] in violation of the third principle (and the second as a

consequence). This can result in dangling references, or at best invali-
dated fields of structures, as shown in Figures I and 2 from [43].

Figure 1 shows a structured object containing pointers to two per-
sistent objects and one non-persistent object before being copied to the
persistent store. Since the non-persistent value cannot be saved in the
store the copy operation results in the object shown in Figure 2. Such

inconsistencies make it more difficult to build systems and result in la-
tent errors. Systems which support persistence by reachability never
have this problem and are therefore preferable.

There are several advantages of persistent systems [43]. First they
reduce complexity for application builders. In conventional systems the
system designer must map the real-world onto a combination of a pro-
gramming language and a databaseifile system. These two mappings
often have complex interactions and may be somewhat incompatible.

308 John Rosenberg

Figure l: Persistent objectsbefore being sent to the store.

A second advantage is the potential reduction in code size and ex-

ecution time. It has been suggested that approximately thirty percent
of the code in typical database applications is solely responsible for the
mapping between the internal (temporary) and the external (persistent)

format [12]. This usually involves "flattening" and "rebuilding" data
structures and copying data to and from files. Such explicit code is un-
necessary in a persistent system since all data is maintained in a com-
mon format and copying to and from permanent storage is performed
invisibly by the system. This results in considerable savings during ap-
plications development and a reduction in total execution time.

Third, since all data resides in the one store, a single model of
protection may be employed. This may be based purely on type secu-

rity or may be hardware supported in order to provide multi-lingual
support [45]. In either case the user need only be concerned with the

Nil Nil

Dat¿base
T'ype

Database
Type

Figure 2: The same objects as in Figure 1 in the persistent store.

Architectural and Operating System Supportfor Orthogonal Persistence 309

one mechanism as distinct from the multi-level protection involving
processes and files on conventional systems.

Of course, the advantages of orthogonal persistence are not
achieved without a cost. In section 3 of the paper we will examine the
impact of persistence on memory management, protection and distri-
bution.

2.2 Objects

As we have suggested in the introduction, persistent systems usually
support a notion of objects. These objects are not in general the en-
capsulated abstract data types supported by most object-oriented lan-
guages. They are simply typed objects, including scalars, structures
and arrays which may stored and retrieved in a type secure manner.
Higher level structures can be built by using mechanisms provided by
the programming language. Some persistent systems do directly sup-
port encapsulated objects (e.g. NapierSS [44] and Monads [51]). How-
ever, most do not (as yet) support any notion of inheritance.

It is interesting to reflect on the differences between conventional
object-oriented languages and a persistent object-oriented language. In
a language such as C++ [56] support for objects and encapsulation
can effectively be provided by the compiler. The compiler associates

procedures (methods) with the encapsulated data and supports method
invocation, perhaps with the assistance of a run-time library. In a
sense the encapsulation is "compiled away" and at run-time the object-
oriented program becomes a single monolithic program in the same
sense as a program written in a conventional language.

The situation in a persistent object system is more complex. Since
objects are allowed to persist beyond the length of the program which
created them the encapsulation must be maintained at run-time and on
long-term storage so that the methods, the data and the interrelation-
ships are preserved. In this way the system can guarantee the encapsu-
lation and type security of objects.

3. Support for Persistent Objects

In this section we examine architectural support required for the effi-
cient implementation of persistent object systems. The emphasis is on
flexibility and efficiency. Persistent systems support a radically differ-

310 John Rosenberg

ent paradigm from conventional systems and it is unreasonable to ex-
pect existing architectures and operating systems to provide an appro-
priate basis for their development. The desirable characteristics of
systems to support persistence are examined in terms of memory man-
agement, protection and distribution.

3.1 Memory Management

In a conventional computer system the storage connected to a machine
is divided into two distinct regions. Active code and data is directly
addressable by machine instructions and is usually held in main (or
virtual) memory. A hardware supported address space of some specific
size (usually up to 4 gigabytes, but maybe larger, e.g. 45400, R4000)
is provided and hardware assisted mechanisms translate the addresses

used by programs into main memory addresses. On most modern ma-

chines a virtual memory is supported, whereby not all of the active
code and data is held in real memory; some may be held on a dedi-
cated area of a secondary storage device, usually called the swap area.
The address translation hardware uses tables to indicate which sections
of the code and data are in memory and which are not. If an attempt
is made to access data not in memory a fault occurs and system soft-
ware loads the required data. This mechanism allows the transparent
extension of the address space beyond the size of main memory. No-
tice, that it is only used for temporary code and data and all data held
in the swap area ceases to exist when the program terminates.

Permanent data is held on secondary storage devices in the file
store and is accessed using a quite separate mechanism in the form of
a file system. There is usually no direct hardware support for the file
system (other than the ability to access storage devices). On the other
hand, much larger volumes of storage are provided by the file system.
Storage in the order of 10 to 20 gigabytes would not be unusual.

In a persistent system all storage is treated in a uniform manner
and it is therefore desirable that there be a uniform addressing mecha-
nism. The obvious approach is to extend the notion of virtual memory
to encompass all storage. This approach has been adopted on several
persistent systems |7,20,511. The major difficulty lies in the size of
addresses. Since all storage must be addressed, the address size must
be significantly larger than that required for conventional systems. In
addition, in order to minimise the frequency of garbage collection it

Architectural and Operating System Support for Orthogonal Persistence 311

may be desirable to allow "holes" in the address space, further in-
creasing the required address size. Finally, some protection paradigms
require that addresses not be re-used, thus forcing a further increase in
address size. For all of these reasons addresses in the order of 64 to
128 bits may be desirable.

We are left then with the problem of efficiently supporting a very
large address space. It is also interesting to note that the nature ofper-
sistent systems is such that accesses to data within this address space

may be scattered in an essentially random fashion over a large range
of addresses. For example, traversing a large persistent data structure
will involve a single access to each of a large number of objects. Thus
there may well be less locality in the references than there would be in
a conventional machine. The key issue is providing an efficient address
translation mechanism for large virtual addresses.

It has been suggested that such address translation can be provided
by software and this has become known as pointer swizzling. The idea
is that objects held on secondary storage use large addresses and these
are mapped onto smaller machine-supported virtual addresses as the
objects are copied into memory. For example, the NapierSS system
maintains a local heap and all objects are slwizzled as they are brought
into this heap [16]. More recently V/ilson [61] has described an alter-
native technique via which all objects in a given page are swizzled at

the time the page is brought into memory. This technique can utilise
the virtual memory hardware to detect accesses to non-swizzled ob-
jects. V/hile these techniques do work, they incur considerable over-
heads. For example, Wilson's scheme requires that all pages be
scanned as they are brought into memory and there are considerable
costs during page discard.

For this reason a number of research groups have been exploring
techniques for providing architectural support for large address transla-
tion. Two basic approaches have been taken. The first is based on a
paged address space with objects mapped onto pages, and the second
employs object-based address translation. We will consider each of
these in turn.

In systems which support objects mapped onto a paged address

space each object is simply allocated a contiguous region of the ad-
dress space. The region may overlap page boundaries in an arbitrary
fashion. The object is given an identity which corresponds to its start-
ing virtual address. On each object access the object identity and an

312 John Rosenberg

offset are provided and these may simply be added (possibly by an in-
dex addressing mode) to generate the direct virtual address of the re-
quired data. If a page fault occurs then this may be handled in the

usual manner.
Most modern machines employ a hardware-assisted paged address

translation scheme with the entire address space being divided into
fixed size pages, typically about 4 kilobytes long. A page table is

maintained which maps virtual page numbers to physical page frame

numbers. Each entry contains a presence bit and the page frame num-
ber. For pages which are currently not in main memory the entry
holds the disk address of the page. Logically on each access the vir-
tual page number is used as an index into the page table and the page

frame number is obtained or a page fault occurs. In practice a dedi-
cated cache of address translation entries (called a translation lookaside

buffer or TLB) is used to improve performance. The TLB is usually
maintained on a least recently used basis. Note that the TLB relies

heavily on locality of reference to ensure that a high percentage of the

required address translation entries will be found in the TLB.
In the scheme described above the page tables are used for two

purposes. First to hold the data for translation from virtual to main
memory addresses and second to hold data for translation from virtual
to secondary storage addresses. This dual usage restricts flexibility for
both of these translation mechanisms. In particular the page tables be-

come extremely large and difficult to manage as the address space

grows. It is possible to partly divorce these two with conventional
hardware and this has been done in systems such as Mach [9] and

Chorus [18] which support machine independent virtual memory man-

agement.
A quite different approach to paging has been adopted in the Mon-

ads architecture [51], which is explicitly designed to support a very
large address space. A hardware-supported mechanism for translating

from virtual addresses to main memory addresses is provided. This
may be viewed as a black box which either translates a virtual address

(if the page is in memory) or causes a page fault.The scheme uses a

hash table, with embedded overflow to resolve synonyms. Hash tables

have been used on other machines to support address translation. The

MU6-G [28] used multiple hash tables searched in parallel and the

IBM System/38 [14] used a single hash table held in main memory.
Both of these machines also had a dedicated address translation cache

Architectural and Operating System Supportfor Orthogonal Persistence 313

to improve performance. In our scheme the hash table is entirely held
in dedicated high speed memory. Each cell of the table contains a key
field identifying the virtual page, a main memory page frame number,
a link field, a read-only bit and various status flags used to control the
translation process (see Figure 3).

When presented with a virtual address the hardware hashes the
address to obtain a cell address within the table. The key field in the
cell is compared with the original virtual address, and if there is a
match, the main memory page frame number is used to form a main
memory address. If there is a mismatch, the link field is used to fol-
low a chain of synonyms. The chain is terminated by an end of chain
status bit. If a virtual page is not found in the hash table then a page
fault is generated.

Insertion and deletion operations are only performed when a page
is loaded into or discarded from main memory. The operations are not

Virtual Page Number

Figure 3: The Monads address translation hardware.

3I4 John Rosenberg

particularly complex and ¿ue implemented in microcode or in the ker-
nel of the operating system. Because addresses in the Monads system

have a system-wide validity the contents of the hash table are not af-

fected by context switches. The MU6-G appended the process number

in order to ensure uniqueness of virtual addresses across processes and

achieve the same effect.
Given that the address translator must be able to translate all vir-

tual addresses of pages in main memory, the number of entries in the

table must be at least as large as the number of page frames. In order

to keep the number of qynonyms small the table must be considerably

larger. Assuming a random uniform distribution of cell addresses it
can be shown that the aYerage search length is given by the formula:

I + (at2)

where a is the loading factor, i.e. the ratio of full cells to total size

[42]. For example, with a loading factor of 0.25 (corresponding to a
table with a number of entries equivalent to four times the number of
pages of main memory), the average search length is 1.125. A signifi-

cant feature of this scheme is that the length of the table (and there-

fore the cost of an implementation) increases linearþ with the size of
main memory. Furthermore the table width increases only logarithmi-

cally with the size of the virtual memory. Therefore, increasing from

a conventional virtual address size of 32 bits to a very large virtual
memory with 128 bit addresses does not significantly increase the cost

of address translation.
The above discussion has assumed a random uniform distribution

of cell addresses. It is unlikely that virtual addresses will be uniformly

distributed and therefore they must be hashed to form a cell address.

The hashing function is performed on every address translation and

thus must be simple. Such a simple function may be implemented by
performing an exclusive OR of selected bits.

If the virtual address is found in the head of a synonym chain then

the address translation time is the same as on a conventional lookaside

buffer. The fetching of entries in a chain may be overlapped with the

key comparison, minimising the overheads of following a chain. The

address translation time is relatively insensitive to the size of both vir-
tual and main memory addresses and to lack of locality of reference.

The Monads-PC implementation supports 60 bit virtual addresses

Architectural and. Operating System Support for Orthogonal Persistence 315

which are translated into 24 bit main memory addresses. The major
advantage of this scheme is that the tables required to manage second-
ary storage may be completely independent of the hardware, leaving
considerable flexibility. Alternative address mapping techniques with
similar properties are described in [49, 59].

The Rekursiv [32] developed by Linn Smart Computing uses a dif-
ferent approach to supporting a large address space. Instead of map-
ping objects onto a paged address space, an object space is supported.
Each object has a unique identity of 39 bits. The top bit of these ob-
ject identifiers partitions the object space into compact types and ordi-
nary types. Compact types are self-referential with the object value
and identity being the same. They are used to represent scalars in an
efficient manner. All objects have a unique identity and are referenced
by specifying the identity and an index. The system maps the object id
onto memory addresses and automatically copies objects to and from
memory and backing store on demand. This is effectively a segmented
virtual memory.

Hardware assistance is provided for the address translation process
which is confusingly called "paging." The address translation hardware
is shown in Figure 4. As in the Monads system the "pager" table is
held in dedicated high-speed memory. On a memory access the lower
16 bits of the object id are used as an index into the table. The re-
maining bits of the id are compared with the object id in the table. If
there is a match then the object is currently in memory otherwise a
fault occurs. On a fault the software must locate the object on second-
ary storage, copy it into free memory and insert an entry in the
"pager" table.

If the object id matches, then the index is compared with the size
to verify that the reference is within the bounds of the object. Option-
ally (under microcode control) the type may be checked to ensure that
only appropriate operations are performed on the object. The index is
then added to the memory address of the object to generate a final
physical address for the access. These steps are actually overlapped as

far as possible. The status bits are used by the discard algorithm. As
an optimisation the first word of each object is actually held in the
"pager" table (object representation) so that single word objects can be
handled efficiently.

316 John Rosenberg

Figure 4: The Rekursiv address translation hardware.

Note that the hardware does not handle clashes in the "pager"
table. That is if two objects have the same lower 16 bits in their object

id then they cannot both be in the table at the same time. This effec-

tively means that two objects which match on the lower 16 bits cannot

be in memory at the same time. It is argued by the designers that this

is unlikely and can be partially avoided by careful allocation of object

ids, but this argument is not very convincing. In addition since objects

rather than pages are swapped between main and secondary storage

the system designer is left with the difficult problem of managing and

locating variable length objects on secondary storage. Nevertheless,

the Rekursiv has been manufactured, including three custom designed

Architectural and Operating System Supportfor Orthogonal Persistence 317

VLSI chips, and an operational system has been produced as a co-
processor to a SUN server system.

A final area of potential for architectural support of memory man-
agement for persistent object systems is garbage collection. The nature
of persistent systems is such that garbage collection is essential and
can be quite costly in terms of performance. A large amount of work
is being done in this area and a number of schemes which utilise vir-
tual memory hardware have been proposed (e.g. Kolodner [38]). Most
of these schemes only require the ability to control protection of pages

and detect violations of this protection. However, this is an area which
will take on increasing importance as the size of stores grows.

3.2 Protection

A major issue in the design of persistent object systems is protection.
Given that all objects reside within a single large persistent store it is
essential to have some control over which objects may be accessed and
to ensure the type security of those objects. In a conventional system
long-term data is essentially grouped into files and the file system pro-
vides mechanisms to support controlled access to these ûles. In a per-
sistent system the store consists of a graph of objects and protection is
achieved by limiting the ability of a process to create a reference to an
object. In fact, most persistent systems only allow a reference to an
object to be obtained by creating a new object or by extracting a refer-
ence from an existing object; references may not be arbitrarily manu-
factured. Thus protection may be achieved by restricting the ability of
a process to traverse the graph of objects, i.e. to follow pointers. We
will show how this may be implemented later in this paper. Type secu-
rity is usually enforced by the compilation and run-time system of a
programming language.

There are two basic approaches to the provision of protection. In
many persistent systems a single language is employed and all applica-
tions live within this language environment 1241. In such systems the
type security is sufficient to build arbitrarily complex protection sys-
tems via information-hiding [45]. However, these systems are overly
restrictive in the sense that the security is dependent on the use of a
single language.

318 John Rosenberg

The alternative is to provide some hardware support for protec-

tion. Existing hardware provides some assistance in that most ma-

chines support multiple address spaces. In theory it would be possible

to place each object in a separate address space and then provide an

access mechanism for controlling which objects may be addressed.

The difficulty is that the minimum size of an address space is usually
one page and in most cases only one address space is accessible at any
instant. These address spaces are intended to be used for independent
processes and do not map well onto the persistent object paradigm.

Most of the proposed hardware-based protection mechanisms have

been based on the use of capabilities. Capabilities were first proposed

by Dennis and Van Horn [27] as a technique for describing the seman-

tics of controlled access to data. The idea was extended by Fabry who
proposed a computer system based on capabilities [29]. There have

been several attempts at constructing such a capability-based system.

Some of these enlisted hardware support [46, 52,60] and others were
purely software implementations [62]. Although these systems differ
greatly the fundamental principles of capability-based addressing are

the same.
The basic idea is that access to objects is controlled by the owner-

ship and presentation of capabilities. That is, in order for a program to
access an object it must produce a capability for the object. In this
sense capabilities may be viewed as keys which unlock the object to
which they refer. Since the possession of a capability gives an undeni-
able right to access an object it is important that programs not be able

to manufacture capabilities. Such an ability would allow a program to
access data which was not supposed to be available to it. Methods of
protecting capabilities include segregation 147, 62), tagging [30, 46]
and password schemes t111. A capability for an object can thus only
be obtained by creating a new object or by being passed a capability
by another program.

Capabilities have three components. These are a unique name

identifying the object, a set of access rights for the object identified by
the capability and access rights for the capability itself. Capability qys-

tems use object names which are unique for the life of the system. The
name given to an object will never be re-used, even if the object is
deleted. This avoids aliasing problems and provides a means of trap-

Architectural and Operating System Supportfor Orthogonal Persistence 319

ping dangling references. Such unique names are not difficult to gener-
ate and identifiers in the order of 64 bits are sufficient to ensure that
the system will never exhaust all possible names.

Although the ownership of a capability guarantees the right to ac-
cess the corresponding object, the object access rights field may re-
strict the level of access allowed. The facilities provided by access
rights vary greatly between different capability systems. They may be
as simple as read, write and execute, or they may be based on the se-
mantics of the different objects, for example a list of procedures for
accessing an abstract data type. When a capability is presented in an

attempt to access an object the system checks that the type of access

required does not exceed that allowed in the capability. There is usu-

ally an operation which allows a new capability to be created from an
existing one with a subset of the access rights. This allows for the
construction of restricted views.

The third field of a capability contains access rights which indicate
which operations can be performed on the capability itself. Again,
these vary greatly. The minimum usually provided is a "no copy" right
which restricts the copying of the capability, perhaps on a user basis.
This may be used to stop a user from passing a capability on to other
users, i.e. to limit propagation. Other access rights may include a
"delete" right which allows the holder of the capability to delete the
object.

A final facility provided on some capability systems is the ability
to revoke access. That is, after giving a program a capability it may
be desirable at alater time to revoke this capability. Implementation
of revocation is not easy. The simplest technique is to change the
unique name of the object. This will effectiveþ invalidate all existing
capabilities. Selective revocation may be supported by using indirec-
tion through an owner controlled table of access rights or by providing
multiple names for the object which can be individually invalidated.

Capabilities provide a uniform model for controlling access to data
which synergises well with our uniform model for storage. A number
of machines with hardware support for capability-based addressing of
persistent objects have been constructed.

The Rekursiv described earlier effectively supports capability-based
addressing. Recall that each object has a unique object id and an ob-

320 John Rosenberg

ject can only be accessed by providing its id. Object store words on
the Rekursiv are 40 bits in size. The top bit of each word is a tag
which indicates if the corresponding word contains an id (i.e. is a ca-

pability) or data. The tags cannot be modified by user programs thus
providing the required level of protection for capabilities. The Rekur-
siv also associates a size field with capabilities so that the bounds can

be checked on index operations.
The Rekursiv scheme has a number of drawbacks. First, the use of

tags creates a number of difficulties including the size of memory,
management on secondary storage devices and the additional overhead
of checking the tags. These problems have been well described in the
literature [31]. Second, since all objects are managed by the one capa-

bility scheme the same level of overhead is incurred for all object ac-

cesses (although there is an optimisation for scalar access). For exam-
ple an entry in the "pager" table will be used for every structure.
Third, the number of bits (39) is insufficient to guarantee uniqueness

and eventually object ids have to be re-used. This creates a massive

garbage collection problem.
The Monads system also supports capability-based addressing of

objects, however a distinction is made between large objects, called

modules, and small objects, called segments. Modules are used to rep-
resent major software resources such as programs, files and operating

system entities. They consist of encapsulated data and procedures for
accessing that data. Modules are protected by module capabilities
which deûne the access allowed to the module in terms of semantic
operations appropriate to that object. Segments are used to represent

small objects such as integers and records. They are protected by a
lower level mechanism based on segment capabilities, which still guar-

antees security and protection. Dasgupta [23] makes a similar distinc-
tion.

The reason for the distinction is that the frequency and style of ac-

cess varies between large and small objects and this separation allows

an efficient implementation for small objects without compromising
flexibility for large objects. The architecture does not enforce any
minimum size rules and any object may be modelled as a module or
segment.

Both module and segment capabilities are protected by the archi-

Architectural and Operating System Supportfor Orthogonal Persistence 321

tecture so that it is not possible for a program to manufacture or mod-
ify a capability. A capability is provided by the system whenever a
new object is created. The only other way to gain access to an object
is to be given a capability by another program. A module's internal
data, called its database, consists of segments containing data which
may include module and segment capabilities.

All data in the Monads system is held in arbitrary sized segments,
each of which has the same basic format, with three sections as illus-
trated in Figure 5. The control section defines the size of the segment
and details about the contents of the information section. Segments
may contain module capabilities, one of a small number of system
defined types, or arbitrary data. The architecture restricts access to the
information section appropriately for the type it contains. For exam-
ple, arbitrary modifications may be performed on ordinary data,
whereas module capabilities may only be assigned and used to call an-
other module. The capability section contains references to other seg-

ments so that arbitrarily complex graph structures of segments may be
produced. The segments are mapped onto the paged virtual store de-
scribed earlier, and may overlap page boundaries in an arbitrary fash-
ion.

Segments may only be addressed by segment capabilities. A seg-

Segment capability section

lnformation section

Number of segment capabilities

L,ength of information section

Type and access informarion

Length of segment in bytes

Figure 5: Segment format.

Control
section

322 John Rosenberg

Start address Længth of information Type and access

Figure 6: Capability register format.

ment capability need only contain the starting virtual address of the
identified segment since segments are self describing. For efficiency,
the architecture provides a set of addressing registers, called capabilíty
registers, of the format shown in Figure 6.

In order to address a segment the segment capability is loaded into
a capability register, with the information length, type and access be-
ing obtained from the segment itself. Machine instructions therefore
address data using addresses of the form (capability register num-
ber) (offset within segment>. The architecture guarantees that any
attempt to access data outside of the information section will cause a
run-time exception. This provides implicit support for array bounds
checking. This addressing is no more expensive than addressing on a
conventional base register machine since the length and access check
can be overlapped with the address computation.

Loading of capability registers is obviously critical to system secu-

rity. A special machine instruction is provided for this purpose. This
instruction will only load a capability register with a segment capabil-
ity contained in a segment currently pointed to by another capability
register. Using this facility it is possible to traverse arbitrary data
structures in a secure fashion. Similarly a machine instruction is pro-
vided to store segment capabilities in the segment capability section of
a segment. This instruction enforces certain rules which limit the
propagation of segment capabilities in the system. These rules simplify
the problem of garbage collection and allow most segment capabilities
to be maintained in an abbreviated form. The rules are described else-
where [53].

The root of all addressing is defined by a special segment, of
which there is one per process, called the base table. An additional
machine instruction is provided to load a capability register to point at

the base table. By changing the contents of the base table the current
addressing environment may be modified. This is the key to the mod-
ule protection scheme.

Architectural and Operating System Support for Orthogonal Persistence 323

The code of procedures is also held in segments. These are usually

not directly addressable from the base table. Rather there is a dedi-
cated capability register which holds a segment capability for the cur-
rent procedure. This is automatically changed on a procedure call. The

architecture ensures that a procedure can only exit via a return instruc-
tion. A jump to outside of the code of the current procedure will
cause an exception.

When a module is compiled, the compiler produces the procedure

segments and two additional segments. The first, called the interface
entry-point /isl, contains a segment capability for each interface proce-

dure of the module (i.e. procedures which can be called by other mod-
ules). The second, called the internal entry-point list, contains an

equivalent set of segment capabilities for procedures internal to the

module. The locations of these entry-point lists for the current module

are always available to the architecture via some red-tape information
associated with each module. There are two procedure call instruc-
tions, one for internal calls and one for inter-module calls. The call
instructions specify the procedure to be called as an index into the ap-

propriate entry-point list. Thus the call instruction may retrieve the

segment capability for the called procedure.

On each procedure call a new segment is created. Parameters are

passed by either copying the value into this segment (pass by value) or
by copying a segment capability into the segment (pass by reference).

The call mechanism adds a segment capability for this new segment

into the base table to make it addressable in the called routine and re-
moves it on the return. A similar mechanism is used to create and

delete local data for the called routine.
In order to call a procedure of another module the program must

present a valid module capability. These have the format shown in
Figure 7. The module name provides sufficient information to the ar-
chitecture to allow the entry-point lists and a root segment for the pri-
vate data of the module to be located. The mechanism used for this
purpose is described in [53]. The access rights define which of the

Module name Access rights Status bits

Figure 7: A module capability.

324 John Rosenberg

procedures of the identified module may be called using this module
capability. The status bits define which operations may be performed
on the capability itself, e.g. whether it can be copied.

The inter-module call instruction checks the supplied module capa-
bility to ensure that the procedure to be called is included within the
access rights. It then transfers control to the procedure, obtaining a

segment capability for the procedure from the interface entry-point
list. The call mechanism modifies the base table to include a capability
for the root segment of the private data for the called module and to
remove antl save the segment capability for the root segment of the
private data of the calling module. That is, the call mechanism causes

a change of protection domain. Currently the call mechanism provides
no support for inheritance but it would not be difficult to add this facil-
ity using, for example, the technique described by Connor et al l2ll.

The major advantage of this two level scheme is that direct access

to scalars and small data structures is achieved at a speed comparable
to conventional architectures using the segment level of addressing,
while the power and flexibility of module capabilities can be used for
information-hiding objects.

3.3 Distribution

Given the current proliferation of workstations with local storage con-
nected via a network, distribution of the store has become an impor-
tant issue. In conventional systems distribution is usually achieved via
the file system. Systems such as NFS [58] provide more or less trans-
parent access to files on remote machines. Persistent systems have no
notion of files and thus a different approach must be used.

One approach is to extend the persistent store to encompass the
entire network. This involves supporting addresses which are large
enough to address all data on all nodes in the network. The Monads
system [35] and the distributed NapierSS system [36] both employ this
technique and both are based on supporting a large distributed shared
memory [39]. NapierSS utilises a central server approach whereas
Monads supports multiple servers.

In the Monads system any machine on the network with an appro-
priate capability may generate an address of any object on any ma-
chine in the network. If the page containing the object is not resident
on the requesting node then a message requesting a copy of the page is

Architectural and Operating System Supportfor Orthogonal Persistence 325

sent to the owner node. Coherence is guaranteed at the page level us-
ing a multiple-reader single-writer protocol. This is also the case with
the NapierSS system. The Monads system supports full naming and

location transparency and migration of objects between nodes via a
system of forwarding addresses and advisory information. This scheme

is described in [33].
The distributed shared memory approach requires little additional

architectural support, assuming that addresses are large enough. Effec-
tively all that is required is the ability to control the read-write pro-
tection on a page basis so that the first modification to a page can be

detected. This is required in order to efficiently implement the
multiple-reader single-writer protocol.

A major problem with the distributed shared memory approach to
distribution is reliability. At any instant in time there may be pages

from any number of nodes held within the memories of any number of
other nodes. If a particular node should crash then an arbitrary set of
pages and modifications will be lost. Various proposals for distributed
stable stores have been made 134,361. These usually rely on extending
the idea of shadow paging [41] to include pages distributed throughout
the network. The difficulty is that the checkpoint operation, which
saves the current state of the store, requires retrieval of all modified
pages and this may not be possible if a node is down. There appears to
be no satisfactory scalable solution to this problem.

The problem of reliability in distributed persistent systems is dis-
cussed in 126). An alternative approach based on message passing and

exportation of code to be executed on a remote machine is described.

In this scheme the persistent store of each machine is essentially inde-
pendent and direct references between stores are prohibited. This has

the advantage that hardware-supported addresses need only be large

enough to access the local store and it also allows checkpointing of an

individual store to take place at any time. However, it offers less flex-

ibility than the distributed shared memory system since applications
must be aware of the distribution and concurrency.

4. A Persistent RISC

In this section we briefly describe a new machine being constructed by

the Persistent Systems Group at the University of Sydney. The ma-

chine has been specifically designed to support the requirements of

326 John Rosenberg

persistent object systems. Only a brief description is given here since
the project has been more fully described elsewhere 137, 541.

The new machine is broadly based on the Monads architecture de-
scribed above. However, rather than develop our own central proces-
sor as with the Monads-PC, we have chosen to utilise a SPARC [57]
processor unit. This provides us with a level of compatibility with ex-

isting workstations and an upgrade path as faster versions of the pro-
cessor become available.

The SPARC architecture only supports 32 bit addresses and this
creates a major difficulty. The approach taken has been to add addi-
tional addressing hardware external to the processor. This hardware
consists of a set of addressing registers similar to the capability regis-
ters described for the Monads-PC machine. These mirror the integer
sliding register windows and are managed in a similar fashion. Each
capability register contains the starting virtual address of the corre-
sponding segment (a 128 bit address) as well as the length and access

rights. On each memory access a capability register and an offset rela-
tive to this register are specified. The external addressing hardware
adds the offset to the base address from the capability register and
sends the resultant virtual address to an address translation unit based
on the hashing scheme described in section 3.1. The checking of the
length field and access rights takes place in parallel with the access.

The difficulty with this scheme is that it requires both a capability
register number (5 bits in order to address the 32 capability registers)
and an offset (ideally 32 bits) to be specified on each memory access.

This is difficult since the SPARC only emits a32bit address. Two so-
lutions were considered. The first involves using the top 5 bits of the
address to identify the capability register and the remaining 27 bits as

the offset. A similar scheme has been used on other machines [8, 48].
This scheme has several disadvantages. First, it reduces the offset size

to 27 bits and thus the maximum size of a segment to 221 bytes. Sec-
ond, it is most convenient if the offset is in the low order bits of the
address and this means that the register number is in the high order
bits. As a result almost all addresses have significant bits (which are
known at compile time) in the high order bytes. Such large constants
are difficult to construct on the SPARC. Third, one of the advantages
of capability-based addressing is that there is automatic bounds check-
ing. If the high order bits are used as a register number then this
bounds checking is lost, since an index error may result in the register

Architectural and Operating System Supportfor Orthogonal Persistence 321

number field of an address being inadvertently modified. As a result
the generated address may still be valid but may not be pointing to the
intended data structure.

For all of these reasons we have rejected this solution and have
adopted a more pragmatic approach to the problem. Ideally we would
re-design the SPARC to provide large addresses. This option is not
available to us and so we simulate it. For every load and store instruc-
tion the compiler generates an additional load instruction preceding
the actual memory reference. The first load instruction has as its ad-
dress the capability register number. This load is "consumed" by the
addressing hardware and completes in minimum time. The actual
memory reference has as its address the offset, which can be up to 32
bits. The capability register can be fetched during the first load so that
the addition can take place as soon as the offset is available. An ad-
vantage of this approach is that the existing SPARC addressing modes
can be used to generate the offset.

There are two costs associated with the scheme. The first is an in-
crease in code size of approximately 25 percent, assuming that about
25 percent of instructions are loads or stores. Since the machine has a
substantial instruction cache it is not expected that this will have a se-

rious impact on performance. The second cost is the overhead of the
execution of an extra load instruction for each load and store. In the
worst case this will increase execution time by 25 percent, although it
may well be less since many memory references take longer than the
minimum time. We are willing to accept this cost in order to maintain
the integrity of the architecture.

The call mechanism and instructions for loading the capability reg-
isters are provided as system subroutines. Since code for these is held
in dedicated high speed memory on the processor board, these subrou-
tines may execute at the maximum clock speed of the SPARC proces-
sor. The kernel is also held in dedicated memory and does not need to
use the extra loads since it is held in a well-known region of the vir-
tual address space.

An additional feature of the machine is support for a very large
main memory of up to 64 gigabytes. This is managed by having two
page sizes as described in [54]. The intention is to perform experi-
ments in the use of massive memory to achieve high-speed execution
of certain algorithms and applications, and for an investigation of

328 John Rosenberg

large main memory databases. The persistence paradigm lends itself
easily to this type of experimentation.

At the time of preparation of this paper the designs of the memory
modules and address translation hardware are complete and they are

currently being constructed. Design of the processor module is under-
way and it is hoped that a prototype will be operational soon.

5. Conclusion

Persistent object systems have the potential to provide significant im-
provements in productivity, both in terms of software development
time and ease of use of the resulting systems. This technology will not
be acceptable until it achieves at least comparable performance to con-
ventional systems. It is unreasonable to expect conventional architec-
tures, which were essentially designed to support large monolithic
programs and a file store, to efficiently support scalable persistent sys-

tems. TVe should therefore be investigating the requirements of these

systems so that they can be incorporated in the next generation of ar-
chitectures.

Two major requirements have been identified. First, larger address

spaces are required in order to provide direct addressing for large per-
sistent stores. It is envisaged that address sizes in the order of 96 to
128 bits may be required. Alternative address translation mechanisms

will be required to support these large addresses and to handle the
possibly reduced locality of reference in persistent systems. Second,

flexible protection mechanisms are required to provide for controlled
access to data in the store.

The SPARC-based machine described in section 4 is a first attempt
to provide such an architecture using modern RISC technology. It will
provide a test bed for evaluating these requirements using existing per-
sistent systems.

Acknowledgements

This work was partly supported by Australian Research Council grant
A49031987. The author also wishes to thank Fred Brown and Frans

Henskens for their improvements to several earlier drafts of this paper.

Architectural and Operating System Supportfor Orthogonøl Persistence 329

Reþrences

[1] "Proceedings of the International Workshop on Database Programming
Languages," Roskoff, France, 1987.

l}]"Datatypes and Persistence," Proceedings of Dataþpes and Persistence
Workshop Aug. 1985, Appin, Scotland, (ed M. P. Atkinson, P. Bune-
man and R. Morrison), Springer-Verlag, 1988.

[3] "PS-algol Reference Manual - fourth edition," University of Glasgow
and
St Andrews, Persistent Programming Research Report 12i88, 1988.

[4] "Persistent Object Systems," Proceedings of the 3rd International Work-
shop on Persistent Object Systems, Newcastle, Australia, (ed J. Rosen-
berg and D. M. Koch), Springer-Verlag, 1989.

[5] "Proceedings of the International Workshop on Database Programming
Languages," Salishan, U.S.A., Morgan Kaufmann, 1989.

[6] "Proceedings of the 4th International Conference on Persistent Object
Systems," Martha's Vineyard, U.S.A., (ed A. Dearle, G. Shaw
and S. Zdonik), Morgan-Kauffrnan, 1990.

[7] "security and Persistence," Proceedings of the Internationnl Wortæhop
on Architectures to Support Security and Persistence of Information,
Bremen, Germany, (ed J. Rosenberg and J. L. Keedy), Springer-
Verlag, 1990.

[8] Abramson, D. A. "Hardware Management of a Large Virtual Memory,"
Proc. 4th Australian C omputer Scienc e C onfe renc e, Brisbane,
pp. 1-13,1981.

[9] Acceta, M., Baron, R., Bolosky,'W., Golub, D., Rashid, R., Tevanian,
A. and Young, M. "Mach: A New Kernel Foundation for Unix Devel-
opment," Proceedings, Summer Usenix Conference, USENIX,
pp.93-112, 1986.

[10] Albano, 4., Cardelli, L. and Orsini, R. "Galileo: A Strongly Typed,
Interactive Conceptual Language," ACM Tiansactions on Database
Systems, 10(2), pp. 230-260,1985.

[11] Anderson, M., Pose, R. D. and Wallace, C. S. "A Password-Capability
System," The Computer Journal, 29(I), pp. 1-8, 1986.

[12] Atkinson, M. P., Bailey, P., Chisholm, K. J., Cockshott, W. P. and
Morrison, R. o'An Approach to Persistent Programming," The Com-
puter Journal,26(4), Nov., pp. 360-365, 1983.

330 John Rosenberg

[13] Atkinson, M. P., Chisholm, K. J. and Cockshott, W. P. "PS-algol: An
Algol with a Persistent Heap," ACM SIGPLAN Notices, l7(7),
pp.24-31,1981.

[14] Bertis, V., Tiuxal, C. D. and Ranweiler, J. G. "System/38 Addressing

and Authorisation," I . B. M. Sy steml 3 I Te chnical D ev elopment s,

pp.51-54, 1978.

[15] Brown, A. L. "Persistent Object Stores," Universities of St. Andrews

and Glasgow, Persistent Programming Report 7I,1989.

[16] Brown, A. L. and Cockshott, W P. "The CPOMS Persistent Object

Management System," Universities of Glasgow and St Andrews,

PPRR-13, 1985.

[17] Brown, A. L. and Rosenberg, J. "Persistent Programming Systems: An
Implementation Technique," Proceedings of the 4th Internntional

Workshop on Persistent Obiect Systems, Martha's Vineyard, U.S.A.,
Morgan-Kaufmann, 1990.

[18] Chorus Systemes "Overview of the GHoRUSO Distributed operating

Systems," CS/TR-90-25' 1, 1991.

[19] Cockshott, W. P., Atkinson, M. P.,Chisholm, K. J., Bailey, P. J. and

Morrison, R. "POMS: A Persistent Object Management System,"

Software Pracrtce and Experience, I4(l), 1984.

[20] Cockshott, W. P. and Foulk, P. W. "Implementing 128 Bit Persistent

Addresses on 80x86 Processors," Proceedings of the Internationnl

workshop on computer Architectures to supporl security and Persis-

tence
of Information, Bremen, West Germany, (ed J. Rosenberg and J. L.
Keedy), Springer-Verlag and British Computer Society, pp. 123-136,
1990.

[21] Connor, R. C. H., Dearle, 4., Morrison, R. and Brown, A. L' "An
Object Addressing Mechanism for Statically Tlped Languages with
Multiple Inheritance," Proc. Obiect- Or iented Programrning : Sy stems,

Languages and Applicat¡bns, New Orleans, Louisiana, pp.279-286,
1989.

[22] Connor, R. C. H. and Morrison, R' "subtyping Without Tears," 15th

Australian Computer Science Conference, Hobart, Australia, pp.

209-225,1992.

[23] Dasgupta,P., LeBlanc, R. J. and Appelbe, W. F. "The Clouds Dis-

tributed Operating System," Proceedings, gth International Conference

on Distributed Computing Sys/ønrs, 1988.

Architectural and Operating System Supportfor Orthogonal Persistence 331

l24lDearle, A. "on the construction of persistent programming Environ-
ments," Ph.D. Thesis, University of St. Andrews, 19gg.

[25] Dearle, A., Connor, R. C. H., Brown, A. L. and Morrison, R.
"Napier88 - A Database Programming Language?,,, proceedings Sec_
ond International Workshop on Database programming Languages,
Portland, Oregon, Morgan Kaufmann, pp. 179-195, 19g9.

[26] Dearle, 4., Rosenberg, J. and Vaughan, F. ..A Remote Execution Mech-
anism for Distributed Homogeneous stable stores," proc. 3rd Interna-
tional Workshop on Database programming Languages, Greece, 1991

[27] Dennis, J. B. and van Horn, E. c. "programming semantics for Multi-
programmed Computations," Communications of the A.C.M., g(3),
pp. 143-145,1966.

[28] Edwards, D. B. E., Knowles, A. E. and Woods, J. V. ..MU6-G: A New
Design to Achieve Mainframe performance from a Mini-sized
Computer," Computer Architecture News, 8(3), pp. 16l-167, 19g0.

129]Fabry, R. S. "Capability-Based Addressing,,, Communications of the
A.C.M., l7(7), pp. 403-412, 1974.

[30] Feustal, E. A. "On the Advantages of Tägged Architecture s,,, IEEE
Transactions on Computers, C-22,7, pp. 644-656, 1973.

[31] Gehringer, E. F. and Keedy, J. L. "Tagged Architecture: How Com-
pelling are its Advantages?," proc. I2th International Symposium on
Computer Architecture, Boston, Mass., pp. 162-170, 19g5.

[lz] uartana, D. M. "REKURSIV: object-oriented computer Architecrure,,,
Ellis-Horwood Limited, 1988.

[33] Henskens, F. A. "A capability-Based persistent Distributed shared
Memory," Ph.D. Thesis, University of Newcastle , lggl.

[34] Henskens, F. 4., Rosenberg, J. and Hannaford, M. R. ..Stability in a
Network of MONADS-PC Computers,,, proceedings of the Interna-
tional workshop on computer Architectures to support security and
Persistence of Information, Bremen, West Germany, (ed J. Rosenberg
and J. L. Keedy), Springer-Verlag and British Computer Society,
pp.246-256, 1990.

[35] Henskens, F. 4., Rosenberg, J. and Keedy, J. L. ..A Capability-based
Distributed Shared Memory," Proceedings of the l4th Austalian
Computer Science Conference, Sydney, Australia, W. 29. l-Zg .12,
1991.

332 John Rosenberg

a Persistent Object System," Proceedings, The Fourth International
Worlcshop on Persistent Object Systems, Martha's Vineyard, Massachu-
setts, U.S.A., pp. 99-109,1990.

[37] Koch, D. M. and Rosenberg, J. "A Secure RISC-Based Architecture
Supporting Data Persistence," Proceedings of the International Work-

shop on Computer Architectures to Support Security qnd Persistence of
Information, Bremen, West Germany, (ed J. Rosenberg and J. L.
Keedy), Springer-Verlag and British Computer Society, pp. 188-201,
1990.

[38] Kolodner, E. "Atomic Incremental Garbage Collection and Recovery
for a Large Stable Heap," Implementing Persistent Object Bases,

Proceedings of the Fourth International Workshop on Persistent Obiect
Systerns, Martha's Vineyard, (ed A. Dearle, G. M. Shaw and

S. B. Zdonik), Morgan Kaufmann, pp. 185-198,1990.

[39] Li, K. "shared Virtual Memory on Loosely Coupled Multiprocessors,"
Ph.D. Thesis, Yale University, 1986.

[40] Liskov, B. "The Argus Language and System," Lecture Notes in Com-
puter Science, vol 190, Springer-Verlag, New York, 1985.

[41] Lorie, R. A. "Physical Integrity in a Large Segmented Database," ACM
Transactions on Database Systems, 2,I, W. 9l-I04, 1977.

[42] Morris, R. "scatter Storage Techniques," Communícations of the ACM,
pp.38-43, 1968.

[43] Morrison, R. and Atkinson, M. P. "Persistent Languages and Architec-
tures," Proceedings of the International Workshop on Computer Archi'
tectures to Support Security and Persistence of Information, BÍemen,
ril'est Germany, (ed J. Rosenberg and J. L. Keedy), Springer-Verlag
and the British Computer Society, pp.9-28, 1990.

[44] Morrison, R., Brown, A. L., Conner, R. C. H. and Dearle, A.
"Napier88 Reference Manual," Universities of Glasgow and St. An-
drews, Persistent Programming Research Report PPRR-77-89, 1989.

[45] Morrison, R., Brown, A. L., Connor, R. C. H., Cutts, Q. I., Kirby,
G., Dearle, A,., Rosenberg, J. and Stemple, D. "Protection in Persis-
tent Object Systems," Proceedings of the International Workshop on
Computer Architectures to Support Security and Persistence of Infor'
mation, Bremen, West Germany, (ed J. Rosenberg and J. L. Keedy),
Springer-Verlag and British Computer Society, pp. 48-66, 1990.

[+6] Myers, G. J. and Buckingham, B. R. S. "A Hardware Implementation
of Capability-Based Addressing," Operating System Review, 14, 4,
1980.

Architectural and Operating System Supportfor Orthogonal Persistence 333

[47] Needham, R. M. and Herbert, A. J. "The Cambridge Distributed Com-
puting System," Addison Wesley, London, 1982.

[48] Pose, R. D. "Capability Based, Tightly Coupled Multiprocessor Hard-
ware to Support a Persistent Global Virtual Memory," proceedings of
the 22nd Annual Hawaii International Conference on System Sciences,
Hawaii, U.S.A., (ed B. D. Shriver), pp.36-45, 1989.

[49] Ramamohanarao, K. and sacks-Davis, R. "Hardware Address Tiansla-
tion for Machines with a Large Virtual Memory," Information pro-
cessing Letters, l3(1), pp. 23-29,198I.

[50] Richardson, J. E. and Carey, M. J. "Implementing persistence in E,"
Proceedings of the Third International Workshop on persistent Object
Systems, Newcastle, Australia, (ed J. Rosenberg and D. M. Koch),
Springer-Verlag, pp. 17 5-199, 1989.

[51] Rosenberg, J. "The MONADS Architecture - A Layered yiew,,, pro-
ceedings of the 4th International Workshop on persistent Object Sys-
tems, Martha's Vineyard, U.S.A., Morgan-Kaufmann, 1990.

[52] Rosenberg, J. and Abramson, D. A. "MONADS-pC: A Capability
Based V/orkstation to Support Software Engineering," proc. Igth
Hawaii International Conference on System Sciences, pp, 515-522,
1985.

[53] Rosenberg, J. and Keedy, J. L. "Object Management and Addressing in
the MONADS Architecture," Proceedings of the International Work-
shop on Persistent Object Systems, Appin, Scotland, 1987.

[54] Rosenberg, J., Koch, D. M. and Keedy, J. L. .,4 Massive Memory Su-
percomputer," Proc. 22nd Hawaii Internntional Conference on System
Sciences, vol l, pp. 338-345, 1989.

[55] Schmidt, J. W "Some High Level Language Constructs for Data of
Type Relation," ACM Transactions on Database Systems, 2(3),
pp. 247-261, 1977.

[56] Stroustrup, B. "The C** Programming Language,,, Addison-Wesley,
0-201-12078-x, 1986.

[57] sun Microqystems Inc. "The SPARC Architecture Manual, version 7,"
Part No: 800-1399-08, 1987.

[5S] Sun Microsystems Inc. "systems and Networks Administration,', part
No: 800-1733-10, Revision A, 1988.

[59] Thakker, S. S. and Knowles, A. E. "virtual Address Tlanslation using
Parallel Hashing Hardware," Proceedings of the Supercomputing Sys-
tems Conference, Florida, I.E.E.E., pp. 697-7O5, 1985.

334 John Rosenberg

[60] \ililkes, M. V. and Needham, R. M. "The Cambridge CAP Computer
and its Operating System," Elsevier North Holland lnc., 1979.

[61] Wilson, P. R. "Pointer Swizzling at page Fault Time: Efficientþ Sup-
porting Huge Address Spaces on Standard Hardware," Computer Ar-
chitecture N¿ws, vol 19, 4, pp. 6-13, 1991.

[62] \ryUlf, W. 4., Iævin, R. and Harbison, S. P. "HYDRA/C.mmp: An Ex-
perimental Computer System," McGraw-Hill, New York' 1981.

freceived March 23, L992; accepted MLay 3,1992]

Permission to copy without fee all or part of this material is granted provided that the copies

are not made or distributed for direct commercial advantage, tlrc Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission-of the Regents

^of
the University of Cilifornia. To copy otherwise, or to republish, requires a fee and/or specific

permission. See inside front cover for details.

Architectural and. Operartng System Supportfor Orthogonal Persistence 335

