
Implementing Atomic Objects
with the RelaX Transaction
Føcility

Michael Mock and Reinhold Kroeger GMD

Vinny Cahill Trinity College, Dublin

ABSTRACT This paper presents an object-oriented
model for distributed transaction processing and dis-
cusses the issues which had to be explored in the im-
plementation of this model. The functionality of this
transaction model meets the requirements of a range
of concurrent, distributed applications. We show that
transaction functionality can be implemented in a lan-
guage independent manner allowing the model to be
provided through multiple languages. In particular,
this paper presents the design and implementation
of the Amadeus/RelaX system. We describe the ar-
chitecture of the RelaX extensible transaction facility
and its integration with the Amadeus distributed, per-
sistent object system. The resulting transaction system
can support different languages and allows the use of
resource types such as files and database relations as

well as objects, and is portable to various UNIXlike
platforms.

@ Computing Systerns, Vol. 5 . No. 3 . Summer 1992 259

1. Introduction

Distributed transaction processing is increasingly recognized as being
an essential tool for developing reliable distributed applications. Two
distinct streams of activity in this field can currently be observed.

Firstly, various experimental distributed systems provide programming
models in which atomic objects are manipulated on behalf of transac-

tions [Eppinger & Spector 1989; Liskov & Scheifler 1983; Parrington
19901. Secondly, ongoing standardization efforts are defining inter-
faces and protocols for distributed transaction processing allowing the
interconnection of multi-vendor database systems [X/Open Company
l99ll. This paper presents the design and implementation of the
Amadeus/RelaXl system which combines these two streams. We de-

scribe the architecture of the RelaX extensible transaction facility2 and

its integration with the Amadeus distributed, persistent object system3.

The resulting transaction system is portable to various UNIX-like plat-

forms (including those based on micro-kernels), can support different
languages and allows the use of resource types such as files, and data-

base relations as well as objects.

RelaX provides a general purpose, extensible transaction facility

[Kröger et al. 1990] which is designed to run on various platforms
and to support a broad range of application classes. The transaction
model provided by RelaX offers functionality that is flexible enough

to support the needs of diverse applications such as Computer Sup-

ported Cooperative Work and Computer Aided Design/Computer
Aided Manufacturing [Kroeger & Nett l99ll. A clear separation be-
tween distributed transaction management and management of the
resources used by transactions is the basis for extensibility. Following
the X/Open model for distributed transaction processing (DTP), dis-

This work is partly supported by the CEC under ESPRIT contract No. 2071,
Comandos II.
Developed at GMD.
Developed at Tiinity College.

l.

2.

-t-

260 Michael Mock, Reinhold Kroeger, and Vinny Cahill

tributed transaction management is isolated in a server (the so-called
Tiansaction Manager) on every site which cooperates with an extensi-
ble set of resource managers. Resource managers (e.g. object manage-
ment systems, file systems, database systems, mail systems) may im-
plement different kinds of persistent, shareable entities accessible by
transactions. Different kinds of resources may therefore be accessed

within the same transaction. Each resource manager cooperates with
the transaction manager via a standard interface which extends the
X/Open XA interface [X/Open Company l99l].In order to ease

the construction of new resource managers, RelaX also implements
generic software components providing concurrency control based on
read/write locking of overlapping fragments of resources, recovery
control, interfacing to the transaction manager, and a generic logging
facility as building blocks.

The Amadeus platform provides support for programming dis-
tributed and persistent object-oriented applications in a multi-user het-

erogeneous UNIX environment [Horn & Cahill 1991]. Amadeus aims
to support applications written in a variety of object-oriented lan-
guages, for example C# [Ellis & Stroustrop 1990] and Eiffel [Mayer
19881, as well as interworking between different languages. The sup-
port provided by Amadeus is independent of any particular language.

In interfacing a language to the platform, that language's runtime ob-
ject representation and local object invocation mechanism can be re-
tained. A supported language must however provide a set of upcalls
which allow Amadeus to manage the objects implemented using that
language.

In existing experimental distributed systems that incorporate trans-
actions and objects, atomicity is usually an intrinsic property of an

object's type and typically either implemented in a specific language

[Liskov & Scheifler 1983; Parrington 1990] or related to a database

style background store [Andrews et aI. l99I]. We have followed a dif-
ferent approach. The Amadeus/RelaX platform provides a persistent
and distributed object space as a generic, i.e. language independent,
system layer in which atomic and non-atomic objects co-exist. To
achieve a uniform view, and implementation, of the system the basic
mechanisms used to manage objects of both kinds are the same. Of
course, management of non-atomic objects must not suffer any over-
head resulting from support of atomic objects. Thus, the problem was

to enhance the system with transaction functionality for a subset of

Implementing Atomic Objects with the RelaX Transaction Facility 261

objects while minimizing the impact on the basic mechanisms. The
Amadeus/RelaX system provides complete functionality for object-
oriented, distributed programming and is capable of supporting multi-
ple languages and resource types.

This paper presents an object-oriented model for distributed trans-
action processing and discusses the issues which had to be explored in
the integration of the RelaX components with Amadeus to provide this
model. V/e believe that the rich functionality of this transaction model
meets the requirements of a range of concurrent, distributed applica-
tions. V[e show that transaction functionality can be implemented in a
language independent manner allowing the model to be provided
through multiple languages. We demonstrate that only local interfacing
to the RelaX components is needed to achieve distributed transaction
functionality. Finally, we establish the usefulness of the generic mod-
ules to support transaction processing by showing the ease of integra-
tion with Amadeus.

Section 2 discusses related work on distributed transaction process-

ing. Section 3 presents an overview of both the Amadeus and RelaX
systems. Section 4 describes the transaction model provided by the
system. Section 5 gives a small programming example showing how
the transaction model could be made available to a C* * programmer.

Section 6, the main part of the paper, describes the integration of the
two systems in detail. Initial performance data is given in section 7,
and section 8 contains some concluding remarks.

2. Related Work

In this section a number of related systems and projects are briefly de-

scribed and their relationship to the Amadeus/RelaX system discussed.

As will be seen these systems fall broadly into two categories: research

systems providing transactional access to objects and commercial sys-

tems aimed at supporting open transaction processing.

ARGUS Argus [Liskov & Scheifler 1983] is an integrated pro-
gramming language and system aimed at supporting the construction
of robust distributed programs. In Argus a guardian encapsulates and

controls access to a collection of data objects to which access is possi-

ble only by invoking the operations exported by the guardian. Argus
distinguishes the problem of providing atomicity for a computation

262 Michael Mock, Reinhold Kroeger, and Vinny Cahill

from that of supporting resilience. Actions are units of atomic activ-
ity. However the atomicity properties are provided only by atomic
objects and atomicity is guaranteed only when all the objects shared
by actions are atomic. Argus supports nested actions [Moss 1981] as

well as nested top-level actions, i.e. actions which are created within
another action but whose commit is not dependent on that of their
creator. Atomic objects are encapsulated within atomic abstract data

types. There are a number of built in atomic types as well as facilities
to allow users to define new atomic types [Weihl 1985]. To achieve
resilience, a guardian definition may specify a number of snble vari-
ables. Atomic objects reachable from a stable variable are stable ob-
jects and constitute the stable state of the guardian. Only the stable

state of a guardian is recovered after a failure. The Argus system has

been highly influential and our work incorporates and extends ideas
pioneered by Argus-including the basic nesting mechanisms [Moss
19811 and the distinction between atomic and non-atomic objects.
However Argus is a closed single language system which includes no
support for transactional access to external resources.

AR.IUNA Arjuna [Dixon et al. 1989; Parrington 1990] is a
C** based system for constructing robust distributed applications.
Arjuna provides persistent objects as instances of C+r classes which
may be remotely accessed by RPCs within nested transactions. The
Arjuna system has been implemented as a specif,c C** class hier-
archy providing remote invocation, persistence, state-based recovery,
and strict 2-phase read/write locking for concurrency control. Transac-

tion support is made available to the C** prograÍrmer through inheri-
tance. Arjuna is therefore a single language system.

cAMELor Camelot [Eppinger & Spector 1989] is an experi-
mental distributed transaction facility developed at CMU which runs
on top of Mach. In Camelot so-called data servers encapsulate code

and data implementing different abstract data types. Applications act

as clients which can begin and end transactions and use RPC to request

data servers to carry out operations on the data which they maintain.
Data servers can be remote from an application. Accessing such a

server results in a distributed transaction. A server may also act as a

client and call another server. The transaction model allows limited
nesting and parallelism inside a transaction, based on concurrent sub-
transactions. To the programmer of an application or data server, the

Implementing Atomic Objects with the ReIaX Transaction Facility 263

Camelot services are generally available as a low level library. Full
linguistic support for atomic objects and transaction management is
provided by the Avalon language which is based on C** and runs on
top of Camelot [Herlihy & Wing 1987]. Access to resources managed
by external servers has not been addressed.

ENCINA Encina is a commercial system being developed by
Tþansarc (co-founded by key Camelot designers) to support commer-
cial transaction processing applications in an open distributed environ-
ment [Tiansarc Corporation 1991]. It is especially targeted to run on
top of the Open Software Foundation's Distributed Computing Envi-
ronment (DCE). The Encina architecture conforms to the X/Open
DTP model. Encina provides a transaction monitor as well as a few
specialized transactional resource managers (including a record-
oriented transactional file server and a transactional queueing system).
Integration of RDBMSs is supported by use of the X/Open XA
interface. Interoperability with mainframe systems is provided by
incorporating an SNA/LU6.2 protocol interface. At a lower level
Encina offers services-via the so-called toolkit-such as strict
2-phase read/write locking, logging and 2-phase commit, which can
be used in building new transactional resource managers. The Encina
transaction model supports full nesting of transactions and internal
parallelism within transactions. To the programmer the Encina services
are available as augmented C constructs mapped to library calls by a
preprocessor. For use in OSF DCE environments a simple extension to
the RPC mechanism (Tiansactional RPC) is provided. The Encina ap-
proach is open and compared to other systems most closeþ relates to
the RelaX system, but does not provide the same level of transaction
functionality. Furthermore, to our knowledge, there is so far no com-
plete system comparable to the Amadeus/RelaX system which makes
use of Encina for supporting global atomic objects in a language inde-
pendent way.

oNToS Ontos [Andrews et al. 1991] is an object database

system which currently supports C** and extended SQL interfaces.

An Ontos database is implemented by a (possibly distributed) storage
server. A process using Ontos must be linked with client code which
provides the interface to the server. The main interface to a C** ap-
plication program provided by Ontos is a set of functions to explicitly
retrieve objects from the database into the processes heap where they
can be accessed by virtual address. Ontos provides nested transac-

264 Michael Mock, Reinhold Kroeger, and Vinny Cahill

tions. A top level transaction is normally limited to a single process al-
though it is also possible to start a shared transaction which several

processes may join. Since there is (as far as we know) no concurrency
within a single process, nested transactions are most useful to provide
an undo facility. Ontos supports conventional read and write locks as

well as dirty read locks (which are compatible with write locks). On-
tos also provides additional flexibility by allowing the sophisticated
application programmer to control buffering of data, cache manage-

ment and resolution of lock conflicts by providing functions to be up-
called by the system as appropriate. While Ontos is intended to
provide a language independent interface, the degree of transparency
provided by the system is poor. Moreover, Ontos provides no support
for interaction with other database systems.

PRoFEM} Profemo lNett et al. 1985], the predecessor of
RelaX, delivered a design for, and a prototype implementation of, an

integrated distributed system architecture offering a global hardware-
supported object space which could be manipulated by transactions.
The transaction model is very flexible and corresponds exactly to the
RelaX model (see section 3.1). Emphasis was also placed on protec-
tion issues leading to a capability-based, hardware-supported object in-
vocation mechanism [Kaiser 1988]. The system exhibits a clean but
closed architecture. The main achievements of Profemo were the pro-
vision of a flexible, system level transaction mechanism able to support
a broad range of applications and its tight integration with the hard-
ware-supported object model. The transaction model was maintained
in RelaX, but its tight integration with the dedicated architecture was

given up for the sake of extensibility and portability.

TuxEDo Tuxedo IUNIX System Laboratories 1991] is a
widely accepted commercial system supporting distributed transaction
processing applications, which access multi-vendor database systems

primarily in a networked UNIX environment. (Access to mainframe
systems like MVS/CICS is also provided through support for the SNA/
LU6.2 protocol.) Tuxedo has been the prototype for the X/Open DTP
model [X/Open Company 1991]. The main component of Tuxedo is a
transaction monitor which must reside at every site. Several (local) re-
lational database management systems (RDBMS) may be connected to
each transaction monitor using the XiOpen XA resource manager in-
terface. The transaction model supported allows only simple flat trans-
actions. All resources are database tuples and are accessed via the

Implementing Atomic Objects wíth the RelaX Transaction Facility 265

standard SQL query interface. Internal parallelism within a transaction
can be achieved by explicitly breaking down an application into a
client (frontend) module and several server modules which can be in-
voked concurrently by the frontend. Tuxedo is restricted to supporting
simple flat transactions involving multiple database systems and does

not support distributed, object-oriented programming.

QUICKSILvER Quicksilver [Haskin et al. 1988; Schmuck &
Wyllie 19911 is an experimental operating system which includes sup-
port for distributed transactions. Applications are structured as sets of
cooperating processes, including an extensible set of server processes,

that communicate via Quicksilver IPC. Applications can define sets of
potentially concurrent server invocations to be grouped into flat trans-
actions. In addition, existing applications can be transparently encapsu-
lated to run as transactions. The transaction manager (TM) is a special
server which is notified by the operating system of on-going transac-
tional IPC messages. Servers can join transactions by registering with
the TM. Emphasis is put on supporting various modes of Server/TM
collaboration optimizing the performance of the commit and abort
protocols for read only-servers or for servers that only maintain vola-
tile state. The main result of Quicksilver is a demonstration that dis-
tributed applications really can take advantage of a low-level integrated
transaction service supporting different resource types. The main dis-
advantages are the flat transaction model and the tight integration with
a specific operating system which is an obstacle for reuse of existing
applications. Object orientation, although not excluded by the ap-
proach, was not addressed.

3. Background

This section gives an overview of the Amadeus and RelaX systems,
providing the necessary background for understanding the remainder
of the paper.

3.1 Amadeus

The fundamental goal of Amadeus was to provide a level of support
which would allow a range of object-oriented languages to be used to
write distributed and persistent applications without requiring each lan-
guage to adopt a common object model. In order to achieve this goal

266 Michael Mock, Reinhold Kroeger, and Vinny Cahill

the platform consists of two main components: the Generic Runtime
(GRT) which provides generic support for the management of dis-

tributed and persistent objects, and the Kernel which provides the un-

derþing support for distribution, persistence, sharing and integrity.
Language Specific Runtimes (LSR) can then be implemented for each

supported language which adapt the support provided by Amadeus to

that particular language's object model (see Figure 1).

Physically, Amadeus consists of a library-incorporating the GRI
and part of the kernel-with which programs written in supported lan-
guages must be linked, and the Amadeus server daemon-implement-

Figure l: Structure of the Amadeus Platform.

Implementing Atomic Objects with the RetaX Transaction Facility 267

ing the remainder of the kernel-which must be run on each site par-
ticipating in an Amadeus system.

3.1 .I Amadeus Concepts

Amadeus directly supports a model based on passive objects being ac-
cessed by distributed processes. At any time an Amadeus system may
include applications running on behalf of many different users sharing
objects in a controlled way. The following sections give an overview
of the functionality provided by Amadeus.

GLOBAL AND PERSISTENT OBJECTS Current object-oriented
languages typically manipulate local volatile objects, i.e. an applica-
tion can only use objects which are present in the address space in
which the application is running. Moreover, the lifetime of any objects
created by the application is, by default, bounded by the lifetime of
the process in which the application is running.

In Amadeus, an object may be created as a persistent object,
meaning that the object exhibits the property of potential persistence.
Such an object is guaranteed, in the absence of failures, to exist for as
long as it is transitively reachable from some designated root object(s),
independent of the lifetime of the process that created the object.
\ù/hen the object is no longer reachable from any root, it is garbage,
and may be deleted from the system. Also in Amadeus, an object may
be created as a global object, meaning that it is possible to access the
object, in particular to invoke operations on the object, even if it is
currently located in a different address space, possibly on a remote
site. Hence, an Amadeus application may use either local volatile ob-
jects, global volatile objects, or local or global persistent objects as re-
quired. The way in which global and persistent objects are made visi-
ble, if at all, to the application programmer in a particular language
depends on the language in question lCahill et al. 1991].

JOBS, ACTIVITIES, PROCESSES AND C)NTEXTS A job is a dis-
tributed process consisting of a set of activities. Activities are dis-
tributed threads of control, i.e. analogous to lightweight processes but
with the possibility of executing in several address spaces oÍ contexts
at the same or different sites at different times. An activity may be ac-
tive in at most one context at any time. Each activity is implemented
by one or more lightweight processes in each visited context.

A job initially consists of a single activity executing in a single
context. The activity executes by invoking operations on objects.

268 Michael Mock, Reinhold Kroeger, and Vinny Cahill

When invoked a given object may be located either in the activity's
current context, in another context at the current site, in some context

at a remote site or in secondary storage. If located in other than the

current context then the current activity takes an obiectfault,
analogous to a page fault in a conventional operating system, which
will be resolved either by performing a cross-context invocation, i.e.
between contexts potentially located on different sites, or by mapping

the object into the faulting context. In the case where the invocation is

carried out in a different context, the invoking activity is transparently

extended to the target context.
A new job is created for each application run by a user. An activ-

ity can also create a totally independent job to carry out an operation

invocation. In either case, the job terminates when all of the activities
created within the job have terminated. A new activity can be created

at any time to carry out an invocation asynchronously.

CLUSTERS AND CONTAINERS Clusters are used to store groups

of related objects. Every global or persistent object must belong to
some cluster. Clusters are the units of storage and mapping supported

by Amadeus. Clusters allow Amadeus to exploit the locality of refer-
ence between related objects by allowing them to be grouped in the

same cluster.
Clusters are the units of mapping into a context. Each context con-

tains a set of clusters which may vary dynamically as more clusters are

mapped into or unmapped from the context. By default, clusters are

only unmapped from a context when the context is being deleted i.e.
after the last invocation that was active in the context completes. A
cluster can also be explicitly unmapped from a context by the applica-

tion if none of the objects in the cluster are needed by activities run-
ning in the context.

In Amadeus, secondary storage is divided into a set of containers.

There may be zero, one or more containers at a given site. Currently

each container is stored entirely at a single site; however in the future

we envisage supporting replication of containers. Each container stores

a subset of the clusters in the system.

3.1 .2 Logical Architecture

Logically, jobs-and activities-execute in a distributed virtual mem-

ory, known as Virtual Obiect Memory (VOM), which is implemented

Implementing Atomic Obiects with the RelaX Transaction Facility 269

by a collection of distinct contexts. The state of the VOM is volatile.
Part of this state may be lost as a result of a site or context failure.
The stable background representation of any object is maintained in
the Storage Subsystem (SS). In particular, each object is stored as part
of a cluster. The site at which a cluster is stored is called the storage
site for the cluster.

When an object is accessed for the first time its cluster is acti-
vated, i.e. an image of the cluster is mapped into VOM so that ac-
cesses to the required object and to other objects in the cluster can
take place possibly resulting in updates to the virtual memory images
of the objects concerned. The site at which the cluster is mapped is
known as the activation site for the cluster. Updates to a cluster while
activated are not immediately reflected in the state of the cluster main-
tained in the SS. Only when the cluster is passivated, i.e. unmapped
from VOM, are the updates written back to the SS. Updates to acti-
vated clusters may therefore potentially be lost as a result of site or
context failures.

Central to the operation of Amadeus is that only a single image
of any cluster may be activated at any time, i.e. a cluster is either
mapped in exactly one context or is stored in the SS. The Location
Service (LS) is responsible for keeping track of the current location of
each mapped cluster. Moreover, the responsibility for ensuring that
only a single image of each cluster is mapped rests with the LS.

As it would be too expensive for each site to keep exact informa-
tion about the location of every mapped cluster, information about the
locations of mapped clusters is partitioned. A single site is assigned
the responsibility of maintaining information about the current loca-
tion of all the clusters from a given container. That site is known as

the control site for the container. The LS at a cluster's control site
acts as the central authority in determining whether or not a cluster is
activated, thereby ensuring that an image of the cluster is only mapped
once in virtual memory.

3.2 RelaX

This section presents an overyiew on the RelaX system and the
generic components provided by RelaX.

27O Michael Mock, Reinhold Kroeger, and Vinny Cahill

3.2.1 The Generalized Transaction Concept

The generalized transaction concept supported by RelaX is derived

from the Profemo project [Nett et al. 1985; Nett et al. 1986].

RelaX guarantees the usual transaction properties of serializability,
all-or-nothing, and permanence of effect. In contrast to conventional

transaction systems, isolation of transactions is not mandatory. RelaX
provides a means for the controlled use of uncommitted data in order
to increase the concurrency and efficiency of the systema. A trans-

action that uses uncommitted data depends on the transaction that

produced that data. Such a transaction cannot commit or abort inde-

pendently and may, once terminated, be required to wait for the com-
mitment of any transaction on which it depends before committing.
The system checks for and keeps track of dependencies between trans-

actions. These are then taken into account during the execution of the

commit protocol in order to achieve a transaction consistent system

state. For a more detailed description the reader is referred to [Schu-
mann & Mock 19891.

Since the system can distinguish between the successful termina-
tion of a transaction and its commitment, transactions can terminate in
an additional state other than the committed or aborted states, i.e. the
completed state. A completed transaction may be committed later in a
(potentially distributed) group commit. Note that, in contrast to the

database notion of group commit, delaying commitment does not
imply preventing access to the results of the transaction.

Concurrency control between transactions is implemented using

non-strict two-phase read/write locking [Eswaran et al. 1976]. The

lockpoint indicating the beginning of the shrinking phase of the trans-

action is not necessarily combined with its commit point. Premature

release of locks allows the results of the transaction to be made avail-

able before its commit. Note that this feature does not result in dirty
reads since serializability and the all-or-nothing property are still
guaranteed.

Concurrency within transactions is supported in two possible ways.

Full nesting with potentially concurrent subtransactions and concurrent
processes inside each individual (sub)transaction are both supported. A

4. A transaction can however specify that it requires the use of committed data only, thus
achieving traditional isolation as a special case.

Implementing Atomic Obiects with the RelaX Transaction Facility 271

model based on single writer/multiple reader locks is used for the syn-
chronization of concurrent processes inside of a single transaction. By
combining nesting with support for concurrent processes, concurrent
processing at different nesting levels is possible. In addition, nesting of
transactions for recovery purposes only is possible. In this case the
synchronization level of a parent and its subtransaction are the same
but the subtransaction is able to abort independently from its parent.

3 .2.2 Overall Architecture

This section describes the architecture of the RelaX system which pro-
vides the transaction model described above. The main goal of this
architecture is to provide the facilities for distributed transaction man-
agement in an extensible and portable way, allowing multiple resource
types to be supported. An additional goal was conformance with the
X/Open model and, in particular, the XA interface. Figure 2 depicts
the resulting overall architecture.

Figure 2: The RelaX architecture.

Every site runs a separate server known as the Tiansaction Man-
ager (TM) which is responsible for transaction control and which pro-
vides, in collaboration with the TMs at all other sites, a consistent
system wide view of the outcomes of distributed transactions. In par-
ticular, the TMs execute the distributed commit and abort protocols
implementing distributed transaction processing. TMs communicate
via a reliable broadcast protocol (RBP) lVonthin 1987] which extends
the protocol proposed in [Chang & Maxemchuk 1984] with enhanced

272 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Application Program (AP)

Resource
Managers

(RMs)

Transaction
Manager (TM)

facilities for site failure and restart detection. The RBP reports changes
in the system configuration to each TM. TMs use this information to
decide whether to abort on-going transactions affected by a failure or
to reschedule interrupted commit protocol executions after a restart.

From the TM's point of view, the active entity responsible for
computational progress is the "application program" (AP). A o'resource

manager" (RM) is responsible for managing persistent data. Of
course, there may be more than one AP or RM in any system. Differ-
ent RMs may provide different kinds of data with different interfaces

to the AP. The distinction between AP and RM is a logical one and
does not prevent them being represented by the same entity.

An AP defines transaction boundaries, aborts a transaction or sets

the lockpoint of a transaction by calling the TM, which propagates

these events to all relevant RMs on every affected site. Every AP must
be linked with the TM-library which logically connects it to the TM.
The TM-library caches some information concerning each transaction
(such as the transaction identifier or the set of sites involved in the
transaction). Calls to the TM go through this library but can be short-
circuited based on cached information.

Inside of a transaction, an AP uses the resources of one or more
RMs. If computations go remote to a new site, the TMs on both sites

are informed in order to keep track of distribution. Some transaction
information that is transparent to the RPC package is piggy-backed on

each RPC message. Note that remote communication is required to be

RPC structured to avoid the need for additional termination detection
mechanisms.

If a transaction aborts5, the TM notifies the corresponding AP.
To support consistent roll-back of the computational state of the AP
(which should not be confused with the state of data maintained by a
resource manager), the TM supports a model in which an AP is struc-
tured as a collection of potentially concurrent recovery participants
each of which is a sequential thread of control executing on a single

site. The actual representation of a participant is invisible to the TM,
and could be either a thread or a process. The TM is informed as par-

ticipants join and leave transactions so that the TMs always know
which participants are running in a given transaction. This information

5. Note that the abort might have been initiated remotely, e.g. by a site failure.

Implementing Atomic Objects with the ReIaX Transaction Facility 273

is used to notify all the participants in case of an abort and to map

failure of a participant to abort of its transaction (if so desired).

Every RM collaborates with the TM via the TM-RM control inter-
face to provide the transaction properties for its resources. Again, the

actual representation of a RM is transparent to the TM. The RM coor-
dinates state changes of transactions (commit/abort) with the corre-
sponding state changes of its resources. This is basically a local exten-
sion of the distributed protocols executed by the TM. The key point
here is that the TM maintains a so-called outcome-log to keep track
of the progress of commit protocol executions while the RM provides

an interface which allows its resources to be updated according to a
two-phase-update protocol. This interface may be realized internally
by use of a data-log. For a more detailed description, see [Schumann
et al. 19901. Accesses to atomic resources are tagged with the identi-
fier of the current transaction taken from the TM-library. \ü/hen a RM
becomes involved in a transaction for the first time, it informs the TM
that it is joining the transaction. Therefore, the TMs have knowledge

of the RMs involved in every transaction. The TM also supports the
notion of static RMs [X/Open Company 1991] that are involved in
every transaction by default and do not have to explicitly join a trans-

action. RM failures are mapped by the TM to aborts of those transac-

tions in which the RM was involved. RM restarts trigger the resump-

tion of commit protocol executions which were interrupted by the

failure of the RM.

3.2.3 Generic Components

Any RM conforming to the interface provided by the TM can be inte-
grated into the architecture irrespective of how the RM implements
transaction functionality internally. The implementor of an RM can,
but is not forced to, make use of generic software components pro-
vided by RelaX to support RM internal transaction management. The
integration of Amadeus and RelaX was considerably simplified by us-
ing these components. Figure 3 shows the logical structure of a RM
and outlines those parts (concurrency control, recovery control, TM-
RM control, and logging) which are supported by the generic compo-
nents.

The resources provided by the RM are stored in stable and volatile
memory. Stable memory contains committed and prepared versions of

274 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Figure 3: Logical Structure of a Resource Manager.

resources. Usually, access to a resource requires a volatile memory
representation of the resource. Note that stable memory does not nec-

essarily imply that the RM maintains a version of the resource on a lo-
cal disk-a distributed implementation of the RM's store is possible.

The RM-library consists of three modules: the TM-RM control
module implementing the interface between the RM and the TM, the
concurrency control module implementing locking and the recovery
control module supporting the commit and abort of transactions. The
recovery control module maintains, for each transaction, the set of re-
covery points needed, in case of an abort, to restore the before image
of each resource used by the transaction. In case of a (group) commit,
it computes the after images of the resources modified by the transac-
tions which are committing.

The key to the genericity of these modules lies in the abstraction
of the actual resource type making it opaque to the RM-library. A re-
source is identified by an (opaque) identifier type and is expected to
implement some low-level operations (described below) which can be

called by the RM-library. Accesses to resources are trapped and

Implementing Atomic Objects with the RelaX Tiansaction Facility 275

reported to the RM-library for concurrency and recovery control
checking based on the identifiers of the current transaction and the
resource, and the mode (read/write) of the attempted access. The
RMJibrary supports the notion of fragmented resources allowing for
access to possibly overlapping fragments of a resource.

The concurrency control module can handle different locking
modes (with corresponding lock compatibility matrices) for different
resources. The default strategy is non-strict two-phase read/write lock-
ing. Other compatibility matrices specifying rules for granting locks
can be linked to the concurrency control module at run-time on a per
resource basis. Concurrency control is otherwise handled completely
inside the library, i.e. no additional operations from the RM are re-
quired. This is due to the fact that any decision on the granting of a
lock is independent of the representation of the resource. For internal
synchronization, i.e. synchronization of concurrent accesses to a re-
source within a transaction, the RM-library implements a simple sin-
gle-writer/multiple-reader algorithm. The scheduling units that com-
pete for the resources are represented within the RM-library by the
abstract type synchronization participant whose actual representation
is again opaque to the RM-library. For blocking and unblocking of
requests the RM-library assumes basic suspend and resume operations
on synchronization participants to be implemented by the RM.

The recovery control module assumes that every resource has a
committed state which is stablç and persistent and which will only be

updated under control of the commit protocol. All accesses to a re-
source are directed to its actual state which corresponds initially to the
committed state and is modified to reflect all updates to the resource
as they occur. When a transaction modifies a resource for the first
time, the RM-library calls a save operation, which must be provided
by the RM, to create a recovery point for the resource. This recovery
point is supposed to contain enough information to restore the actual
state of the resource to its state before the transaction in case of an
abort. The save operation returns a handle identifying the recovery
point that is passed by the RM-library to a restore operation if the
transaction aborts. Note that, as the transaction model allows nesting
and the use of uncommitted data, there may be a set of recovery
points associated with a resource. This set does not necessarily grow

276 Michael Mock, Reinhold Kroeger, and Vinny Cahill

and shrink in a stack-like manner since the transaction model exceeds

pure nesting. The actual state of the resource is accessible to all active
transactions, each saving its individual before image into a recovery
point. This before image corresponds to the after image of the preced-
ing transaction. Recovery points are, in general, expected to be value-
based although other approaches are not precluded. Their representa-

tion is hidden to the RM-library. If a transactioq reads uncommitted
data from another transaction, the recovery control module also in-
forms the TM about the dependency between these transactions (if so

desired).
For transaction commit, the recovery control module requires the

RM to implement operations to support two-phase update of resources.
In the prepare phase, the RM must save the resource state stably in an
intermediate store without deleting the committed representation of
the resource. Depending on the final commit decision, the RM must
then commit or discard the intermediate version of the resource. The
implementation of the two-phase-update operations may make use of
the generic log component discussed below.

The generic log component implements a generic logging model
supporting protocols whose behaviors are specified by finite state ma-
chines. Several finite state machines realizing different protocols can
be interpreted concurrently. A f,nite state machine describes the states
of the protocol (for instance, collect-data, prepared, committed, and
propagated in case of the two phase commit protocol), possible state

transitions, and associated operations. Events that are reported via the
external interface to the log trigger state transitions. Each event is
stored on the log. In addition, the generic log component maintains a
volatile data structure-the log-table-which contains the current state

of all on-going protocols. Every state machine includes a specified
final state (e.g. propagated in the example above), which, when
reached, denotes the fact that the corresponding protocol has reached
its end and can be deleted from the log-table. Compaction of the log
is realized by checkpointing the log-table. On restart, the log is read
from its beginning, replaying all events found and thereby rebuilding
the log-table.

A possible, efficient implementation of the required recovery point
and two-phase-update operations is based on maintaining recovery

Implementing Atomic Objects with the RelaX Trønsaction Facility 277

points as copies in volatile memory. During commitment after images
have to be stored stably. This approach affects normal processing less

than stable logging of before images and after images on every access.

Furthermore, the performance gains made possible by access to un-
committed data and group commit can be fully exploited. The result-
ing activation cycle for a resource is shown in Figure 4:

release uncomitted
data

r time

Éi,
g,

Ër

\a fi
\k Éi

"h
ëi

É'i

Figure 4: Activation cycle of a resource.

The passive state of the resource corresponding to its last commit-
ted state is stored in stable storage. The resource becomes active, i.e.
is brought into volatile memory, when it is accessed by a transaction
for the first time. All modifications to the actual state are performed in
volatile memory. Once activated, the resource can be used by several

transactions, each of them copying its before image into a recovery
point. Only committing a transaction forces a version of the resource
(which might be stored in a recovery point due to further modifying
transactions) back to the stable storage. This can happen concurrently
with on-going transactions that use the actual, uncommitted state of
the resource.

278 Michael Mock, Reinhold Kroeger, and Vinny Cahill

4. Transaction Model

This section describes the transaction model provided in Amadeus by
use of the RelaX components.

4.1 Atomic Objects

The unit of concurrency and recovery control is the object. Objects
may be classified as being either atomic ot non-atomic. The transaction
properties only apply to operations on atomic objects carried out with-
in a transaction. No guarantees are made concerning operations on
non-atomic objects. Both types of objects may be accessed within a

transaction, but only atomic objects are guaranteed to be consistent in
spite of failures. Outside of transactions, atomic objects may only be
read, thus providing a mechanism for programmers to by-pass the re-
strictions imposed by transactions without violating the consistency
rules. Attempts to modify atomic objects outside of a transaction result
in an exception being raised.

It should be noted that the atomicity of an object is orthogonal to
its class i.e. there may potentially be both atomic and non-atomic in-
stances of the same class. The system includes a mechanism for creat-
ing atomic objects and for promoting non-atomic objects to be atomic
objects. Once an object is atomic it cannot be changed to become non-
atomic thus ensuring time-invariant consistency of the collection of all
atomic objects. The motivation for supporting both categories of ob-
jects is primarily to allow application designers to avoid the overheads
associated with accessing atomic objects when using objects which
have no strong requirements for consistency.

Although normally hidden from the application programmer, it is
also possible to allow access to the basic concurrency control opera-
tions implemented in the system so that the application may perform
its own locking and bypass the default locking provided by the system.

4.2 Transactíons

An invocation on an object can be carried out as a transaction-note
however that, by default, invocations on atomic objects do not cause

new transactions to be created. Transactional invocations are trapped

Implementing Atomic Objects with the RelaX Transaction Facility 279

by the system and a transaction created before the invocation is exe-

cuted as normal. When the invocation finishes successfully, the trans-

action ends and normal execution is resumed. If the transaction aborts,

an exception is raised which may be caught by the activity that created

the transaction. When a transaction is created it is possible to provide
some options specifying the nature of the new transaction (i.e.

whether the transaction should be run at the same synchronization
level as its parent transacTion or whether the transaction should end

in a committed or completed state).

Note that there is no explicit operation to end a transaction, how-

ever an operation is provided to explicitly abort the current transaction

which may be called by any participant of the transaction and which
results in an exception being raised in the activity which created the
transaction. A transaction may be started by an activity at any time. If
the activity is not currently part of a transaction then the transaction is

created as a top-level transaction. Transactions created within a trans-
action are created as nested transactions. An escape facility is provided
by creating ajob. New jobs are not considered as part of the current
transaction and a transaction created within a new job is created as a

new top-level transaction. Concurrent activities may however be cre-
ated within a transaction.

4.3 Impact on Amadeus Model

Adding atomic objects and transactions to Amadeus as described in
the previous sections has a number of ramifications for the Amadeus

model. In particular, the execution of activities running within trans-

actions must be restricted so that when an activity visits a different
context it cannot be allowed to return until all processing initiated by
the activity from that context is complete. In particular, any activities
created as a result of the call must have completed before the original
activity returns. Moreover, by the time the invocation which initiated
a transaction has completed, all computation on behalf of the transac-

tion must have terminated.
Supporting both atomic and non-atomic objects in the same system

may lead to inconsistencies which would not arise if all objects were

atomic. For example, a dangling reference can arise if a non-atomic

object holds a reference to an atomic object whose creation has been

28O Michael Mock, Reinhold Kroeger, and Vinny Cahill

undone due to the abort of the creating transaction. However it is
worth noting that this particular situation can also arise, in the ab-

sence of atomic objects, if an object holds a reference to another ob-
ject which is lost due to a site failure.

4.4 Fault Model

The fault model assumes three types of faults:

l. Transaction faults: which occur when a transaction is explicitly
aborted or when an unhandled exception is raised inside of a
transaction;

2. Context faults: which occur when a single context fails resulting
in the loss of a single address space.

3. Site faults: which occur when a site or its operating system fails,
resulting in the loss of the entire virtual memory of the site.

All faults are mapped to the abort of those transactions that de-
pended on the lost state and which were not already prepared or com-
mitted at the time of the fault.

Objects may also become temporarily unavailable for several rea-
sons, e.g. because the object's storage and/or control site is down. If
the control site for some container is down then it may not be possible
to access objects from the container even if they are mapped at some
other site. It will certainly not be possible to activate or passivate ob-
jects from the container effected, even if their storage site is up. Like-
wise, if the storage site for a container is down, it will not be possible

to activate or passivate objects from the effected container. Any at-

tempt to access an object in these circumstances will lead to an excep-
tion which, depending on the application's semantics, may be mapped
to a transaction abort.

5. C** Example

The following simple program illustrates the use of transactions in
Amadeus. The program is a simple interactive calendar written in
Cx*-a version of C# extended with distribution, persistence and,

now, atomicity, supported by Amadeus [Horn & Cahill l99ll.

Implementing Atomic Objects with the RelaX Transaction Facility 281

The program (Figure 5) defines three classes-day (line 2),
calendar (line 9) and menu (line 18). Since day and calendar are

defined to be 'permclasses', instances of these classes are persistent

objects. In addition day and calendar are 'global çl¿sses'-5i¡çs
they have 'global' methods (lines 6 and 14)-so that instances of these

classes are also global objects. The class menu has an 'active' method
which can be the initial operation of a job, activity or transaction (line
22). Finally note that the display method of both day and calendar
is non-modifying (lines 7 and 16).

A menu object provides an interactive interface to a single calen-
dar which in turn contains entries for a number of days. Each day is
represented by an atomic object created when its containing calendar
is created (line 13). Note however that instances of day are, by de-

fault, non-atomic as'are instances of calendar.
The first time the program is run (lines 48-49) an atomic instance

of calendar is created (line 48) and a reference to it stored into the

Amadeus name server (line 49) thereby designating the calendar as a

root object and ensuring that it persists.

Whenever the program is subsequently run (lines 5l-55), the refer-
ence to the calendar is retrieved from the name server (line 51) and

used to create a new volatile instance of menu which provides the user
interface to the calendar (line 52). The interactive menu is then
launched as a transaction (line 55) by calling an overloaded version of
the start operation-generated automatically by the C** compiler-
which also takes as parameter a set of options specifying various at-

tributes of the transaction which in this case are empty.
From the menu a user can display or update the calendar. Invoking

the first operation on the calendar will cause the calendar object to
be activated at some site. Displaying a day will result in a read lock on
both the cafendar and the appropriate day object being acquired
while updating a day will result in write locks being acquired. Note
that several instances of the program may be active simultaneously,
possibly at different nodes, but sharing the same calendar.

When a user has completed his/her session he/she can choose ei-
ther to save any changes made-by returning from the menu operation
causing an attempt to commit the transaction to be made (line 42)-or
can discard any changes by explicitly aborting the transaction (line 43).

282 Michael Mock, Reinhold Kroeger, and Vinny Cahill

1: *include <amadeus.h>

3: permclass day {
3: char text l]-28l;
4: public:
5: daYO { text[0] = '\0';];
6z gJ.obal void ¡¡rj-te(const char *txt) { strcpy(text, txt); }

7i globa1 void displayO const {printf("\n\t<< *s >>\n\n"'text); }

8:);
9: permclass calendar {

10: day *days [356] ;
11: public:
12: calendar0 (for (inÈ i = 0; i <= 355; i++)
13: days[iJ = new (ÀToMrC] daYO,]
!42 global void write(const char *txt' int day-no)
15: { days[daY-nol->r¡rite(txt),]
16: global void dispJ-ay(int day-no) const {days[day-nol->displayO ;]
L7:. l;
18: class menu {
19: calendar *cal;
20: public:
2!: menu(calendar *c) I cal- = c; l
222 acÈive void start (int) t / / car, be run as a transaction
232 l;
24: void menu::start(int i) t
252 char c [5¡ , text [30] ;
262 int day_no;
21: for (;;) {
282 printf (

29: "\n\tg (day) <text> - enter text <text> for day <day>\n"
30: "\tD <day> - display text for day <day)\n"
31: ,'\tX - exit (saving changes)\n,'
322 .\te - guit (without saving changes) \n"
33: "\n\t Enter your choice ? ");
34= scanf("ts"rc),'
35: switch (toupper(ct0l)) t
36: case tEr : scanf("*dts", &day-nor text),'
31 z caf->¡¡riÈe (text' day-no) ;
38: break,'
39: case rDr : scar¡f("åd", &day-no)t
40: cal->display(day-no),'
4]- : break,'
42: case rxr : return,'
43: case rQt : amadeus.transaction-abortO; l
44:)
45: l

46: maino
47: { if (a¡nadeus.resetO) {

48: calendar *cal = nen {ATOMIC} calendar0; '-49: amadeus.record("CALENDAR"' ca1);
50:) efse {

51: calendar *cal = amadeus.Iookup("CÀLENDÀR"),'
52: menu *m = new menu(cal) ,'

53: ts-options optiona; // vse default transaction options
54: / / vse toP-Ieve1 transaction
55: m->st,art(IRANSACTION' oPtionsì 1)t
56: Ì
57:

Figure 5: C** programming examPle'

Implementing Atomic objects with the Relax Transaction Facility 283

6. Amadeus-RelaX Integration

This section describes in detail the integration of the Amadeus and the
RelaX systems.

6.1 Integration Architecture

In Amadeus, each context acts as the Resource Manager (RM) for the
objects that are currently mapped into the context and as the Applica-
tion Program (AP) with respect to all object invocations executed in
the context.

The Thansaction Manager (TM) is implemented as a UNIX process
which is spawned by the Amadeus server on system (re)start. The
resulting concrete architecture is depicted in Figure 6:

Figure 6: Amadeus-RelaX Integration Architecture.

Every context includes the TM and RM libraries which logically
link the context to the local rM. In addition, every context maintains
a data-log to support commit processing and restart handling. The TM
and RM libraries and the data-log are encapsulated within the Tiansac-
tion Subsystem (TS) of the Amadeus kernel.

284 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Contexts (RM + AP)

Lesend

E
UNIX process

Stream sockets

6.1.1 The Generic Runtime Interface

One of the most important goals of integrating Amadeus and RelaX

was to allow transaction support to be added to a range of (object-

oriented) languages with minimum effort. Tiansaction support there-

fore had to be added below the Amadeus GRI interface. However,

the addition of transaction support to Amadeus required a number of
extensions to the GRI interface in order to allow the support provided

by the system to be exploited from a language. The necessary exten-

sions to the GRT interface are outlined in this section.

Essentially the GRI interface provides routines to allow a language

specific runtime to create and control transactions and to report at-

tempts to access atomic objects. The routines that have been added to

the GRI can be described as follows (Figure 7):

outcome ""';::T^á:ffiiäJ:n;.li'å"ffii:ffiHï:'
Bool WaitOnlock, BooI AnnounceDep) ;

void nake-atomic(void * object);
void AbortTAO;
void SetlockPoint O ;

void PreAccess(void *object, AccessMode node) ;

void PostAccess(void xobiect, AccessMode mode) ;

void Setlock(void xobject, AccessMode mode);
void Releaselock(void *object, AccessMode mode; ;

void Use0bject(void *obiect, AccessMode mode) ;

void FreeObject(void xobject, AccessMode node) ;

Figure 7: Generic Runtime Interface for Tiansactions.

CreateTA creates a new transaction returning only when process-

ing on behalf of the transaction is terminated. The return value de-

scribes the outcome of the transaction which can be committed,

aborted or just completed. The Op parameter describes the operation

to be carried out as a transaction and contains the name of the target

object, the operation to be carried out and the parameters to the opera-

tion in a standard format. The remaining parameters specify some op-

tions for the new transaction.
'When a nested transaction is created,

NewSynclevel specifies whether or not the inner transaction is cre-

ated only for recovery purposes. CornmitReq specifies whether or not

the transaction should be committed immediately when corrrpleted.

Implementing Atomic Objects with the RelaX Transaction Facility 285

comrnittedonly allows the caller to specify that the transaction
should only use committed data. waitonlock specifies whether or
not to block when a lock cannot be acquired immediately and, finally,
AnnounceDep specifies whether or not to inform the TM of the trans-
action's dependencies on other transactions.

With the make_atomic call, an object is promoted to become

atomic. AbortTA simply aborts the current transaction, if any.
SetlockPoint sets the lockpoint of the current transaction.

PreAccess and PostAccess are used to report an attempt to
access an atomic object to the system. Note that it is the responsibility
of the language (specific runtime) to detect attempts to access atomic
objects-the interface provided by the GRI allows the attempt to be

reported to Amadeus. In particular PreAccess should be called be-

fore the access takes place and PostAccess immediately afterwards.
Finally, in addition to implicit concurrency control provided by

PreAccess and PostAccess, explicit concurrency control is possible
through setlock and Releaselock. In addition, useobject and
Freeobject can be used to synchronize concurrent participants of
transactions.

6.1.2 Mappings

The following paragraphs describe the mappings between the abstract
entities of the RelaX transaction system and the entities implemented
by Amadeus in more detail.

PARTICIPANTS The RelaX concept of recovery participant is

mapped to the Amadeus concept of process. This is the most natural
mapping since both recovery participants and processes are local to a
single site. Creation of a transaction blocks the current process and

creates a new process for the transaction in the context thus providing
a way of cleanly rolling back to the previous state of the computation,
in the case of a transaction abort, by simply killing the process(es) in-
volved.

Since an activity may be represented by more than one process in
a given context and since each of these processes should be able to use

the locks held by other processes belonging to the same activity with-
out blocking, a RelaX synchronization participant is represented by an

Amadeus activity rather than a single process.

286 Michael Mock, Reinhold Kroeger, and Vinny Cahill

RES?URCES In Amadeus the resources (i.e. the units of re-
coverable state) handled by the RM are objects. Objects are non-frag-
mentable resources, so only whole objects may be specified for recov-
ery and concurrency control.

Resources in RelaX are identified by the opaque type nns_ro. In
Amadeus, a RES_rD corresponds to the virtual memory address of the
corresponding object as this is sufficient to uniquely identify the object
within the context. Naturally, this means that an atomic object cannot
be moved once mapped into a context (e.g. by the garbage collector).

REC}vERY P2INTS In Amadeus a recovery point is simply a

(virtual memory) copy of an object. Recovery points in RelaX are

identified by the opaque type REC_nANDm. Similar to resources, a

REC_HANDLE in Amadeus is the virtual address of the recovery point.

6.1.3 RelaX Requirements on Amadeus

Invocations on atomic objects must be trapped and reported to the
RM-library, which performs local concurrency and recovery control
based on the identifiers of the current transaction and the target
object, and the type of access (either read or write) that is being
attempted.

For recovery control, Amadeus must provide supporting operations

which are called by the RM-library. To handle transaction aborts, op-
erations to save and restore object states to and from recovery points
are required. Of course, the Amadeus garbage collector must take
references stored in these recovery points into account in case the
recovery point is subsequqntly restored. For commitment, Amadeus
provides operations to prepare an image of an object to be written to
the log and is responsible for calling the data-log to store the object.
On the restart of a context, Amadeus uses the log-table to rebuild ob-
ject states and to resume commit protocol executions. New objects can

also be created in a context. If the object is atomic, the RM-library
must be informed of its creation so that it can undo the creation or ini-
tiate a stable save for the object as required.

If an invocation leaves the current context, the target context must

notify the local TM in order to join the transaction. If an invocation
goes remote, the TMs on both sites must be informed. Information
used by the TMs at the calling and called sites is piggybacked on each

remote invocation call and return message sent by Amadeus.

Implementing Atomic Objects with the RelaX Tiansaction Facility 287

If a transaction aborts, the local TM calls the TM-library in each

participating context which must be able to reset the local state of the

aborted transaction. In the current implementation this is achieved by
simply aborting the local process(es) belonging to the transaction.

6.2 Distributed Algorithms

Having each context act as a RM for those objects that are currently

mapped into the context requires distributed algorithms to manage

atomic objects given the possibility of remote activation of objects

from remote storage sites. These algorithms are complicated by the

fact that clusters are the units of transfer from/to the storage site and

may contain objects which may be accessed individually by distinct

transactions. This section describes the algorithms that implement dis-

tributed object management to realize the RM model.

6.2.1 Activation, Passivation and Location of Clusters

A cluster can contain both atomic and non-atomic objects. However,

the activation and passivation of clusters is orthogonal to transaction

management, i.e. many transactions which modify (the atomic objects

stored in) a cluster may commit while the cluster is activated. Note,

however, that a cluster containing atomic objects may only be passi-

vated if all commit protocol executions involving objects belonging to

the cluster have terminated.
Since the contents of virtual memory may be lost as a result of a

fault, the main responsibility of the transaction subsystem (TS) can be

seen as ensuring that committed updates to atomic objects are not lost

and that an image of each activated cluster, containing the youngest

committed version of each atomic object belonging to the cluster, can

be recreated in virtual memory on restart. In particular, restart han-

dling (see section 6.2.4.) ensures that every activated cluster, to which

changes were cornmitted or prepared6, is restored in virtual memory

at its activation site. Activated clusters, to which no changes were

committed or prepared since activationT, are lost from virtual memory

if the activation site fails. In this case, the SS then holds the up to

date state of the cluster.

But not propagated (see section 6.2.3).
Or propagation.

6.

7.

288 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Since the activation site interacts with the SS only when activating
and passivating whole clusters, and since activation and passivation are
orthogonal to transaction management, the SS is not involved in com-
mitting updates to objects. A failure of the SS while an object is acti-
vated does not cause transactions to abort nor prevent them from com-
mitting. However, as explained later, the SS may be involved in the
restart of the activation site of a cluster.

A central premise of the system is that each object is mapped into
only one context. Hence, it must be ensured that attempts to activate
an object are directed to its youngest committed state. This is not al-
ways trivial, since the youngest committed state of an object may, in
the event of a failure of the activation site, be found only on a data-log
once modifications to the object have been committed. The object's
representation in the SS is obsolete at this stage. In this case any at-

tempt to access, and in particular, to activate the object must be de-
layed until the activation site recovers.

Avoiding multiple simultaneous activations of a cluster is achieved
by registering the activation site for the cluster with the Location Ser-
vice (LS). Thus the design of the LS must cater for the possibility
that, due to a site crash, an activated cluster may be lost from VOM or
if not lost, because it will be recovered by the TS, may be unavailable
while the site at which it was mapped is down. Moreover, the infor-
mation maintained by the LS must be resilient to site failures. Thus,
even if the activation site fails during an activation period while possi-
bly holding new committed or prepared object states on its log, multi-
ple activation is prevented by the LS. Moreover, if an activation site
is registered in the LS, but does not hold the cluster after restart, it
follows that all changes to the cluster have been aborted as a result
of the site failure and that the SS holds the valid state of the cluster
which can be safely reactivated. The distributed algorithm used to lo-
cate a cluster is, therefore, as follows (Figure 8). Note that an excep-
tion reported by the location algorithm may be mapped to a transac-
tion abort.

When activating a cluster it is necessary to reliably register the
activation of the cluster in the LS before retrieving the cluster from the
SS. If the cluster cannot be retrieved, because of a failure of the SS,
then the activation of the cluster must be unregistered from the LS.
When passivating a cluster, the cluster must be written to the SS be-
fore the activation is unregistered from the LS.

Implementing Atomic Objects with the RelaX Tiansaction Facility 289

.A,ssume the fo11ôwing functions are defined:

SiteState (site-name) -> (Up. Down)
Objectstate (object-name) -> (Äctivated, Passivated)

- as determined by the location service
Mappingstate (object-name) -> (Absent' Present)

- at a given site

The algorithm is as follows:

CASE sitestate (Control Site) oF
Do$rn: either wait or report exception;
Up: CASE Objectstate (Object) OF

Activated: go to activation site;
CASE SiteState (Activation Site) OF

Down: either wait or report exception;
Up: CASE ObjectState (object) OF

Present: access object;
Absent:- /*al-l changes aborted*/

reactivate object;
access object;

Passivated: activate object;
access object;

Figure 8: Location algorithm.

6.2.2 Committing Transactions

As described, every context maintains a data-log to store the after im-

ages of modiûed atomic objects in the first phase of the commit proto-

col. A context located on a diskless site is statically one-to-one associ-

ated with a log on a site acting as a log-server. In addition, the TM at

each site maintains an outcome-log to keep track of the progress of
commit protocol executions.

The operation of the commit protocol is described by Figure 9, in

which 'VOM' stands for the collection of contexts involved in a given

commit request, and 'Data-Log' means the corresponding collection of
data-logs, each of them associated with a particular context.

In the first phase of the commit protocol, the RM writes the after

images of individual atomic objects which have been modified by the

committing transaction to the data-log, together with a commit request

identifier. Note that only modified atomic objects and not their con-

taining clusters are written to the data-log. In addition, the context

log-table describes on-going commit requests and the objects/clusters

involved. In the second phase, a corresponding "commit-data" record

290 Michael Mock, Reinhold Kroeger, and Vinny Cahill

1. Initiate commit;
2. Request after images be prepared;
3. Record prepared after images;
4. Announce that transaction is prepared;
5. V/rite "prepared-transaction" record;

A. execute distributed commit protocol

6. Write "committed-transaction" record;
7. Announce that transaction is
committe{
8. Write "committed-data" record;
9. Acknowledge commitment;

B. execute distributed erasure protocol

10. Write "dorìe" record;

Figure 9: Committing a Thansaction.

is written to the data-log if the transaction commits, or, if the transac-

tion aborts, a "discard-data" record is written.

6.2.3 Propagating Clusters

Propagating a cluster entails writing its youngest committed state to
the SS (without necessarily passivating the cluster). Propagation up-
dates the stable state of the cluster in the SS thereby reducing the
amount of recovery information that must be maintained in each con-
text to recreate the youngest committed state from the stable state.

Thus, propagating a cluster without passivating it is solely for the pur-
pose of releasing log records for storage reclamation reasons and re-
ducing restart time. A cluster may be propagated several times during
one activation period and each propagation may include the effects of
several transactions.

Implementing Atomic Objects with the RelaX Transaction Facility 291

To propagate a cluster the contiguous committed image of the clus-

ter has to be constructed in the context by assembling the youngest

committed state of each of the cluster's constituent objects. In general,

this need not be the object's actual state if the object has been

modified by an on-going transaction, but can be taken from a recovery

point.
After writing back a cluster to the SS, a "propagated" record is

forced to the log, which gives the identifier of the last commit request

which committed changes to the cluster. This information is used dur-

ing restart to determine which log-entry information for this cluster

may be discarded, thus allowing commit processing to proceed con-

currently with propagation. If writing the cluster back fails then no

record is written to the log. The committed cluster (or one of its

derivatives) will eventually be propagated.

6.2.4 Site Failure and Restart

A failure of an activation site will abort all transactions running at that

site and will interrupt all on-going commit protocol executions at that

site. Furthermore, clusters that were active at the site prior to the fail-

ure will be unavailable while the site is down.

On restart of the activation site, the Amadeus server restarts the

TM which in turn restarts each context that existed before the crash.

For this purpose the TM must maintain a list of the contexts that are

active at the site as well as sufficient information to locate the data-

log for each context. In addition, a mapping from context to text im-

age must be maintained so that each context knows which text image

to 'exec' when restarting. This mapping is maintained in the context

data-log (i.e. the name of the context's text image is recorded in the

context's data-log). If the activation site is diskless, restart will be de-

layed until its log-server site is available. Commit protocol executions

interrupted by a site failure are then rescheduled as described in

[Schumann et al. 1989].
During restart each context scans its data-log and rebuilds its log-

table in virtual memory. Clusters for which no committed entries are

found or whose last valid entry is "propagated" are ignored. Thus, af-

ter restart, the log-table indicates all clusters to which changes were

committed but not propagated. These (and possibly more) clusters are

already registered in the LS as being active in the restarting site. The

required clusters are then retrieved from the SS. If a cluster is unavail-

292 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Data Log Cluster
(in SS)

Cluster
(in restarted context)

Header

a

a

a

Object O0

a

a

a

Retrieve
Cluster

Recover
Object

Header

a

a

a

Object 02

a

a

a

Figure 10: Restart Processing for Clusters.

able (because its storage site is down) then restart must be delayed

until the cluster is again available.
The youngest committed state of each cluster is constructed from

the stable state obtained from the SS by overwriting the actual state of
each object, to which changes were committed since the cluster was

last propagated, with the youngest committed state of the object found
on the data-log. Once a context has been completely reconstructed,
each cluster is propagated and a "propagated" record written to the
data-log indicating that all objects corresponding to the commit re-
quests being processed have been propagated. These objects may now
be deleted from the log in order to reduce its length. The clusters
mapped into the context can now be made available to other applica-
tions.

Figure l0 shows restart processing for object O from cluster C
which has been modified by two committed transactions since C was

last propagated (Os, Or and Oz denote successive states of O).

Implementing Atomic Objects with the RelaX Transaction Fwcility 293

6.3 Local Algorithms

This section discusses the role of Amadeus in supporting recovery

control and commitment for atomic objects.

6.3.1 Basic Recovery Point Operations

A recovery point must be created before the first operation that

modifies an atomic object's state within any transaction so that, in the

event of a transaction abort, the previous state of the object can be re-

stored. A recovery point may also be used during the prepare phase of
the two phase commit Protocol.

Every object that is mapped into virtual memory is represented by

its actual state and associated recovery points (if any). All accesses

are directed to the actual state of the object which always remains in

the same place and never changes size. Each object consists of a

header (maintained by the GRI) followed immediately by the object's

data. The object's header contains information such as the object's

size and the cluster to which the object belongs.

when the RM-library is informed about an attempt to invoke an

operation on an object that will modify the object's state it calls the

Amadeus VOM_Save routine which creates a recovery point for the

object and returns the identifier (address) of the new recovery point.

The parameters to VOM_Save include the resource identifier (address)

of the object and a flag indicating how to cfeate the recovery point.

Normally this flag indicates that a value based recovery point should

be made. Making such a recovery point involves copying the target

object's actual state. To support garbage collection, the entire object

including its header must be saved in the recovery point. This method

of creating recovery points assumes that objects are contiguous in

memory and prohibits saving fragments of objects.

A transaction abort means that all objects modified by a trans-

action must revert to their original state. Here, the Amadeus

VOM_Restore routine is called with a list of all objects to be restored

and their associated recovery points. The recovery points are copied

back to overwrite the actual state of the modified objects and then the

recovery points deleted.
'When copying a recovery point back to over-

write the actual object state, care must be taken to ensure that runtime

data structures are kept consistent. Thus, it may be necessary to up-

294 Michael Mock, Reinhold Kroeger, and Vinny Cahill

date some fields in the object's header after the recovery point has

been copied back.
After a transaction has committed, all recovery points for that

transaction may be deleted. Here, the Amadeus voM_DeLete routine
is called with a list of recovery points that are no longer required.
Each recovery point in the list is deleted by freeing the memory allo-
cated for the recovery point.

6.3.2 Object Creation and Garbage Collection

If an atomic object is created during a transaction, a recovery point
for the object must be made, so that if the creating transaction aborts,
the object can be deleted. In this case, voM_save is called with an in-
dication that a creation operation is taking place. Since the only state

to be recorded is the fact that the object exists, recovery points for
newly created atomic objects are empty.

On a transaction abort, voM_Restore will be called for the new
object. The recovery point for the object will identify it as newly cre-
ated and the object will simply be deleted. Note that if a reference to
a newly created atomic object is stored in a non-atomic object and the
atomic object is deleted as the result of a transaction abort, then the
reference in the non-atomic object will refer to a nonexistent object.
Attempts to access such nonexistent objects are trapped by the GRI
and an exception raised.

The runtime garbage collector works by scanning all objects

mapped in the current context. To do so, it maintains a table of all
mapped objects. Since recovery points need to be scanned, they must

also be represented in the table. It is for this reason that the complete

object must be saved when making a recovery point (i.e. a recovery
point must appear as a normal object to the runtime). However, since

a recovery point has the same object identifier as the original object,

they cannot be placed in the same table. So a new table which lists all
recovery point objects is required by the runtime. Thus, voM_save

must be extended to insert the object represented by the recovery
point into the table and vou_Restore must be extended to remove the
entry from the table.

An object can only be deleted by the runtime garbage collector
when it is found that there are no references to the object, either on

the stack or in other objects or recovery points. If an atomic object is

Implementing Atomic Objects with the RelaX Transaction Facility 295

not referenced, then it is safe to delete the object without having to

make a recovery point for the deletion. That iso once all references to

an atomic object have been lost, there is no possibility of any of those

references coming back into existence as the result of a transaction

abort. Furthermore, on a restart there is no necessity to redo the dele-

tion since the object is garbage and will be deleted later. Therefore,

there is no need to make recovery points for deleted objects.

6.3 .3 Two -Phase -UPdate SuPPort

During the prepare phase of the commit protocol modified atomic ob-

jects are written to the data-log. Since this log is used to rebuild the

context on a restart, its entries cannot contain any virtual memory ad-

dresses since this would require that the context is reconstructed with

exactly the same layout as existed before the crash. Normally, when

an object is stored in a cluster in the sS, each object reference within

the object is converted to an offset within the cluster. (This process is

cal\ed fotding; the opposite process of converting from offset pointers

to language specific pointers is called unfolding.) This offset either

points directly to the referenced object if it is located in the same clus-

ter or to a stub for the referenced object if it is not located in the same

cluster. A stub contains enough information to locate the referenced

object. Each object in a cluster has enough space allocated immediatd
after its data for all the stubs that the object might require. When an

object is written to the data-log, each reference in the object is con-

verted to an offset. However, since just objects and not clusters are

saved to the log, a stub is required for each reference, whether or not

the object referenced is in the same cluster as the object being written

to the log.
Writing the object to the data-log is done in response to a call to

VOM_StableSave which is passed a list of all the objects to be saved

and associates an identifier with the commit request. Each object in

the list is copied to a spare region of memory where all references to

other objects are folded and any necessary stubs are generated and ap-

pended to the object. Then the object is forced to the data-log. In or-

der to reduce the number of writes to the log, a number of objects

may be buffered together and written in a single operation. Note that

when, during restart, an object is restored from the log any references

296 Michael Mock, Reinhold Kroeger, and Vinny Cahill

in the object do not need to be unfolded. This will be done automati-
cally by the runtime if necessary when the object is first used.

During the second phase of the commit protocol, the commit re-
quest is either committed or discarded. If the commit request succeeds
a call to voM_cornmit writes a record to the data-log indicating that all
objects associated with the commit request are now committed. LateÍ,
once the corresponding clusters have been propagated, these entries in
the log can be deleted. If the commit request fails, a call to
VoM_Discard writes a corresponding record to the data-log. All en-
tries in the log belonging to this commit request may be deleted (either
immediately or at some later stage).

Figure 11 summarizes the recovery point management and logging
operations provided by Amadeus.

Actual Object State Recovery Point

REC_HANDLE
Object

Object Data

lntermediate Stage
(all object references folded

and stubs attached)

Write To Log

VOM-Commit

ê VOM-Delete

Figure 11: Amadeus Recovery Point and Ingging Operations.

Implementing Atomic Objects with the RelaX Transaction Facility 297

6.4 Access TraPPing

One of the main requirements on Amadeus is that all attempts to ac-

cess atomic objects must be trapped and reported to the recovery and

concurrency control module so that the appropriate locks can be ac-

quired and a recovery point made if necessary. As described previ-

ously, trapping accesses to atomic objects is a function of the language

(specific runtime) which can report such accesses via the extended

GRI interface described in section 6.1.1. In this section we describe

the mechanism used to trap accesses to atomic objects in our current

C*x implementation. Different mechanisms may be appropriate for

other languages.
In designing a method for trapping access to atomic objects we

were concerned to minimize the performance impact for access to

non-atomic objects. Moreover since, in the general case, the client of
an object does not know in advance whether that object is atomic or

not, the possibility of inserting the necessary tests into client code was

ruled out.
The mechanism chosen is based on the use of different versions

of the class code for atomic and non-atomic instances of a class, i.e.

while both atomic and non-atomic instances of the same class may ex-

ist they are bound to different versions of the class code. The atomic

version of each operation calls the TS to perform the necessary checks

before calling the operation. Using this mechanism the client is not

aware of the kind of object to which it is talking. when the target ob-

ject is non-atomic no overhead is incurred either in testing for locks/

recovery points nor even in testing for atomicity.

Currently, in the absence of a general dynamic linking facility, our

mechanism requires that all invocations are indirect via a function

table (i.e. similar to virtual functions in C*f [Ellis & Stroustrop

19901). Moreover, this approach restricts access to objects to being

through functions, i.e. it is not possible to read or write the instance

data of an object directly. Of course this mechanism also requires that

two versions of each class are produced by the compilerþreprocessor.

When a non-atomic object is promoted to being an atomic, the

function table pointer used by the object is modified to point to the

corresponding function table for the atomic class code. In the atomic

class code, the operation is forwarded to the real code using the origi-

nal function table pointer which is saved within the object.

298 Michael Mock, Reinhold Kroeger, and Vinny Cahill

A class may also contain embedded objects and accesses to these

objects must also be trapped if the enclosing object is atomic. However
this can only be done if the embedded object is also atomic. During
the production of the atomic class code, any embedded class is re-
placed by an atomic version of that class. When an object is made

atomic, all embedded objects are also made atomic.

Since embedded objects do not have a runtime header, when an

access to an embedded object is trapped, the header of the enclosing

object must first be located in order to lock the object and to perform

recovery control operations. This means that accessing an embedded

object results in the complete enclosing object being locked and if nec-

essary a recovery point for the enclosing object being made. This is a
consequence of the fact that information about the size of the embed-

ded object is not available at runtime.

7. Implementation and Perþrmance

The RelaX transaction facility and the Amadeus system currently run
on networks of DECStations, Sun-3 and Sun-4 workstations running
Ultrix or SunOS. In addition, prototype implementations of Amadeus

are currently running on Chorus/MIX and the Mach 3.0 BSD single

server. An implementation of Amadeus on the Chorus microkernel is

underway. Both systems are written in C and C**, comprising ap-

proximately 180,000 lines of code each. The integration of the sys-

tems, i.e. the implementation of the algorithms described in section 6,

took approximately 6 person-months of effort.
The Amadeus server and all contexts, the TM and the RBP are

currently implemented as separate UNIX processes that communicate
locally over TCP/IP stream connections (refer to Figure 6). The

commit protocol executed by the TM relies on the RBP which uses

UDP/IP datagram broadcasts.

The following table (Figure 12) gives some initial performance

data for the system running on three DECStation 2100s connected by a
l0Mbit/sec Ethernet.

The table illustrates the average execution time (elapsed time) of
ten sequential transactions each reading and writing a single atomic

object per site. The columns vary in the number of sites involved, i.e.,
column one describes the performance of local transactions, column

Implementing Atomic Obiects with the RelaX Tiansaction Facility 299

Read + Write one obtect per súe I Site Z Sites 3 Sites
Normal Invocations u.õ ms Z) ms 49 ms
(jompleting'l'rânsactions lö) ms Zöó InS)oo ms
uommrttrng'lransactrons JUö InS 4ð9 ms ö2Õ ms
Grouo committment '¿'¿+ms 5'¿l ms /J4 ms

Figure 12: Elapsed execution time in milliseconds.

two and three that of distributed transactions running on two and three

sites respectively. Row one describes the performance of non-transac-

tional reads, thus giving the lower bound for transactions. Note that
non-transaction write access to atomic objects is excluded by the trans-

actional model (see section 4). Row two describes complete-only
transactions that delivered their results on termination without waiting
for a commit protocol execution. These transactions are committed
eventually in a background commit. In row three, the transactions
committed individually meaning that their elapsed time includes a (dis-

tributed) commit protocol execution. Finally, row four gives the aver-

age of nine complete-only transactions followed by a tenth transaction

which initiated the group commitment of all ten.

The difference between the time for a complete-only transaction
(row two) and its corresponding committed transaction (row three, in-
dividual commit) shows the overhead of the commit protocol execu-

tion for the local case (approximately 123 msecs) and the distributed
case (approximately 201 ms for two sites, approximately 260 ms for
three sites). The group commitment of row four further reduces the

average overhead for the commit protocol execution compared to the

complete-only case (row two).

8. Summary and Conclusion

The Amadeus/RelaX system shows that it is possible to support atomic
objects in a language independent manner. Moreover such a system

can give full support for atomic objects while being open to supporting

additional resource types. Use of the RelaX transaction facility has

enabled the provision of a flexible transaction model and support for

300 Michael Mock, Reinhold Kroeger, and Vinny Cahill

the integration of multiple resource types. The ease of integration of
Amadeus and RelaX shows the utility of breaking transaction func-

tionality down into an extensible architecture. Furthermore, the

generic transaction support components have proven to be very useful

and time-saving for the implementation of atomic resources.

The overall functionality of the integrated system is comprehensive

and its performance, given an underþing UNIX kernel and no attempt

for optimization, is acceptable. System performance and behavior will
be evaluated in greater detail using a distributed measurement environ-

ment [Lange et al. 1992). Further work is on-going to support more

languages and to integrate existing relational database systems. Func-

tional extensions towards general purpose fault tolerance schemes [Nett
19911 including support for replicated objects are envisaged.

Acknowledgements

The authors gratefully acknowledge the input of all those who have

contributed to the Amadeus and RelaX systems and their integration:

Sean Baker, Neville Harris, Chris Horn, Andre Kramer, John

Moreau, Gradimir Starovic and Bridget Walsh at TCD; Friedhelm

Baer, Rainer Frings, Rolf Heinl, Susanne Kerp, Frank Lange, Edgar

Nett, Gerd Rademann, Andreas Schneider, Ralf Schumann, Rose-

marie Vonthin and Beatrice Wirz at GMD. The work of Paul Tiaylor at

TCD and GMD is particularly acknowledged.

lVe are also grateful to our many colleagues with whom we have

collaborated in the course of the Comandos project including those at

Bull, Chorus, IMAG and the OSF in France, INESC in Portugal, the

Universtiy of Glasgow in the United Kingdom, UPC in Spain and the

Fraunhofer Institute in Germany.

Implementing Atomic Obiects with the RelaX Transaction Facility 301

References

T. Andrews, C. Harris and K. Sinkel. ONTOS: A Persistent Database for
C+ + . in Object-Oriented Databases with Applications to CASE, Net-

works and VLSI CAD. Prentice-Hall, 1991

V. Cahill, C. Horn and G. Starovic. Towards Generic Support for Distributed
Information Systems. International Workshop on Obiect Orientation in

Operating Systems, 104-107, Palo Alto, Cal., 1991

J. Chang and N. Maxemchuk. "Reliable Broadcast Protocols." ACM Transac-

tions on Computer Systems 2(3): 25L-273, l'984

G. N. Dixon, G. D. Parrington, S. K. Shrivastava and S' M. Wheater. "The
Tleatment of Persistent Objects in Arjuna'" The Computer Journøl

32(4):1989

M. A. Ellis and B. Stroustrop. The Annonted C*i Reþrence Manual. Ad-
dison \Vesley, 1990

J. L. Eppinger and A. Z. Spector. A Camelot Perspective. UNIX Review.
1989

K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Tbaiger. "On the Notions

of Consistency and Predicate Locks." Communicatíons of the ACM
l9(ll): 1976

R. Haskin, Y. Malachi, W. Sawdon and F' Chan. "Recovery Management in

Quicksilver." ACM Tiansactions on Computer Systems 6(l): 82-108'
1988

M. P. Herlihy and J. M. V/ing. Avalon: Language Support for Reliable Dis-

tributed Systems. Fault :Tolerant C omputing Sy stems - I 7, 1987

c. Horn and v. cahill. "supporting Distributed Applications in the Amadeus

Environment." Computer Communication Review 14(6): l99l

J. Kaiser. "MUTABOR, A Coprocessor Supporting Memory Management in
an Object-Oriented Architecture." IEEE Micro 8(5):30-46' 1988

R. Kroeger and E. Nett. System-Level Support for Dependable Distributed

Applications . Int. Workshop on Operating Systems of the 90s and Be-

yond, Schloß Dagstuhl, GermanY, 1991

R. Kröger, M. Mock, R. Schumann and F. Lange. RelaX - An Extensible

Architecture Supporting Reliable Distributed Applications. 9th Sympo'

sium on Reliable Distributed Systems, 156-t64, Huntwille, Alabama,

1990

F. Lange, R. Kroeger and M. Gergeleit. "JEWEL: Design and Implementa-

tion of a Distributed Measurement System." IEEE Transactions on

302 Michael Mock, Reinhold Kroeger, and Vinny Cahill

Parallel and Distibuted Systems (Special Issue on Measurement and
Evaluations of Parallel and Distributed Systems): 1992

B. Liskov and R. Scheifler. "Guardians and Actions: Linguistic Support for
Robust Distributed Programs." ACM Transactions on Prograrnming
Languages and Systems 5(3): 381-a04,1983

B. Mayer. Object Oriented Software Construction Prentice-Hall, 1988

J. E. B. Moss. ly'¿sted Transactions: An þproach to Reliable Distributed Pro-
gramming. Ph.D. Thesis, MIT/LCS/TR-260, 1981

E. Nett. Supporting Fault Tolerant Distributed Computations. Habil. Thesis,
Bonn,1991

E. Nett, K.-E. Grosspietsch, A. Jungblut, J. Kaiser, R. Kröger, W. Lux, M.
Speicher and H.-W. V/innebeck. PROFEMO - Design and Implementa-
tion of a Fault Tolerant Distributed Systern Architecture. GMD-Studie
100, GMD, 1985

E. Nett, J. Kaiser and R. Kröger. Providing Recoverability in a Transaction
Oriented Distributed System, 6th Int. Conf . On Distributed Computing
Systems, Cambridge, Mass., 1986

G. D. Parrington. Reliable Distributed Programming in CH: The Arjuna
Approach. 2nd Usenix C# Conference, San Francisco, 1990

F. Schmuck and J. Wyllie. Experiences with Tiansactions in Quicksilver.
13th ACM Symposium on Operating System Principles, 239-253,
Paciûc Grove, CA, 1991

R. Schumann, R. Kröger and M. Mock. The Decentralized Non-Blocking
RelaX Commit Protocol. 1Lth ITGIGI-Fachøgung Architektur von
Rechensystemen, 403 -413, Muenchen, 1990

R. Schumann, R. Kröger, M. Mock and E. Nett. Recovery Management in
the RelaX Distributed Tiansaction Layer. &th Symp. on Reliable Dis-
tributed Systems, Seattle, 1989

R. Schumann and M. Mock. Efficient Commit/Abort Procedures in the Re-
laX Distributed Transaction Layer. Faultlolerant Computing Systems,

209 -220, Baden-Baden, 1989

Tlansarc Corporation. Encina - Enterprise Computing in a New Age, Product
Overview. 1991

UNIX System Laboratories. "The Tüxedo System, Product Overview.": 1991

R. Vonthin. Spezifil<ntion des PROFEMO-Reliable Broadcast Protokolls in
Unix 4.2 BSD. GMD-Studie I2l, GMD, 1987

Implementing Atomic Obiects with the RelaX Tiansaction Facility 303

\il. Weihl. "Implementation of Resilient Atomic Data Tlpes." ACM Transac-

tions on Programming Languages and Systems 7(2): 1985

X/Open Company. Distributed Tlansaction Processing Reference Model: The
XA Specification. 1991

[submitted June 16, 1992; accepted July 22, 1992]

Permission to copy without fee all or part of this material is granted provided that the copies

are not made or distributed for direct commercial advantage, the Computing Systems copyright
notice and its date appear, and notice is given that copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

304 Michael Mock, Reinhold Kroeger, and Vinny Cahill

