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ABSTRACT In many computationally-intensive tasks

such as medical image reconstruction for which trans-
puters can be used, the data communication rate be-

tween a display host such as a SUN-workstation and the

transputer network becomes a constraint on system per-
formance. Our goal is to maximise the SUN-transputer
data exchange rate. Vy'e use several kinds of transputers

connected to the VME-bus of the host SUN and this
paper explores alternatives for designing their inter-
faces. We also use a VME-bus memory module
memory-mapped to both the SUN and the transputers.

Device drivers for the transputers connected by serial
links must implement the required blocking semantics
of the transputer links. There are two major designs for
programmed i/o serial link interfaces-"polled" inter-
faces, and "interrupting" interfaces which work with a
process scheduler to block the invoking process until
the desired condition is true. W'e measured both kinds,
expecting that the transputer hard link throughput
would limit the performance. However, we found that
the SUN's cpu cycles limit the performance of an
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unbuffered byte interface; a SUN4/110 is only capable
of transferring 457,000 bytes/second. By reducing the
software overhead in the SUN using a buffered FIFO
block transfer we can increase throughput to 888,000
bytes/second. Now the bottleneck is the byte-wide
VME-bus access mode used for the serial links.

Throughput between the SUN and the transputers, us-
ing shared 32-bit wide VME-memory, is four times the
throughput of the serial links. Hence, for optimum
throughput, we use the transputer links for synchronisa-
tion of data which is exchanged in bulk using the
shared memory. Further performance increases are
only possible using different hardware interfaces which
support the VME-bus block transfer mode.

1. Introduction

Our application is the compute and data-intensive task of real-time
data acquisition and processing of medical tomography data from next
generation 3D Positron Emission Tomography (PET) scanners cur-
rently being developed at TRIUMF [Rogers et al. 1989, 1990]. In PET
the patient is injected with a substance such as water or glucose, in
which the molecules have been altered to contain a positron emitting
tracer. This tracer travels in the body as part of the injected substance
and accumulates in the organs where the substance is used. As each
atom of tracer decays, a positron is emitted which travels a short dis-
tance and then collides with an electron. Both the electron and the
positron are annihilated. The energy from this annihilation is given off
in the form of two gamma rays, which travel in directions 180 degrees
from one another. The annihilation producing the gamma rays is called
an event. A detected event is one for which both gamma rays from an
annihilation are detected on the ring of Tomograph detectors. The de-
tected event is encoded by the detector hardware providing the infor-
mation to the data acquisition system which is necessary for image re-
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construction and analysis. These raw event records are used to
reconstruct a 3-dimensional image of the tÍacer activity within the ob-
ject being imaged. The manner in which these raw event records are
manipulated depends on the specific reconstruction algorithm which is
being used. Since the data acquisition is a necessary first part of image
reconstruction, it is desirable to process the events in real-time, as it is
desired to display the image soon after the data is collected. This is
useful for checking that the object being imaged has been placed in the
correct position. Meeting this real-time processing goal requires
around 20 MFlops performance from the data acquisition system

[Murray 19901, and an estimated 400 MFlops for real-time 3D image
reconstruction.2

One approach is to have a single processor with the desired perfor-
mance, but it does not scale and is expensive. Our approach is to use

many smaller processors working together in parallel [Wilkinson et al.
1988; Murray 1990; Atkins et al. 19911. This maintains the flexibility
of software control and scalability while at the same time being rea-
sonably priced. We decided to use a network of transputers as a paral-
lel engine.

As our application is both compute and communication intensive
our goal is to maximise the SUN-transputer data exchange rate. For
portability we prefer to use off-the-shelf hardware. Problems arise be-
cause of the complex interrelationships between hardware and soft-
ware, and the difficulty in writing efficient code for hardware/software
interfaces. This paper addresses some of the issues and outlines our so-
lutions, extending work reported in lAtkins & Chen 1991] with results
for data transfers using VME-memory.

I .I Transputer Overview

The transputer T800 is a RISC processor which was introduced by IN-
MOS with 4 kilobytes of on-chip memory, 4 high speed data links,
and a memory interface lStein 1988], thus allowing parallel processing
networks to be built easily and economically. The transputer allows
communication and computation to occur simultaneously and

rBoth the event size and processing algorithm will vary as the gamma ray detection hardware
continues to improve, so the exact rates quoted are understood to be adopted only for the pur-
pose of making this study concrete.

Experiences: Overcoming Data Transfer Bottlenecks 161



autonomously. There is no memory shared between any two nodes
in a transputer network, thus the autonomous communication improves
the efficiency of the message passing model used by transputer net-
works. As each transputer has four data links with which to pass data
to other nodes alarge number of topologies can be easily built. This
connection flexibility gives the system designer many topology choices
for exploiting the parallelism of a problem.

I .2 Architecture Envíronments

I .2.1 Introduction

The medical images are displayed on a SUN workstation running the
UNIX operating system, which acts as a host to a network of transput-
ers which supplement the SUN's computing horsepower. The SUN's
VME-bus is used to connect the SUN to the transputer network.

The software used for the investigations described here is devel-
oped using Logical Systems C compiler [Logical 1988]. This C system
possesses a library which allows the concurrency features of the trans-
puter to be easily exploited. The features of this library are similar to
those provided by the OCCAM language originally designed for the
transputers IINMOS 1987].

One hardware configuration used for the tests is based on CSA
boards ICSA 1989] connected to the VME-bus of either a SUN3/110,
a SUN4/110 or a SUN4/260 host through serial links, shown in Fig-
ure 1 and detailed in Section I.2.2. The other uses Parsytech boards

[Parsytech 1988] and some VME-shared memory connected to a
SUN4/370, shown in Figure 2 and detailed in Section 1.2.3.

I .2.2 Use of Serial Link Interfoces

Figure 1 shows the use of serial link interfaces, where CSA transput-
ers are connected to a SUN3 or SUN4's VME-bus. The hardware con-
sists of a CSA Part.8 board with 4 32-bit link adapters connected to
the SUN's VME bus, and also connected via transputer hard links
(which are bi-directional R5422 interfaced links where every byte of
data sent on a link is acknowledged on the input of the same link) to a
CSA Part.6 board with 4 T800 transputers [CSA 1988]. Many more
transputers are connected in a network to the transputers on the Part.6
boards (not shown).

162 M. Stella Atkins, Yan Chen and Florina Olariu



SUN 3 or SUN 4

SUN's VME-bus

CSA Pan.6 Boa¡d

Figure 1: Architecture of the CSA System.

The SUN must treat each link as a synchronous serial link which
can be accessed through blocking i/o invocations, similar to the trans-

puter's blocking ChanlnlChanOut invocations. These synchronous i/o
invocations have all the advantages of OCCAM's synchronisation

methods [Barrett & Suffrin 1991] which are almost indispensable for
programming parallel MIMD architectures.

One disadvantage of this architecture is that the transputer link in-
terfaces may be slower than the host-VME interfaces, and at best, on

any single link, data can only be transferred in one direction at the

transputer hard link speed of 20 Mbps, or 1.7 MBytes/second of actual

data. We therefore expect that the transputer hard link bandwidth will
limit the Sun-transputer performance to 1.7 MBytes/second. Another
disadvantage relates to the implementation of the synchronous i/o in-
vocations on the SUN/UNIX host; the invoking process on the SUN
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SUN's VME-bus

Figure 2: Architecture of the Parsytech System.

must wait if data is not available on a ReadLink invocation, or if the
data has not been absorbed by the transputer on aWriteLink invoca-
tion.

Serial link interfaces may either be "dumb" (so the interface must
be polled by the host for the "transfer possible" condition which is
waiting for data on a read or waiting for the data to be removed on a
write), or "interrupting" (so require a process scheduler to block the
invoking process until the desired condition is true). Some VME/
transputer interfaces can only be polled, while others have interrupt
capabilities. Polling in a busy-wait loop has the advantage that the
invoking process on the UNIX host will be immediately able to
continue, giving optimal performance for the transfer rate across the
device interface. But the host's cpu will be busy-waiting on the device
leading to intolerable performance degradation for other work on a
time-shared system. The solution is to increase the polling interval,
but this reduces the performance of the interface, because of the delay
in recognizing that the interface "transfer possible" condition is true
and the overhead in process context switching (detailed in [Ousterhout
1eeOl).

Interrupting interfaces solve the busy-wait problem, but they are
mcre complex, and the host kernel must be reconfigured to provide
access to the interrupt handlers. Furthermore, as for periodic polling,
process context switching will degrade the performance.

û
l-"r* I
| "r'oo Iþt ryÆEE
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1.2.3 Use of Shared VME-Memory

Our other system, shown in Figure 2, transfers data between a SUN4/
370 and the transputers through two kinds of shared VME-memory:
dual-ported memory on a transputer board, and a VME memory mod-
ule. The Parsytech BBK-V2 board contains a 20MHz T800 transputer
and 2MBytes of dual-ported memory with memory cycle time of 300
nsecs. One of the T800's unbuffered serial links is connected (through
a C0I2link adaptor) to the VME-bus. This is a "dumb" interface
which must be polled by the SUN host, and is used for synchronisation
purposes only, as described in Section 4.2, The T800's 3 other links
are serially buffered according to the R5422 protocol and may be con-
nected to a transputer network on VMTM boards. A separate l6MByte
VME-memory board with memory cycle time of 250 nsecs can be
accessed by both the SUN and the transputer on the BBK-V2. The
performance of such data transfers is not limited by the transputer
link transfer rates (to I.7 MByte/sec).

To access the VME-memory, the user-level process on the SUN
must map the VME-memory (either the dual-ported memory on the
transputer board or the separate VME-memory board) into its address
space. The SUN then accesses the VME-memory with simple assign-
ment statements such as:

*dst : *src

where dsr points to the VME memory, and src points to the SUN's
local memory.

The T800 transputer on the BBK board accesses the separate
VME-memory through an absolute address located in a register, de-
tails of which are given in Section 4.3. However, using these methods
there is no memory protection so programming the data transfers is
very hazardous; any VME-memory can be corrupted.

In Section 2 we describe and measure the performance of un-
buffered and buffered serial link interfaces which must be polled from
the SUN host. Section 3 describes and gives the performance of a
buffered interrupting serial interface. We discuss the performance of
the shared VME-memory for data transfers and our solutions to the
synchronisation problem in Section 4. Section 5 presents our conclu-
sions.
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2. Use of Polled Transputer Links

for HostlTransputer Data Transfer

2.1 Introduction

Polling interfaces are divided into two kinds: unbuffered and buffered.
An unbuffered interface provides only one byte of data at a time over
the link, and a check for "transfer possible" must be made between

every byte. A buffered interface (such as is used for discs) allows a

whole buffer of data to be transferred at a time, so the overhead of
checking for the "transfer possible" condition may be amortized over a
larger transfer, thus reducing the overhead. Both types of interface are

available for transputers, and we examined the performance of them
both. The host user-level code and the transputer code are the same

for both kinds of interfaces, and are described below.

2.2 Host User-level Code

The user-level interface for a UNIX process to a transputer link for
polling is similar to the standard UNIX convention for referencing a

FIFO byte stream. The user accesses the link on the host through
invocations to special C-language i/o library routines: OpenLink,
WríteLink, ReadLink as shown in Figure 3. These routines must be

linked with the user's program to build a binary image, and they are

described in detail in the sections following.
This code is used in a test program to measure the transmission

rates between the SUN and the transputers. The test program consists

of a UNIX process on the SUN3 or SUN4 which reads/writes large
amounts of data to a transputer link in various size packets corre-
sponding to the variable cnt in Figure 3. The packet sizes increase by
powers of two, from 4 bytes/packet to 1 MByte/packet, where the
packet size is encoded in the first 4 bytes of the data. The process

then waits for an equal packet of data to be returned from the trans-
puter. Note that no disc transfers are involved, only memory-memory
transfers are made as the SUN memory is 4 or I MBytes, and the
transputer memory is 2 MBytes. The complete code for the test pro-
gram on the SUN is in Appendix A.
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/* user-level C-code on SUN host */
int chan,cnt,timeout,chars sent,chars rcvd:
char *buf;

cltsn = OpenLink(O); /* opens first available channel xl

chars sent = WriteLink(chan, buf, cnt, timeout);
ctwrs rcvd = ReudLink (chan, buf, cnt, timeout);

Figure 3: User-level access on a SUN to a transputer link.

The implementation of the user-level C-language i/o library rou-
tines differs for buffered and unbuffered interfaces, as shown in Sec-

tions 2.4 and 2.5.

2.3 Transputer Code

The corresponding transputer code to transfer data between the host

and itself is shown in Figure 4. The transputer repeatedly reads pack-

ets by decoding the first four bytes and then reading the remainder of
the packet in a single gulp. The transputer then reflects the packet
back to the SUN host.

The transputer i/o library routines Chanln and ChanOut are linked
with this code to form a binary image which is downloaded then run
on the transputer.

2.4 Host's Unbuffered Polling Device Dríver

2.4.1 Software Details

The INMOS 8014 and the Parsytech VMTM transputers shown in
Figure 2 use an unbuffered byte-serial link between the VME host
(i.e. the SUN running UNIX) and the T800 nodes. The CSA Part.8
FIFO link shown in Figure I can also be treated as an unbuffered link
by treating the FIFO as if it had a capacity of just one byte. The orig-
inal software for the device interface of CSA's Part.8 board treats the
transputer links in this way, i.e. as unbuffered serial links.
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/* nrate.c (for transputers)
* The transputer receives a message on UNK 0 then sends it beck-
* The length of the message is encoded in the first 4 bytes.
x/

unsigned char buf[1024*1024]; lx need transputers with more than
I MByte mem. *l

main0

{

int i,length;

for (;;) [
C hanl n( LI N K0I N,buf ,4 ) ;
length = (int)buÍ[0];
length = (length<<B) + (int)buf[l] ;
length = (length<<B) + (int)buf[2];
Iength = (length<<8) + (int)buf[3];
if(length<4) break;

if(length>4) Chanln(UNK)lN,buf+4,length-4);
C han0 ut ( LI N K0 OUT,buf ,le n gt h) ;

)

Ì

Figure 4: Tiansputer code for Link Tiansfers.

A polling driver can be invoked by the user through calls to i/o li-
brary routines such as ReadLink and WriteLink. The code for the i/o
library routine, WriteLink, provided as the original software for
polling the device interface of CSA's Part.8 board is shown in Figure
5. The data is transferred through a special memory location associ-
ated with the link-i.e. the structure pointed atby lkb. This style of
busy-wait loop has minimum overhead, but the host cpu is 1007o occu-
pied. The code for ReadLink is similar.

2.4.2 Performance of Unbuffered Device Driver

The test program described in Section 2.I and detailed in Appendix A
was used to measure the performance of the link. All tests were run
while the machine was quiescent.

The throughput rates for the original unbuffered polling device
driver executing on a SUN3/110 host for the various packet sizes are
given in columns L and 2 of Tâble 1, and illustrated in Figure 6.
Column I is for the SUN code compiled without any optimizing
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/* C ilo library code linked with the user-level C-code on the SUN */

# include "link.h" /* decs. for status registers for each link */
l* Used by OpenLink, ReadLink etc. *l

struct link_st *lkb; /* link status and data register structure *f
/* initialised by a call of chan = OpenLink}*l

/*XX* * * * * ** *** * *** **X*** **X,** *X* * **** * * *****,****X,t< ***:tX*( *
* Procedure: WriteLink
* Descriptíon: Writes data to output FIFO
* Parameters: chan, buf, cnt, timeout
* ReturnValue: Number of characters sent
* * ** ***********xxx***** * * ***** *****************x****** **x/

int WriteLink( chan, buf, cnt, tímeout)
int chan:

char *buf;

unsigned int cnt, timeout;

{

int chars_sent = 0;
whíle (cnt-- ) {

/* spin till transfer possible */

/* implemented as: Towhile (LINK.OFull & I) ; *l
w hile ( trønsfer-not-possible ) ;

l* rnw able to transfer data */

/* write a byte to the register */
lkb->data_s[clnn].bt[ I ] = *bú+ + ;
chars_sent++;

] /* while */
return(chars_sent);

Figure 5: Original Unbuffered Polling Driver.

options, and column 2 is for the same code compiled with the
C-compiler's Level 2 optimizing option.

Although the optimizing compiler has improved the transfer rates
from 100,000 bytes/second to 163,000 bytes/second, it appears that
the SUN cpu-cycles are limiting the system throughput rather than the
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interface or link hardware, which we expected to perform near the

theoretical maximum of 1.8 MBytes/sec. We therefore experimented

with the device driver code on the SUN3, and made a few obvious

improvements to both the ReadLink and WriteLinft routines. The first
improvement adds a register variable data which is assigned to point
to the special memory location associated with the link structure. Thus

we changed the code of Figure 5 with the following:
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register u-chnr *data;

do;' : fu-char*) &(lkb - ) data-s [chan] .bt[ I ] );

*d;;;: xbuf t*;
The new code improved the SUN-3 performanceby 40Vo, from
163,000 bytes/sec to 229,000 bytes/sec.

A second change added a register variable to check for the
"transfer possible" condition thus in WriteLink:

register u-char *empty;

empty : LINK.OEmpty;

whüe (*empty) ; /* spin till transfer possible *l

This code change increased throughput to a maximum of 405,000
bytes/second. We were surprised that the optimizing compiler had not
detected this optimization, so we continued to "hand-tune" the code
with a further small change, to alter the ínt chars-sent to register int
chars-sent. This change increased the performance to a maximum of
435,000 bytes/second, which appears to be the limit for this byte-by-
byte processing on the SUN3. This last result (best (OPT) unbuffered)
is given in column 3 of Täble 1 and plotted in Figure 6. As a check on
the optimizing compiler we re-compiled this "best" code without the
optimize option and were only able to achieve a throughput of 181,500
bytes/second. Hence all subsequent tests were performed only on the
optimized code (OPT).

There is always a slight dip in performance on the SUN3 when the
packet size reaches 1 Megabyte. The SUN3i 110 does not have an in-
ternal cache so this dip cannot be attributed to the cache. To determine
why the dip occurs we executed the test program with a substitution of
code in the ReadLink and WriteLink routines so that access to the link
interface was replaced by access to a temporary register variable. This
test program also showed a similar dip in performance, indicating that
the architecture of the SUN3/110 causes the performance dip. Our
SUN3/110 has only 4 Megabytes of memory, and some paging may
occur when running the test programs on SUN OS 4.1.

Next we executed the test program on a SUN4/110 with SMBytes
of memory attached to the same transputer (a CSA Part.6 and Part.8).
Data is given in column 4 of Thble 1, and is plotted together with the
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data from column 3 of Tâble 1 for the SUN3 as the lowest two lines in
Figure 7. Although the faster SUN obtains slightly higher transfer rates

with the same hardware, the increase is not linear with the MIPs rat-
ings possibly because RISC architectures have allowed cpu speed to
scale much faster than memory bandwidth, with the result that mem-
ory-intensive benchmarks do not receive the full benefit of faster cpu's

[Ousterhout 1990].
So the combination of these three changes more than doubles the

transfer rate between a SUN3/110 and a single transputer: from
163,000 to 435,000 bytes/sec. This is still very much less than is pos-

sible over a transputer-transputer link (1.7 MBytes/sec). CSA designed

a buffered FIFO VME-interface (the Part.8) to improve the transfer
rates.

sUN{/1¡0 best IOPTI bufferéd po¡IIng +
SUN3/110 best (OPT) buffered po¡I1û9 +

SUN4/tl0 best (OPTI unbuffeled po¡liû9 €-
SUI¡3,/lI0 best (OPTI unbuftcred polllog .¡..

t'P
'P,t

.t
'3-..^"'"

l0 100 ¡000 10000 100000
Påcket Sj.ze (bytes)

Figure 7: Unbuffered and Buffered Polling Drivers.

2.5 Host's Buffered Polling Device Driver

2.5.1 Software Details

The SUN/transputer buffered link hardware is shown in Figure 1. The
size of the packets transferred can be increased up to the maximum
buffer size (FIFO-SIZE). The buffered device has extra status registers
detailed in Appendix A to allow block transfers. The WriteLink rou-
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tine in the driver can test whether the FIFO is empty (LINK.OEmpty
is TRUE), and if so, it can write the full FIFO-SIZE of data to the
data register, without extra checking. Similarly, the ReadLink routine
can check if the FIFO is full (LINK.IFull is TRUE) and if so, it can

read the whole FIFO-SIZE of characters from the data register with-
out further checking. We wrote new library routines ReadLink and
WriteLink which divided large packets of data into complete
FIFO-SIZE batches and transferred a complete FIFO-SIZE of data at

a time, except for the last packet. Code implementing these semantics
lor WriteLinfr is shown in Figure 8.

2.5.2 Perþrmance of Buffered Polling Device Driver

The same test program described in Section 2.1 was run, using the
new library to transmit a FIFO-full of data at a time whenever possi-

ble. On the SUN3 the data is transferred much faster this way, peaking
at 773,800 bytes/second as shown in column 1 of Table 2. The data
show that performance levels off for packets approaching the FIFO
size of 1024, so we experimented to see if the FIFO size of 1024 was

a limitation to throughput, by adding checks to see if the buffer was

half full, and transferring a half-buffer at a time instead of a full
buffer. The results are shown in column 2 of Thble 2, and are plotted
in Figure 7 as best (OPT) buffered polling. Both of these show the
benefits of testing the FIFO once for several FIFO accesses. The rea-
sons are explained below.

Suppose FIFO accessing time, access, and FIFO testing time, test,
are the same, (say, writing one byte to the FIFO takes one microsec,
and testing the FIFO full or not takes one microsec). Then the
throughput usage for "1 test for every access" (unbuffered mode) is

(access) I (access*test) : 5gUo

The throughput usage for "1 test every 512 accesses" mode is

(St?*access) I (St?*accesst test) : 99.8Vo

The throughput usage for "l test for every 1024 accesses" mode is

(1024*access) I (I024*acce ss I test) : 99.97o.

So for these relative access and test times, a FIFO size of even 64

bytes would provide a good throughput (99.5Vo) for packets larger
than the FIFO size. For any transfer less than the FIFO size (i.e. the
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frq.****{.************:t***¡ß{.!t{Gtt:ß*,ß:k**:t{.*!ß*!&!ß**{a¡t **{.*{.
* Procedu¡e: \ilritelink
* Description: Writes data to output FIF0
* Par¿meÍers: chan, buf, cr¡t, Timeout
* Re[urn Value: Number of characters sent
* * ******** * *.*******1(*****¡*:*:t !ß:t:N.*****¡ß***{.¡ß!t***!*****/

int V/ritelink(chan, buf, cnt, Timeout)

int chan;

register u,chr *buf;

register int ent;

unsigned int Timeouü

{

register int ncnt;

register int chars_sent = 0, tmp=O;

register u_char *daø,*empty;

ncnl = Cnt;

dara = &(lkb->dara_slchanl.brlll);
empty = &(LINK.OEmP[Y);
while (ncnt >= FIFO_SIZE ) l* send a FIFO-full if poss. *l

{
tmp += FIFO SIZE;

f spin till LII{K is empty, then fill it in one gulp */
while ((*empty & 1) == 0) i
for (; chars_sent < tmp; chars_sent++)

*dat¿ = *buf++;

ncnt -= FIFO SIZE;

]
cha¡s_sent += ncnt;

Ê scnd the remaining byfes (< FIFO_SIZE of them) *l
Ê when the FIFO is empty */
while (ncn>0 && (*empty & 1) - 6¡'
while (ncnt-- > 0)

*dâta = *buF¡+;

return(chars_sent);

Figure 8: Buffered Polling Driver.
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Packet Size

Oytes)

SuN3/l l0 GrFO-full)
(byæVsec)

SLJN3/! l0 (half FIFO-full)

OvæVsec¡

StlN4/ll0 besr (OI'Ð
(bVtaVsec¡

4 133335 133333 2s8065

t6 2ffi71 301850 43U33

64 400002 ?999æ 501956

256 474crÉ, 48542t 515250

t024 519760 540465 559216

4ú6 633527 708465 779587

16384 733198 765y.7 859435

65s36 768tO7 779536 886715

262144 773811 7824.75 888593

104E57ó 703709 757057 875608

Table 2: SUN-transputer throughput for Buffered Polling Device
Driver

last transfer of a large packet), the test-every-access mode is required.
kansferring a half-buffer at a time speeds up the transfer rates for
large packet sizes, because the waiting time for the opposite end is re-
duced-the transfer can start after only half the FIFO is filled.

We still do not know where the throughput bottleneck is: are the
SUN3 cpu cycles still limiting the throughput (to 782,5N bytes/sec),
or is the link hardware saturated? V/e therefore ran the same test pro-
grams with the buffered driver on a SUN4/110. The results are in
column 3 of Table 2 and are plotted in Figure 7. The SUN4/110 trans-
fer rates peaked at 888,600 bytes/sec, a little faster than the SUN3.
These data indicate that the SUN's cpu cycles are not limiting the
transfer rate; other factors must now be the bottleneck in achieving
still higher throughput. It would be helpful to use block transfers over
the VME-bus, but the hardware interfaces do not permit this.

3. Use of Interrupt-Driven Links for
Ho st I Transputer Data Transfer

3.1 Host User-level Coae

The CSA Part.8 is capable of interrupting the SUN host, and to over-
come the high cpu usage associated with busy-waiting in the polling
driver on the SUN, we wrote an interrupt device driver for the Part.8.
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For SUN/UNIX interrupt-driven i/o devices, the user-level interface on
the host computer uses the standard UNIX i/o routines readlwrite.
The device is an interrupt-driven buffered serial link (a channel)
configured with the special name "ldevltlrO" for the read end and
"ldevltlw0" for the write end. Note that links beyond the first are
called "ldevltltl..n", o'ldev/tlwl..n". The user first opens the device
for reading and writing, then accesses it using C-code as in Figure 9.
Only the standard C i/o library needs to be linked with the user's
code, as the device interface driver is configured with the UNIX
kernel at boot time.

char chan r[20], chan_w[2}];
int chars_sent, chars_rcvd, length, tr,tw;
char xbuf;

sprintf( chøn r," I dev I tlr}" ) ;
sprintf( chan w," /devl tlwT" ) ;

tr - open(chan_r,O _RDONLY ) ;
tw = open( c lal-w,O 

-WRON 
LY ) ;

c hars _sent = write( rw,buf,le ngth) ;
chars _rcvd = read (tr,buf,length) ;

Figure 9: User-level code with an interrupt handler.

3.2 Transputer Code

The transputer code is the same as that for the polling driver, given in
Figure 4.

3.3 Host's Intenupt-Driven Device Driver

3.3.1 Software Details

The interrupt hardware provides several interrupt conditions such as

"interrupt on empty" and "interrupt on half full." The device driver,
an interrupt handler, is complex and contains low-level device-depen-
dent code, written according to the specifications in the SUN docu-

mentation ISUN 1990]. As we designed the interrupt handler after our
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experiments with the polling driver, we were able to implement the

most efficient version of the polling code for the device driver, based

on code which transmits up to half a FIFO-full of data at a time.

3.4 Perþrmance of the Interrupt Driver

Performance of the interrupt driver for the suN3 and the suN4 is

given in columns I and2 of Table 3. column 1 is for a suN3/110

host, and column 2 is for a SUN4/110 host to the same transputers

confrgured as shown in Figure 1. Figure 10 shows a comparison of the

polling and interrupt performance on the SUN3/110.

Packet Size

(bytes)

suN3/ll0 (2 MIPS)

Oytesisec)

sllN4/l10 (7.5 MIPS)
(bytes/sec)

4 2ßM 6055

16 10973 23356

& 40274 8r2r4

256 121550 zt3/.lt

1024 357548 547888

4096 609601 775244

16384 7M877 806550

65536 747593 829684

262tM 751612 u4723

1048576 729392 843024

Täble 3: SUN-transputer throughput for Interrupt Device Driver

As expected, the polling driver performs better than the interrupt

driver over all packet sizes, although for packet sizes of 4096 or

larger, the interrupt-driven performance approaches within 977o of the

polling driver. This result shows the effects of interrupt latency and

the high context switching overhead. For small packet sizes, the inter-

rupt driver's performance is poor because of frequent context switch-

ing which has a cost of 2.4 ms on a SUN3 and I ms for a SUN4

[Ousterhout 1990]. For larger packets this overhead is spread over more

data, leading to the increased data rates observed. As expected, the
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Figure l0: Sun-transputer throughput for Interrupt
and Buffered Polling Drivers.

SUN4 performs a little better than the SUN3, as shown in Figure ll
where the data in Thble 3 is plotted. These results all show that the se-
rial link transfer rates have reached their peak and no further gains can
be expected without a DMA interface.

SUNa/¡10 b€sr
SUN3/110 bêst

(oPTl buffèrçd lnrGsrupriDg +
(OPÎ¡ buffcred lnrlrrupÈltrg +.

' -*-**+-ôst

/
1

,

/,
1 r0 'r00 

"åo'T "" ì3133"' 
rooo00 ¡'+06 rcro?

Figure 1l: Comparison of SUN3 and SUN4 Intemrpt Handlers.
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4. Use of Shared MemorY for
Ho st I Transput er D ata Transfer

We explored different ways of using a shared memory interface

(configured as in Figure 2) for data exchange between the host and the

transputer network, in order to maximize the SUN/transputer data

transfer rates.

There are two distinct types of memory that both the Sun and the

transputer T800 located on the BBIÇV2 can access: the 2 MByte dual-

ported RAM situated on the BBK-V2 and any other memory extension

board installed in the free VME address space of the system (in this

particular case a l6MByte module).

As stated in Section I.2.3, using shared memory to transfer data

between the SUN and the transputers suffers from the disadvantage

that there is no builfin security-users can easily corrupt the memory

in the VME-address space. Also the synchronisation has to be pro-

grammed explicitly. However, we felt that this was still the best way

to increase the SUN/transputer transfer rate.

Several C-language constructs were used in the SUN and in the

transputer to move single words and blocks of data from one memory

to another and the transfer rates were measured.

4.1 Host User-level Code

The host can perform only 4-byte accesses to the VME memory. We

timed the READ and WRITE access time and the transfer time be-

tween the SUN and the two types of memory used (dual-ported RAM
on the BBK-V2 and a l6MByte shared memory module).

The memory zones are allocated from the SUN using standard

C-language storage allocation functions. The user-level process on

the SUN uses memory mapping to access the shared VME-memory,
which is split into two contiguous zones described by the ram struc-

ture in Figure 12. The user first opens the device for reading and writ-
ing, then accesses it using C-code as in Figure 12.

Synchronization of the transfer is achieved by using mailbox loca-

tions situated in the dual-ported memory of the BBK-V2 so the trans-

puter doesn't poll over the VME bus. The host however has to poll
across VME both on a shared memory location and on the link-
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l* wer-level C-code on SUN host *l
l* shows copying a single integer from tlu SUN *l
l* to a randomVME ntcrøry location *l
#include <syslmman.h>

typedef strrct í
unsigned char dram[0r200000]; l* 2 MByte dual-ported mem. *l

/* on transputer board */
unsigned char wne[0x1000000]; l* 16 MByte VME-mennry */

} RAM;
RAM *ram;

register int local=54321 ' l* an int. ¿n SUN's local mennry */
r e gis te r int * b ufp t r _dr am,* b ufp tr _vme ;

l* Ugly code to ìnit. the rnemory map *l
l* wing mmap args specified in SUN maruml *l
fd = open ("/devlvme32d32",O RDWR)
sadr = (caddr_t) 0;
len = 0x1200000; /* total menory space */
/* physical address of the BBK-V2 board */
offset = (off_00x80eØ000 ;
¡a¡n=(RAM *) runap(sadr,len, PROT READ PROT_WRITE,

M AP _S H ARE D, fd, offse t) ;

bufptr_dram - (register int)&(ram->dramt0l); l* dual-ported memory */
bufptr_vme = (register int)&(ram->vme[0]); /* VMV-memory */

l* data is movedfrom local SUN memory to VMÛ-memory */
*bufptr_vme 

= local;

Figure 12: Userlevel code for transfers to VME-memory.

adaptor dedicated to the CIO server (CIO), which is a UNIX process

always present on the host to receive I/O requests (status,results,

errors) from the transputer on a link-adaptor shown in Figure 2.

There are two different situations: when the transfer is executed by
the SUN's cpu and when the transfer is executed by the transputer.

l. The activity on the VME bus and on the transputer link is
shown in Figure 13, for the case in which the SUN executes the
transfer and the transputer measures the time. In the host the
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Figure 13: SUN to Dual-ported Memory Tiansfer
Synchronisation.

link-server(ClO) polls in the background. The Tþansfer Process,

started in the SUN after the transputer receives its bootstrap

code, sets a memory TS:"Tlansfer Started" location which

signals the beginning of the transfer to the transputer. When this
message is received the transputer starts to time the transfer and

also polls the TC:"Tþansfer Completed" on-board memory
location to see if the SUN has finished transferring the data.

V/hen the "Thansfer Completed" message is received, the timer
is stopped and the results are sent on the link to the SUN via

the link-server(ClO).
Figure 14 reflects the case of the transfer being executed by
the transputer. After downloading the code, the SUN waits

for the transfer to start by polling across the VME bus the

TS:"Thansfer Started" condition. Once the location "Tiansfer

Started" is set by the transputer, the SUN starts timing and

polling over the VME bus into the dual-ported memory for the

TC:"Tlansfer Completed" condition. Although polling on the
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Figure 14: Dual-ported Memory to SUN Tiansfer
Synchronisation.

VME bus is undesirable, it is the only way to achieve synchro-
nization in this case. The CIO is available for debugging
purposes.

4.2 Transputer Code

The same tests (i.e. reading and writing to the dual-ported memory
and to the shared VME memory) were performed by the BBK-V2
module. The random  -byte access rates (presented in Section 4.4)
are very small compared to the SUN's access rates. Therefore we tried
to find a way to improve them, by performing single instruction block
transfers between the transputer memory and the VME shared mem-
ory, as shown in Figure 15. We used the transputer C-library bcopy
for copying a memory region from one base location to another.

The assembler code for bcopy is presented in Figure 16. The trans-
puter assembler instruction move is used by bcopy. The f,rst three ldl
(load local) instructions load the operands for the move instruction into
registers from the storage area for local variables of which the first six-
teen locations can be accessed using a single byte instruction. The
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l* Transputer C-code to copy a block using bcopy *l
#include<string.l>
l* hardware addressfor Address Register R3 *l
#define R3 _addr 0x800ffiN0
l* physical address of shared VME RAM *l
#dcttne vne-ratn_start 0x81000N0

register ínt *src-dram,*dst dram; l* source and dest. pointers in DRAM*I
regßter int *src_vtne,*dst-vme; l* pointers in shared VME RAM*I
int síze; l* size of the arrays in words *l

R3¡tr -- (int *)R3_addr; l* R3 ís initialized *l
* R3 lttr = vm¿ Jam_start ;

src_dram = (register int *)calloc(size,sizeof(int)); l* ørrays in DRAM *l
dst _dr arn = (r e gi ste r int * 

) c allo c( size,sizeof( int ) ) ;
src_vne = (register ínt *)(vme_ram_start); l* sharedVME RAM *l
dst_wne = (register int *)(vmc_ram_start + size*sizeof(int));

bcopy( src _dram, dst _vme, size* sizeof(int)) ;

Figure 15: îiansputer code for block transfers to VME memory.

#includecstring.l>
void *bcopy(src, dst, size)

const void *src;

void *dst:

size_t size;

{

ldt I
ldl 2

tdt 3

move

tdt 2

)

Figure 16: Source code for bcopy.

;src
;dst

;size

;dst
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transfer is performedby move in 2*w*8 processor cycles (T800),
where w is the size of the block to be copied, in bytes. Each

lnad-local instruction takes 2 processor cycles. The last load-local
returns the bcopy function value, a pointer equal to the start address

of the destination zone.
With the start address of the BBK-V2 board selected to be in the

VME A32lD32 range, and the access mode set to 32BA (32 Bit
Access), the on-board RAM is followed by an extension memory
zone up to 512 MBytes. VME memory extension modules can have
a variable base address anywhere in this space. The T800 transputer
on the BBK-V2 can dynamically select different modules by setting the
address register (R3).

The transputer code is shown in Figure 15. The arrays used for
transfer situated in the transputer DRAM have been allocated from the
heap segment using standard C storage allocation functions. Arrays in
the shared VME RAM are accessed by an appropriate value in address
register R3.

4.3 Perþrmance of transfers using
VME-memory

We refer to the separate memory extension board as shared VME
RAM and to the BBK-V2 on-board memory as dual-ported RAM.
Table 4 shows measured 4-byte transfer rates between the SUN4,
the BBICV2 transputer and the VME-memory.

Code

Style

SUN-4 to/from

sha¡ed

VME RÁM
(bytes/se¡)

SUN-4 tolfrom

dual-ported

RAM
(byæs/sec)

BBK-V2 trans,

tolfrom sha¡ed

VME RAM

þytes/sec)

*dst vme++=local const 4,474,W0 3.735.000 702,2N

*ds! local=*s¡c vme++ 3,907,000 3,730,000 60ó,700

*dst vme+t-=*src local++ 3,231,000 2,813,000 520,800

*dst local++=*src vme# 2853,000 2;t95,m 532,600

Table 4: SUN-transputer throughput for 4-byte Tiansfers to the
VME-memory
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The pointers indexed "-vme" refer to the memory space

involved. Thus, the code styles correspond to those presented in

Figure 17.

*dst_vme++ = local_const: l* WRITE access to VME memory xl

*dst-local = *src-vme++; f nE¡O access to VME memory */

*dst-vme++ = *src-local++; l* 6UN4,BBK-V2) to VME memory *l
*dst-local++ = *src-vmß++; l* VME mennry to (SUN-4ßBK-V2) *l

Figure 17: Source code for word by word transfers'

Rows 1 and 2 of Table 4 show that the SUN and the transputer can

write data into the vME-memory board faster than they can read the

data back out, in part because of the difference between the READ

and the WRITE access time of the memory circuits (for example, in

the case of the shared VME memory, the manufacturer's specified

READ access time is 190 ns and the WRITE access time is 50 ns).

Columns ! and 2 of the first row contain transfer data between the

SUN4 and VME-memory using a constant value to be written into

the vME-memofy, coded as shown in Figure 17. Comparing with

row 3 shows that the software overhead in the suN4 to update the

destination address penalises the performance by 25Vo, as throughputs

of up to 4.5 MBytes/sec can be achieved if the suN merely writes

constants into the VME-memory. However, the more realistic situa-

tion demands some kind of loop control overhead whereby both

source and destination addresses are incremented for each 4-byte

transfer.
The 32-bit wide data rates between the suN and the vME-mem-

ory are about 4 times the rates observed over the byte-wide serial link

described in Section 3, showing that in the SUN the VME-bus access

mode is the bottleneck.
The performance guaranteed by the manufacturers for the two

memory modules can account for the results in column 1 and 2 of

Thble 4; as the access rates to the dual-ported RAM (300 ns cycle time)

are lower than those to the shared VME RAM (250 ns cycle time).

The random 4-byte access rates from the transputer to the shared

VME RAM (column 3) are very slow compared to the other transfer

rates. The relatively low data rates for the BBK transputer transfers

also show that pointer manipulation in the transputer has a relatively

Experiences: Overcoming Data Transfer Bottlenecks 185



high overhead. Buffering the data in the dual-ported RAM and using
block transfers to the shared RAM proved to be more efficient, as
shown in Tâble 5.

Table 5 shows the measured rates for the BBK-V2 to/from the
shared VME-memory module transfers using the bcopy C-library
function for different size blocks of data.

The transfer rate of 446,000 bytes/sec for a package size of 4
bytes is I4.3Vo slower than the rate of 520,080 bytes/sec in the case
of using the simple addressing mode (presented in Table 4, column 3,
row 3). These results discourage the use of the bcopy function for
small block sizes ((16 bytes). Above packet sizes of 256 KBytes, the
performance exceeds that for the SUN, because of the loop overhead
in the SUN's word by word transfers.

Packet

Size

(bytes)

Dual-poræd

RAM to shúed

VME RAM
(byte.s/sec)

Sha¡ed

VME RAM to

dual-ported RAM
(byæs/sec)

4 446,000 ¿146,000

l6 1,250,000 1,315.000

u 2.500.000 2,325,W

256 3,225,m 2,877,n

t024 3,455,000 3.053.000

û96 3,522,W 3,106,000

16384 3,542,000 3.12r.000

6s536 3,548.000 3,129,000

262144 3,548,000 3,130,000

Thble 5: Thansputer-Memory Throughput
for Variable Size Tiansfers using bcopy

One disturbing feature is that if there is any other traffic on the
VME-bus, all these rates drop off considerably so the data given are
for a quiescent system with only one user. For the data acquired in a
system with other users active, relative to the single-user measure-
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ments, the variance is 5OVo, too high an error for a correct interpreta-

tion. For different trials on the single-user standalone system the vari-

aîce was 27o.

5. Summary

By carefully timing the data transfer rates between various SUN hosts

and a single transputer, we have shown that several factors affect the

performance.

1. The code must be well-written so as to make best use of

pointers in registers' Poorþ written code can degrade

performance bY almost 500Vo.

2. The best possible performance from a single byte (unbuffered)

user-level interface is limited by the SUN cpu speed, as there is

a high operating system overhead, to around 435,000

bytei/second on a SUN3/110 and 456,000 bytes/second on a

suN4/110.
3. Block transfers through a FIFO hardware buffer can almost

double the performance-to 783,000 bytes/second on a

SUN3/110 and to 888,500 bytes/second on a SUN4/110'

4. Interrupt-driven code can approach within 97Vo of the polling

driven interface, with the advantage of reduced cpu usage'

5. 32-bit wide data transfers using shared memory on the

vME-bus improves throughput by four times over the byte-wide

serial links, showing that the VME-bus access mode is a

performance bottleneck.
6. Further increases in performan"" ár" only possible if the

suN/vME interface allows vME "block transfer" mode; i.e.

more powerful suNs will not increase performance further.
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Appendix A:
Host Code for the Test Program

/tß
* read_write tester for the SLIN/transputer interface
* To be used with nrate on the transputers

,ß/

#ineludecstdio.h> /* Standard include
file */

#include<etype.h> /* Character
classification stuff */

#include<string. h> /x String functions */
#inc lude<sys /types. h>
#inc ludecsys / t imeb . h>
#include<sys /tirne. h>
#include ulink. hu

#ifdef sun
#include <fcntl.h>
#include<sys/fi1e. h>
#include<sys/signal . h>
#endif

#define DEF DEC TOUT 10OOL ,/* 1 sec load decode
timeout * default */

#define MAX DEC TOUT 2O000L /* 20 secs maximum decode
timeout */

#def ine MIN DEC TOUT 500L />F .5 secs rnininum decode
tineout */

#define DEF LVL TOUT 500L /* .5 sec/Ievel tirneout
default */

#define MAX_LVL_TOUT 1000L /* 1 secs/Ievel naximum
tineout */

#define MIN LVL TOUT 25L /'t .025 secs/leve1 mininun
tineout x/

#define MAX LINKS 4 /* Max # of
links/processor *,/

#define MAx NODES 1000 /* Maximum user node # */

#define MAX PACKET 255 /* Longest packet
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#define FROM-SYSTEM-RESET 0xo1 /+ Boot is from
system chain */

#define FROM-SLJBSYS-RESET 0x02 /* Boot is from
sub-systen chain */

#define MAX_LENGTH LO24*LO24
extern int chan;
int Linkld : o; /* Linkld from "Openl.ír:k' */

* read_write. c
* read and write transputer channels
x usage:
* read_write íO/1"/2/31 tnsg-lengthl [trials]
!Ê/

u_char buf [MAX_LENGTH] ;

nain (argc, argv)
int argc;
char *argvll;
{

register int i;
int length, trials, j, num-chan, child;
char chan_r [20] ;

char chan_w[20];
struct tirnevaJ. tP1, tP2;
struct timezone tzL,t'22;
Iong s-start, us-start, s-stop, us-stop,

s_time, us-time;
float t;
unsigned int cnt, ncnt, Tineout;

if (argÞl) {
num_chan: atoi (argv[1] );

Ì
else {

num_chan: 1;
)
if (argÞ2) {

length : atoi (argv[2] );
if (length > MAX-IENGTI{) {

fprintf (stderr,
"rnsg too long, max4odo,
MAX_LENGTTI);

exit (0) ;

]
Ì
else

length : 7O24i 191



if (argc>3) {
trials : atoi (argvt3l );
if (trials<l) {

fprintf (stderr, "error :

trials < 00) ; exit (O) ;

Ì
Ì
else

trials : 1000i
Linkld : Openlink(O); /* Open specified link

channel */
if (Linkld<l) {

fprintf (stderr, "Unable to open linkO);
exit (0) ;

]
for (length : 4; length< 1O50000; length : length*2)

{
trials = 2*Io48576llength;
if (trials > 1000)

trials : 1000;
buf [3] = (u_char) (Iength & 0xff) ;

buf [2] : (u_char)
buf [1] : (u_char)
buf [0] : (u_char)

(length>>8) & 0xff);
(length>>16) & Oxff);
(length>>24) & 0xff);

gettimeofday(&tp1, &tzt) ;
s_start : tp1. tv_sec;
us_start : tp1. tv_usec;
for (i:O; i<trials; i++) {

writelink(Linkld, buf, length,
MAX_DEC_TOUT);
Readlink(LinkId, buf, length,
IvÍAX_DEC_TOUT) ;

Ì
gettineofday(&tp2, &tzZ) ;

s_stop : tp2. tv_sec;
us-stoP: tP2. tv-usee;
s_time: (us_stop<us_start) ? (s_stop - s_start-1)

: (s_stop-s_start);
us_time: (us_stopcus_start)

? (1000000 + us_stop - us_start)

| - (f 10at) r"_ti,"ul"ì_ìÏ3:-;, Tì¡ìliil', ius_timer ;printf (u%%do, (int) ( (float) (lengthxtrials*2) /t));
Ì

)
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