
Economical Inversion of Large
Text Files

Alistair Moffat The University of Melbourne

ABSTRACT: To provide keyword-based access to a
large text file it is usually necessary to invert the file
and create an inverted index that storeso for each word
in the file, the paragraph or sentence numbers in which
that word occurs. Inverting alarge file using traditional
techniques may take as much temporary disk space as

is occupied by the file itself, and consume a great deal
of cpu time. Here we describe an alternative technique
for inverting large text files that requires only a nomi-
nal amount of temporary disk storage, instead building
the inverted index in compressed form in main mem-
ory. A program implementing this approach has cre-
ated a paragraph level index of a I32 Mbyte collection
of legal documents using 13 Mbyte of main memory;
500 Kbyte of temporary disk storage; and approxi-
mately 45 cpu-minutes on a Sun SPARCstation 2.

@ Computing Systems, Vol. 5 . No. 2 ' Spring 1992 125

I. Introduction

Full-text databases are an important way of storing and accessing in-
formation. Newspaper archives, office automation systems, and online
help facilities are but a few of the many applications. One common
method of providing the index needed for efficient keyword-based
query processing on such a database is to create an inverted file- a frle
that contains, for every term, a list of all documents that contain that
term. Given an inverted file it is then straightforward to identify the
documents that contain any boolean combination of the queried terms.

Here we address the task of creating the inverted file. We call this
the inversion of the input text. When the input text is small, inversion
is simple. All that is necessary is a single pass over the input data

building a lexicon (also referred to as a vocabulnry) of the distinct
terms as they appear, and recording, at this first, and each subsequent
occurrence, the document number. At the end of the input this
in-memory structure is traversed and written to disk.

The limitation of this approach is main memory capacity. Even if
we are prepared to (bravely) assume that the database will contain
fewer than 65,536 documents, linked list storage of word occurrences
will require 6 bytes per word, about the same amount as originally
consumed by the word in the input text. For this approach to be vi-
able, main memory must be as large as the text that is being inverted.
On current workstations this poses no problems for databases of up to
1-5 Megabyte or so. However we are also interested in significantly
larger databases-10 Mbyte, 100 Mbyte, and, perhaps, 1,000 Mbyte.

When main memory is insufficient secondary storage must be

used. Moreover, a different approach is required, since secondary
storage cannot be used in the same random access manner as primary
memory. For example, attempting to invert a file of 1,000,000 words
using linked lists on disk (which is what will happen if virtual memory
is being mapped, via page faults, into a physical main memory that is

126 Alistair Moffat

too small) would require perhaps 2,000,000 head seeks, and, at20
msec per seek, might take 12 hours or more of constant disk activity.
It is much more economical to write a file of 'word-number, docu-
ment-number' pairs in document number order, and then sort by
word-number.

The drawback of this sort-based approach is the use of large
amounts of temporary disk space. The same example file of 1,000,000
words would generate an intermediate file of about 8 Mbyte, coding
the numbers as 32-bit integers; and then, during its several passes over
the data, the sort would require another 8 Mbyte of temporary storage
space. In total, 16 Mbyte of secondary storage capacity must be allo-
cated to invert a file that was probably originally only 5-6 Mbyte,
and, if stored compressed, actually requires only 2-3 Mbyte. If in-
version is an operation that is periodically carried out as the database

is extended, this peak load disk requirement must effectively become
the 'normal' amount of secondary storage allocated to the database.
Indeed, both Lesk [4] and Somogyi [8] have specifically warned users

of their inverted file retrieval systems that large amounts of temporary
disk space will be necessary. Inverting by sorting is also somewhat

slow. Multiple passes over the data are required, with every item in-
volved in every pass.

Here we describe an alternative technique for in-memory inversion
of large text files. Our method stores document numbers in primary
memory, but compressed in a bit-vector rather than as a linked list of
integers. We have applied our technique to a database of 132.1 Mbyte
containing 23,100,786 words and261,829 documents, where each

document corresponded loosely to a paragraph of text. The inversion
required a total of 45 cpu minutes on a Sun SPARCstation 2; 13 Mbyte
of main memory; and about 500 Kbyte of temporary disk storage.

More generally, within any given amount of main memory we can in-
vert (at paragraph level) databases approximately 10 times larger than
can be handled by linked list techniques.

In the next section we describe a simple prefix code for represent-
ing positive integers, and give bounds on the total number of output
bits generated under certain conditions. Section 3 then describes the
practical application of the code to the problem of inverting a text file.
Sections 4 and 5 detail the results of experiments using the inversion
technique; and Section 6 describes a number of possible directions in
which the method might be extended.

Economical Inversion of Large Text Files I27

2. Coding Positive Integers

At the heart of the new technique is a simple code for representing
positive integers. Suppose that -r > 1 is a value to be stored, and that
å is some positive power of 2 (the choice of å will be discussed be-
low). To store r we first code ((:r - 1) div å) l-bits, then a O-bit, and
then ((x - 1) mod å) in binary using logz å bits. Some sample codes
for small values of ;r and various values of b are shown in Täble 1. To
make the table a little easier to understand the boundary between the
unary and binary section within each codeword has been indicated
with a comma. This comma does not, of course, appear in the actual
output code.

x b:1 b:2 b:4 b:8

I
2
J
4
5

6
7

8

9

0,
10,

110,
1l10,
1l110,
111110,
1111110,
1l 111110,
111111110,

0,0
0, 1

10,0
l0,l
110,0
110,1

1110,0
I I10,1
11110,0

t,00

t,01

t,10

0,11
0,00
0,01
0,10
0,1I
10,00

0,000
0,001
0,010
0,011
0,100
0,101
0,110
0,111
10,000

Täble l: Examples of block codes

The encoding process is simple, and C source code is shown in
Figure 1. It is assumed the routine 'purBrr' disposes (somehow) of one
bit of the code being generated; and that 'logbase2(b)' returns logz b.
The decoder is similarly straightforward.

This prefix code is a special case of a more general code first de-
scribed by Golomb [3], and then further investigated by Gallager Van
Voorhis [2]; Mcllroy [6]; and Moffat & Zobel [7]. In the applications
considered by those authors å was not restricted to be a power of
two. Here the special case when å is a power of two is of particular
interest.

128 Alistair Moffat

encode(x, b) {
I = x-1;
while (x>=b) {

PUTBIT(1) ;

x = x-b;
)
PUTBIT(O);
¡6¡ (i=logbase2(b)-1; i>=0; i=i-1)

PUTBIT((x>>i) & 0x1);
)

Figure 1: Encoding Process

Suppose now that a sequence of values X : (xt), 1 < i < p is to
be coded, and that 2',:, xt < N. The behaviour we are interested in is
captured by the following lemmas.

Lemma I The total number of bits B. requíred to code X is bounded

by

B.(b) = p.(r + toszb).ry (l)

Proof Each of the values coded will contain logz b bits for the binary

component, and one more 0-bit to mark the transition between prefix

and suffix parts. Each prefix l-bit corresponds to exactly b, and since

each value x¡ 2 I and the total value coded by prefix bits is at most

(N - p), the number of prefix bits is at most (N - p)/b.

Lemma 2 For fixed values I = p = N /2, (l) is mínimised (for b
a power of two) at b*, where

i. ,-¿l
b- : zl'"t'-î), Q)

and it is assumed that any ties are to broken by nking the largest min'
imising value.

Proof The proof is by contradiction. Note that (2) implies

b.-N:p<b*=N-p<zb*..
22p"p

Suppose first that b = (N - p)lzp is the minimising value. Consider

b' : 2b. The value of (1) will increase by p in the first term if å
is replaced by b' , but will decrease by (N - p)/zb in the second.

Economical Inversion of Large Text Files 129

This latter is not less thanp, because b = (N - p)/zp. Thus
B*(b') = B.(b), and b is not the largest minimising value for (1).

Similarly, suppose thatb > (N - p)lp is the minimising value.
Thking b' : b/2 instead makes the ûrst term of 1 decrease by p, and
the second increase by (N - p)lb.In this case the increase is strictly
less than p, and again b cannot be the minimising value. The only re-
maining possibility is that å- is, as required, the largest minimising
value.

When p > N /2 the minimising value is b* : I .

We should also justify the claim that it is sufficient to restrict
å to be a power of 2.In general (for unrestricted choice of å) the
binary component of the code will require either Uogz bl bits, for
0 < (¡ - 1) mod 6 I 2ltocz 61 - b, and [og2 å] bits fot zttocz b) -
b = (x - 1) mod b <b. Forexample,if b:6thecodesforre-
mainders of 0 to 5 will be 00, 01, 100, 101, 110, and 1 11, corre-
spondingrespectively tox¡:6k + l,6k + 2,. .,6k i 6for
integral ft.

To show that choosing b a power of two minimises the total cost
of the coding we suppose that we face an adversary who informs us of
the values of N and p, asks us for our choice of b , and then decides
on particular values x¡ intended to force the code to consume the
maximal number of bits. Suppose further that we choose a value of å
that is not a power of 2. To maximise the number of bits while
minimising the 'cost' in terms of x¡, the adversary will choose
x¡:)ttoszbt - b * 1 (mod å) as often as possible, since, compared
with choosiîg x¡ : 1 (mod b), one extra bit is consumed for a cost of
less than å; indeed, at a cost less even ¡¡un2Ítoez å1. We can thus re-
strict the adversary's power to force extra bits of code by choosing
6r - 2uoez å1, in which case the adversary must choose xi: 1 (mod å)
as often as possible.

This argument is based upon the worst that can happen, and does
not imply that every list will be most economically coded by choosing
å a power of two. However, as we shall see in the next section, it is
this worst case bound that allows the new inversion strategy. For ap-
plications where an average case bound might be more accurate, such
as storing the inverted file on disk, other choices of å might be appro-
priate [7].

130 Alistair Moffat

3. Applícation to Inversion

The inversion process consists of two passes over the text to be in-

verted.
The first pass is a standard 'word frequency' program that scans

the database and records N, the number of documents' and, for each

word w, the number of documents p- that the word appears in. At the

end of the input the value of N, together with all of the pails ow, p.'
are written to an intermediate lexicon file on secondary storage' At
the same time as it is accumulating values p. the first pass might also

be accumulating other statistics about the input text. For example, the

first pass we have been using also calculates Huffman codes for a

word-based compression model [7].
The second pass reads this lexicon and builds a search structure.

In this case, a sorted array is sufficient, since no insertions will be re-

quired and a linked structure would require extra space for pointers.

For each word w the second pass calculates b* accotding to Lemma 2;

and B* according to Lemma 1. A bit-vector of B- bits (in reality,

tB-lS) bytes) is dynamically allocated, and initialised to zero.

The text is then processed again. The entry for each word is lo-

cated by binary search in the lexicon and a code for the gap between

this occurrence and the most recent previous occurrence of the word

is appended to the corresponding bit-vector. By coding the gaps rather

than absolute document numbers we can be sure that the conditions of
Lemmas I and 2 will be met: namely, that the sum of the p values

coded not exceed N, and so we can be sure that B. bits will be

sufficient. At the end of input for the second pass the array is scanned

in lexicographic order, either decompressing each bit-vector back to a

sequence of absolute pointers, or, more economically, writing the

compressed bit-vector to be decompressed when required. In this latter

case either p or b. would also need to be written to the output file.

4. Experimental Results

We have tested this technique on three collections of documents.

Table 2 shows the sizes of these collections. Database Manuals was

Economical Inversion of Large Text Files 13l

Collection Name
Manuals GNUbib Comacî

Text Size (Mbyte)
Distinct Words
'Word

Occurrences
Documents

Average Words per Document

5. r5
21,554

958,744
2,496

384

t4.t2
70,866

2,575,41r
64,344

40

t32.tt
68,074

23,100,786
26l,g2g

88

Table 2: Sizes of Document Collections

a collection of Unix manual pagesl, including embedded formatting
commands. Database GNUbib2 was included to give a comparison
with previous work-Somogyi [8] has described the difficulty of in-
verting GNUbib using a sort-based approach. The database stores
64,000 citations to journal articles, technical reports, conference pa-
pers, and books, all stored in 'refer' format [5, 9]. Each citation was
taken to be a 'document' for inversion purposes. It was the desire to
invert the third database that was the initiator of this investigation; it is
a collection of 261,829 pages of legal text storing the complete Com-
monwealth Acts of Australia, from federation (in 1901) to 1990. We
wished to build an inverted index for Comact, but did not have avail-
able the more than 200 Mbyte of temporary disk storage that would
have been required by a disk-based inversion.

Tâble 3 shows the various time and space costs of inverting these
databases when run on a Sun SPARCstation 2. The 'first pass proces-
sor times' reported in the second section of the table include the cost
of counting not only the frequency of all of the wordso but also the
frequency of all of the intervening non-words, and the cost of building
a Huffman code for each of these two sets of frequencies suitable for
use in a word-based compression module [7]. Profiling indicated that
removal of these calculations to produce a 'suitable for inverting only'
first pass would reduce the running time by abottt 20Vo. The second
pass times include the cost of 'decompressing' the compressed bir
vectors to generate an output stream of 32-bit integers. If the inverted
file is to be used as part of a compressed full-text retrieval system [7]

/usr/man/man[l-8]/* on a Sun SPARCstation

GNUbib is available from the Free Software Foundation.

I
2

I32 Alistair Moffat

Collection Name
Manuals GNUbib Comact

Main Memory (Mbyte):

- first pass data structures

- second pass data structures

- second pass bit-vectors
Memory Required

0.94 2.37 2.34
0.6s r.70 r.62
0.25 1.95 10.93

0.89 3.65 12.55

Processor Time (cpu-seconds):

- first pass

- second pass

Time Required

67 230 1220

53 174 1420

r20 404 2640

Secondary Storage (Mbyte): 0.20 0.53 0.s0

Table 3: Inverting Document Collections

then clearþ it is much more economical on storage to simply write the

compressed bit-vectors and not decompress them; the decompression

of a particular vector should be performed by the retrieval program if
and when that bit-vector is required.

We indexed all words, where a 'word' was defined to be any non-

empty string of up to 15 alphanumeric characters, provided that the

maximum number of numeric characters was not greater than four.

The latter constraint was added after initial experimentation showed

that the page numbers of Comact ran in an unbroken run from I to
26I,829 and produced an unpleasantly large number of 'words'.

Strings of alphanumerics longer than 15 characters, or containing

more than 4 numeric characters were broken, with the offending char-

acter marking the start of a new 'word'. We did not remove any stop

words, and indexed even single character and single digit words. The

removal of stop words would not have the same effect on memory

requirernents as for linked list approaches, since frequently occurring

words are allocated short codes anyway; nevertheless, a non-trivial
amount of storage might still be saved. For example, the bit-vector for
'the' on Comact was coded with å : 1, but still required 32 Kbyte.

The figures for pass one memory space and the lexicon space on

secondary storage have been adjusted to remove all 'non-inversion'

components, and are accurate for an 'inversion only' first pass. The

Economical Inversion of Large Text Files 133

actual combined first pass, building Huffman trees for the words and

non-words, required about 3OVo more primary memory than is listed.
For Comact the second pass of the inversion required a main mem-

ory allocation of just I}Vo of the initial file size, and ran without fuss

on the 48 Mbyte test workstation. The bound of Lemma 1 was very
tight; of the 10.93 Mbyte allocated to bit-vectors for Comacl, more
than 997o was used. With most organisations typically operating at

least one machine with 128 Mbyte or more we would expect to be

able to carry out paragraph-level in-memory inversion for files of up

to about 1 Gbyte.

5. Word and Byte Level Inversion

There will also be times when it is necessary to invert a file to gener-
ate, for each distinct word, a list of occurrences in terms of ordinal
word numbers-word level ínversion-or even in terms of byte offsets
within the file-byte level inversion.

Our technique can also be used in these situations, with p becom-
ing the number of occurrences of the word (rather than the number of
documents that contain the word) and N becoming, respectively, the
total number of words in the file, and the total size in bytes of the
file.

The space requirements during the second pass are, however,
much larger. There are two reasons for this. Firstly, there are more
pointers to be stored. In a document level index multiple occurrences
within a document of any particular word are represented with a sin-
gle pointer. On Comact this effect meant that the 23,100,786 words
corresponded to only 14,219,077 stored pointers. For a word or byte
level index all words must, of necessity, correspond to a pointer, and
so even if the pointers can be coded as compactly, the index must
grow by at least this ratio.

The second reason the inverted index grows is that each stored
pointer is more descriptive, identifying a value in a larger range, and
so requiring on average more bits. For example, Comact has 26I,829
documents, 23,100,786 words, and 138,524,3I4 bytes; and if pointers
were simply coded as minimal binary codes, would require 18,25,
and 28 bits respectively. The code described in Section 2 automati-
cally makes this adjustment as p and N change; and so we were ex-

134 Alistair Moffat

Collection Name
Manuals GNUbib Comact

Word Level Inversion:

- second pass bit-vectors (Mbyte)

- second pass time (cpu-sec)
1.39 3.73 3t.76
75 196 1740

Byte Level Inversion:

- second pass bit-vectors (Mbyte)

- second pass time (cpu-sec)
t.67 4.53 38.88

81 206 1840

Täble 4: lilord and Byte Level Inversion

pecting a substantial increase in memory requirements for the com-
pressed bit-vectors when we attempted word and byte level inversion.

Täble 4 shows the increased resources required by this level of
inversion. As expected, primary memory requirements increased
significantly. Nevertheless, we were still able to invert Comact within
the 48 Mbyte main memory of our test machine.

6. Extending the Technique

Other codes can also be used to compress the lists of pointers. Elias
[1] describes a number of prefix codes for coding positive integers that
have the necessary property that small integers are represented with
short codes. For example, his 7 code represents integer -r by [log2.r]
0-bits, followed by the binary representation of x (which must start
with a l-bit) in I * [og2 x] bits. If the appearances of a word are
scattered randomly in the text and each gap is about N /p,7 coding
the list of pointer differences will require approximately 2plog2(N I Ð,
almost twice the bound given by Lemmas I and 2. On the other hand,
if the appearances of a word are tightly clustered then the 7 code will
give the more succinct representation. In this case the first pass of the
two pass method should count the exact number of bits required by the
7 code rather than let the second pass estimate an upper bound based
on the words occurrence count. Elias also described a ô code, in which

7 (rather than unary) is used to code the value [log2 -r] indicating how
many suffix bits should be decoded.

Täble 5 shows the amount of main memory that would be required
by 7 and ô at the various inversion levels we have considered.

Economical Inversion of Large Text Files 135

Inversion Level Manuals
yô

GNUbib
yô

Comncl
v ô

Documents
Words
Bytes

0.26 0.25
r.66 1.43
2.22 1.81

1.73 1.52
4.70 3.97
6.23 5.14

8.63 8.19
36.72 32.r3
50.64 42.t2

Täble 5: Coding using ô and 7 (Mbyte)

On both GNUbib and Comau the ô code is better than the block
code of Section 2 when inverting at document level, but the advantage

is lost when inverting at word or byte level. The advantage of the
block code is that it gives good compression on a variety of texts and
indexing levels, and the space required can be bounded above given
knowledge of p- often a value that is already being calculated for
other uses by a multi-purpose first pass.

There is, however, one situation in which thê use of a non-
parameterised prefix code becomes necessary. Probably the biggest
disadvantage of our inversion method is the need for two passes over
the input data. If we are prepared to trade increased space for de-
creased time, we can consider a one pass approach, in which a fixed
code is used to represent the gaps between pointers. In this case mem-
ory allocation must become more dynamic. The first appearance of a
word installs it into the lexicon, and allocates a first quantum of space

for the bit-vector, perhaps one 32-bit word. At subsequent appearances

the space remaining in the bit-vector must be checked, and, if it is
inadequate, alarger space allocated and the current contents of the bir
vector copied into the expanded area. The old bit-vector would then
be returned to a pool of free space.

Provided that the sequence of bit-vector sizes is geometric (rather

than arithmetic), the time spent copying bit-vectors will not dominate.
For example, if the sequence of bit-vector sizes is I word, 2 words,
4 words, 8 words, and so on, the maximum number of times any
particular bit is copied is less than2, averaged over the bits con-
tained in each bit-vector. The drawback of this dynamic approach is
that too much space will always be allocated. If we assume that each

bit-vector grows to fill on average half of its last extension, 337o

more space will be required than by an equivalently coded two pass

approach. Another possible sequence of bit-vector sizes is the Fibonacci

136 Alistair Moffat

numbers: 1,2,3,5, 8, 13, which is, roughly speaking, a geometric
sequence with a ratio of l.62between successive terms. Using the Fi-
bonacci sequence reduces the overhead space to about 20Vo,butin-
creases the bound on the number of times each item gets moved to
2.6, averaged over each bit-vector. Thus, for a realistic bound on the
space needed by a one pass approach the values in Thble 5 should be
increased by at least 20Vo. This still results in an underestimate, since
it assumes that every bit-vector that is relinquished because of expan-
sion can be later reused; this will not be the case. Smaller multipliers
on the geometric sequence continue to give tighter bounds on the
space overhead, but continue to increase the running time. The sav-
ings from moving from two passes to a one pass approach will be
quickly eroded. More importantly, peak memory usage will be in-
creased, both through the overheads on the encoding, and the need for
a dynamic data structure (rather than a static 'pointer-less' structure)
to store the lexicon (in 'first pass data structures' Tiable 3).

7. Summary

We believe that our work will be useful to practitioners for two rea-
sons. Firstly: we have described a paradigm for inverting large text
files using main memory as a random access device storing com-
pressed bit-vectors. Previous inversion techniques using secondary
storage were unable to build inverted files in a random access fashion,
and so were forced to use multi-pass sorting strategies and large
amounts of disk work space. Main memory is still, of course, a more
expensive resource than disk, and we do not claim to have replaced
disk-based inversion techniques. Nevertheless, we have moved the
boundary between the two strategies, and sort-based inversion will
now only be needed for very large databases.

The second contribution is the particular encoding that we have
used. The most important property of this code is that it is sensitive to
word frequency, and so results in compact representations for fre-
quently appearing words. Moreover, the sensitivity is captured by a
single parameter. A Huffman code or similar might also have been
used on each bit-vector, but because a Huffman code has many
parameters, would have markedly increased both the disk space

Economical Inversion of Large Text Files 137

needed to store the lexicon and the memory space required during the
two passes of the inversion process. Other encodings with a small
number of parameters, such as Elias' ô code, or a single Huffman code

for the entire inverted file, suffer from not being sensitive to the fre-
quencies of individual words. The final advantage of the code is that it
is possible to calculate a tight bound on the number of bits required to
code a bit-vector, again given just the single parameterp;this means

that the inversion can be performed in the second pass rather than
needing a third (with the second counting the coded length of each

bit-vector). For these reasons the code itself, independently of the ap-

plication we have described, will also be of interest.
The disadvantage of our approach is the need for two passes. How-

ever in the application for which the inversion method was designed

[7] we were already making two passes over the data, and so the extra
cost was small. Moreover, when processing text on the large scale de-

scribed here, taking extra time is only a minor irritation, but taking
extra primary or secondary memory can make the difference between

success and failure.

Acknowledgements

The author gratefully acknowledges the assistance of Justin Zobel, who
participated in a number of helpful discussions during the project. This
work was supported by the Australian Research Council.

138 Alistair Moffat

References

P. Elias. universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, IT-21(2):194-203, March 1975.

R. C. Gallager and D. C. Van Voorhis. Optimal source codes for geometri-
cally distributed aþabets. IEEE Transactions on Information Theory,
IT-21 (2):228-230, March 197 5 .

S. W. Golomb. Run-length encodings . IEEE Transactions on Information
Theory, lT-12(3):399-401, Iuly 1966.

M. Lesk. Grab-inverted indexes with low storage overhead. Computing Sys-
tems, l(3):207-220, Summer 1988.

M. Lesk. Some applications of inverted indexes on the Unix system . In Unix
Programmers Manual, Volume 2A. Bell Laboratories, 1988.

M. D. Mcllroy. Development of a spellinglist. IEEE Transactions on Com-
munications, COM-30(I):91 -99, January 1982.

A. M. Moffat and J. ZobeL Coding for compression in full-text retrieval sys-
tems. Tþchnical Report 9ll2l, Department of Computer Science, The
University of Melbourne, Parkville 3052, Australia, November 1991.

Z. Somogyi. The Melbourne University bibliography system. Tþchnical Re-
port 90/3, Department of Computer Science, The University of Mel-
bourne, Parkville, Victoria 3052, Australia, March 1990.

B. Tuthill. Refer-a bibliography system. In Llnix (Jser's Manual Supplemen-
tary Documents. 4.2 Berkeley Software Distribution, 1984.

[submitted Nov. 18, 1991; revised Jan. 24, 1992; accepted Feb. 12, lgg2]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the computing systems copyright
notice and its date appear, and notice is given that copying is by permissioñ oî the Regênts-or
the University of Califo¡nia. To copy otherwise, or to republish, iequires a fee and/oripecific
permission. See inside front cover for details.

Economical Inversion of Large Text Files 139

