
Architecture and Implementation

R.

A.
P.

of Guide, an Object-Oriented
Distributed System

Balter, J. Bernadat, D. Decouchant, A. Duda,

Freyssinet, S. Krakowiak, M. Meysembourg,

Le Dot, H. Nguyen Van, E. Paire, M. Riveill,

C. Roisin, X. Rousset de Pina,

R. Scioville, G. Vandôme

Unité Mixte Bull-IMAG

ABSTRACT: This paper describes the architecture
and implementation of an object-oriented distributed
operating system. The system is called Guide (Grenoble
Universities Integrated Distributed Environment). Its
main features are the following: an object model is
embodied in a language including the notions of type
and class with single inheritance; execution units
(obs) are multi-threaded virtual machines that may
dynamically diffr.rse to several nodes; objects are
dynamically linked to jobs, and may be shared between
jobs; the system provides a distributed object memory
for the storage of persistent objects; the system
supports synchronized objects and transactions. The
paper describes the general organization of the system,
execution structures, object memory and transactions.
The first implementation on top of UNIX is described.
Some performance figures and a first qualitative
evaluation are given.

@ Computing Systems, Vol. 4 . No. 1 . Winter 1991 3t

1. Introduction

The motivation of project Guide is to explore scientific and technical
issues related to the support of large-scale applications distributed on a
network of possibly heterogeneous machines. The goal of the project
is to design and implement an experimental system which provides an

environment for the development and operation of distributed applica-
tions. This paper describes the architecture and the implementation of
the system.

Guide was started in 1986 as a joint research project of Bull Re-
search Center and Laboratoire de Génie Informatique, IMAG (Univer-
sities of Grenoble). Guide is also a component of Comandos (Con-
struction and Management of Distributed Open Systems) lAlves
Marques et al. 19881, a project supported by the Commission of Eu-
ropean Communities under the ESPRIT Program (projects 834 and

2071). V/hile the overall design principles and the global object-
oriented architecture are common to Comandos and Guide, the lan-
guage and the system implementation described here are specific to
Guide.

1.1 Requirements and General Orientations

Typical examples of the application classes that we plan to support are

software development environments and advanced document process-

ing systems. These applications are characterized by the following
features. The data used by the applications consist of many pieces

organized in complex structures. The data have different structures
(e.g. text, pictures, programs, etc.) which involve different representa-

tions and access procedures. The data are persistent, i.e. their lifetime

32 Balter et al.

is independent of that of the programs or processes that use them.
They exist in multiple versions. The applications usually involve the
cooperation of several users; this involves concurrent computation, fre-
quent communication and a high degree of data sharing.

Large scale applications impose some qualitative requirements on
the supporting system and on the development environment. These re-
quirements are essentially motivated by a trend towards the reduction
of development costs through higher programmer productivity. The
main requirement is reusabiliry: it should be easy to reuse the invest-
ment, both in design and implementation. Mechanisms should be
available to develop applications as extensions or specializations of
existing programs. Another requirement concerns maintainability and
ability to evolve. These properties are essential for long-lived applica-
tions, which are likely to undergo a number of revisions to adapt to
changing user needs and to the progress of technology. The ability to
evolve is especially important in a distributed environment, because
the structure of the system favors evolution through incremental
change. A final requirement, specific to the distributed and possibly
heterogeneous nature of the system, is integration, i.e. the ability of
the system to provide the illusion of using one large integrated virtual
machine. The basic design decisions of the system were made in
response to these requirements. We list them with their main
motivations:

a) Object-orientation. The adoption of an object model is
the most important choice of the system. It was motivated
by the powerful strucfuring mechanism provided by objects:
encapsulation of data together with code, independence
between interface and implementation, object composition for
building complex structures. It improves reusability through
specialization, using the subtyping mechanism. This model also
gives a possibility to deal with heterogeneous systems by using
multiple implementations of an object interface. Moreover,
dynamic substitution of one implementation by another (with a
"compatible" interface) is an important mechanism for the
design of evolving systems. In addition, an object model
appeared to be a convenient vehicle for the integration of
concepts and methods from operating systems, programming
languages and databases, which resulted from the requirements.

Architecture and Implementatíon of Guíde 33

b) High-level language support. The use of a high-level
language is essential for maintainability and ability to evolve.

In addition, we strongly support the view of an operating system

as an execution environment for a programming language. This

environment may be provided to the user as a set of primitives,
or as a full-fledged language whose run-time environment is

supported by the system. In Guide, we have adopted the second

approach, which provides a better integration of the system and

applications, and we have designed the Guide programming

language for the expression of distributed applications.

c) Object storage. The system provides a permanent repository
for objects, a substitute for a traditional file system. Objects give

the user a unifying view of the system: they may be regarded

both as a support for procedural and data abstraction, and as

long-term storage units. This is the persistent programmíng

approach. Objects may be combined together to form complex

structures.
d) Distributed virtual machine. The execution mechanism

available to the user should allow concurrent programming

while hiding distribution as much as possible. The main
execution abstraction provided by the system, called a job,
satisfies these requirements. A job may be viewed as a

multiprocess virtual machine, composed of distributed
concurrent activities operating on objects. Since the objects

may be located on different nodes, jobs and activities may be

distributed. However, the distribution is hidden from the user.

Communication between jobs, or between activities within a

job, is done through shared objects. The system also provides

a support for synchronization and transactions.

1.2 Related Work

Several recent research projects have investigated object-oriented lan-
guages and systems for distributed applications. We now examine how
Guide relates to these efforts, with emphasis on two aspects: the object

model and the specification of the virtual machine.
Eden [Almes et al. 1985] was one of the first experiments in the

design and implementation of object-oriented distributed operating sys-

tems. An application in Eden is built as a collection of objects called

Balter et al.34

Ejects and written using the Eden Programming Language, derived
from Concurrent Euclid. An Eject is an active entity and includes a
number of processes which communicate via monitors. An Eject is
typed, mobile and its invocation is location independent. The model
integrates the object and virtual machine aspects: each Eject defines a
multiprocess virtual machine. However, it contains a major part of the
operating system, which complicates object management.

In Argus [Liskov 1985], a special emphasis is placed on reliable
distributed computation. Argus extends the CLU language to support
atomic transactions in a distributed environment. An Argus Guardian
encapsulates the notion of a virtual machine. A Guardian contains data
objects and processes. A Guardian communicates with another one by
calling a handler in the target Guardian, to which data are passed by
value. The Argus and Eden programming languages both support two
kinds of objects: large, persistent units (like f,les) and small, non per-
sistent units (like integers and records). This requires two different
implementation mechanisms. A major difference between Argus (and
Eden) and Guide is the granularity of objects. V/hile Guardians (in
Argus) and Ejects (in Eden) are usually large units, such as servers,
objects in Guide are usually small (like files in traditional systems),
and may be combined into larger units. This resulted in the decision to
make Guide objects passive, in contrast with both Argus and Eden.

In Emerald [Black et al. 1987], a successorproject to Eden, static
type checking is introduced, and objects may be active or passive. The
main features of the system include a single object model (unlike Eden
and Argus), support for abstract types and an explicit notion of object
location and mobility. The type conformity rules adopted for Guide,
as well as the overall design of the run-time structures for method se-
lection, are similar to those of Emerald. However, Emerald does not
provide support for persistent objects, which is a major goal of Guide.

The main goal of Clouds [Leblanc & Appelbe 1988] is to develop
a distributed, fault-tolerant computing environment (operating system
and applications), which appears as a uniform, integrated computing
resource to the users. The system is based on the notions of passive
objects, location independent invocations, and nested actions. All ob-
jects can be viewed as existing in a shared global object space which is
supported by a single-level store. As opposed to Guide, there is no
global virtual object memory mechanism: an action may span several
nodes, but internode communications are explicit. Threads are active

Architecture and Implementation of Guide 35

entities performing invocations. Threads and objects can be associated
with recovery attributes so that objects can maintain consistency in
presence of failures. The system does not support class hierarchy nor
inheritance.

Mach [Jones & Rashid 1986] defines a computational model com-
posed of tasks (shared virtual memory) and threads (sequential pro-
cesses running within a task). Communication uses shared memory
(within a task), messages and ports. Jobs and activities in Guide may
be compared, respectively, to Mach tasks and threads. An important
difference, however, is that a job in Guide may span several nodes,

and dynamically diffuse to other nodes. Mach was not initially de-

signed as an object-oriented system, but it provides the foundation to
build such a system. Chorus [Rozier et al. 1988] provides a computa-
tional model similar to that of Mach.

SOS [Shapiro et al. 1989] is a distributed, object-oriented operat-

ing system based on the proxy principle: the interface to a service, im-
plemented by a set of cooperating objects, is a single communication
object, a "proxy" for that service. The unit of allocation, communica-
tion, and storage is the object. The system implements only basic

mechanisms for creating, invoking, migrating, and deleting objects. It
does not provide a new language; applications are written in C#, en-
hanced by a dynamic binding mechanism. Communication between
jobs in Guide also uses shared objects, but is not restricted to a client-
server relationship.

Amoeba [Mullender et al. 1990] is a kernel primarily providing
communication and remote execution services, based on a fast remote
procedure call mechanism. Objects are implementations of data types

such as files, directories, and processes, and they are managed by
servers. A client process carries out operations on an object by sending

a request message to the server which manages the object. All objects

are named and protected by cryptographically secure capabilities.
In Guide, we attempted to draw on the experience of all these sys-

tems and to develop new ideas. Guide integrates several existing con-
cepts: uniform object model with single inheritance, abstract data

types, strong type checking, type and class hierarchy, hidden distribu-
tion, location-independent object naming, object mobility and atomic

transactions. Guide is a language-based system that embodies recent

advances in object-oriented techniques: separation between type and

classes, multiple implementations of a type, mechanisms for the con-

Balter et al.36

struction and conservation of complex objects, persistent two-level
storage with garbage collection. The integration of all these features,
individually present in several experimental systems, is an innovative
aspect of the project. Another new aspect is a computational model
based on multi-threaded virtual machines providing "windows" on the
global object space, and a high-level synchronization mechanism based
on activation conditions and counters. We plan to use the system as a
base for exploring further domains: multiple inheritance, object clus-
tering for rapid access, object replication, management of complex
distributed structures, load balancing, distributed debugging and
monitoring.

The first Guide prototype was implemented on top of the Unix sys-
tem, in order to provide in a short time a version of the system able to
support simple applications. It currently runs on the following worksta-
tions: Bull DPX 1000 and DPX 2000 running the SPIX system (System

V based system with BSD extensions), Sun 3-60, Sun 3-80, Sun 386i
and Sun 4 running Sun OS (BSD based system with System V exten-
sions), and DEC 3100 DecStations running Ultrix. The prototype has

been operational since September 1988 and several applications have
already been written for it (a brief description of the first implementa-
tion appeared in Découchant et al [1988]). Further experiments and
measurements will serve as a basis for an improved design.

2. Architecture of Guide

Guide can be viewed as a distributed, multiprocessor virtual machine.
The distribution is hidden from the user; the parallelism is visible. Ap-
plications are structured iir terms of objects. Objects are stored in a
multi-site, location transparent secondary storage. They are loaded on
demand into a virtual memory for execution. The system provides a
support for synchronization and transactions.

The main execution unit used by applications is the job, which
provides an object space and multiple concurrent activities. A typical
application is implemented as a single job, which is started on a node
and may dynamically diffuse to remote nodes according to the location
of the objects that it uses. A complex application that needs to use sev-

eral different address spaces (e.g. for protection) may be implemented

Architecture and Implementation of Guide 37

by several cooperating jobs. At the application level, communication

between jobs or activities entireþ relies on object sharing.

W'e now present the details of the object model, object storage,

execution structures and the support for distribution, parallelism and

qynchronization.

2.1 Object Model

This section gives a summary of the main features of the object
model. This model is supported by a language (also called Guide)

used to build distributed applications, which is briefly described in this
section. A more detailed description, with examples, may be found
in Krakowiak et al. [1990].

An object encapsulates data (the stnte of the object) and operations
(also called methods). The data may only be accessed via method in-
vocation. A type describes an object behavior shared by all objects of
the type. This behavior is defined by the signatures of the methods and

public variables. A class defines a specific implementation of a type:

data representation and method code. Classes are used to generate in-
stances, i.e. the objects whose data and methods are defined by the

class. A given type may be implemented by different classes. Thus,

different instances may coexist with the same interface and with dif-
ferent implementations. The word "object" is used here in two senses.

The first one refers to objects as storage units, the second one refers to
objects as instances of a class, i.e. entities containing private data and

a reference to the class defining the methods. The objects (instances)

and classes are uniformly stored as objects in secondary storage.

Subtyping allows the specialization of a given type. In the current
version of the model, a type may only have a single supertype. Parallel

to the subtype hierarchy there is a subclass hierarchy between classes

implementing the types. A class inherits the methods of its superclass

and it can overload them or specify other methods. Generic types and

classes are also provided.
Objects are persistent, i.e. their lifetime is not related to the exe-

cution of a program: a persistent object exists as long as it is referred
to by at least one other persistent object. A persistent object has a sys-

tem wide, location independent, typed unique name called a system

reference. References are not visible to the users; they are used inter-

38 Balter et al.

nally for object invocation and for the construction of composite
objects.

An exception model is also provided. The scope of exception han-
dling is object invocation. This approach fits well our object model,
where any object invocation may either terminate normally returning a
result, or terminate abnormally raising an exception.

The above notions are illustrated by a few examples of type and
class definitions. The following type declarations respectively define a

document description and a library (a collection of documents).

TYPE Document_descr IS
key: Integer;
title, author: String;
date_borrowed, date_returned: REF Date;
METHOD Init;

{initialize internal data}
METHOD Get_Info;

{display infornation about docurnent}
IßTHOD Get-Contents: REF Document;

{gives access to the text of the document,
defined by type Document, not specified here]

END Document_descr.

TYPE Library IS
IIIETHOD add_document (IN doc: REF Document_descr) :

Integer;
{add a document to the library, returns a key}

IIIETHOD search (IN key: Integer; OUT doc:
REF Document_descr);

SIGNAL not_for.md;
{look for a document specified by a key}

METHOD borrow (fN doc: REF Document_descr);
SIGNAL is_out

{borrow a document from the library}
METHOD return (IN doc: nEF Document_descr): Integer;

{return a borrowed document to the library}
ilmTHOD list;

{print the contents of the library}
END Library.
In the above definitions, the keyword REF<type> defines a typed
variable which refers to an object of type <type>; such a variable is
essentially a container for a system reference. The semantics of REtr'
parameters in method signatures is call by reference. Call by value is
also possible, but it is restricted to objects of elementary types, such

Architecture and Implementation of Guide 39

as Integer, Char, etc. The keyword SIGNAL specifies that a
typed exception may be raised under specified conditions.

A class definition describes a particular implementation of a type.

It includes the representation of the internal state of the object as a set

of instance variables and the program of the methods. For instance, a

possible implementation of type Library is defined by the following
class descriptions:

CLASS Library_Iist IMPLEIßNTS Library IS
doc_list: REF List OF REF Document;
IßTHOD search(IN key: Integer; OUT doc:

REF document);
SIGNAL not_found;
{looks for a document specified by its key}
BEGIN
<progr¿rm of search using list representation>
END search;

<program of other methods>

nrvo library-list.
As usual in object-oriented languages, an instance of this class is cre-

ated by calling the method New of the class. If lib is a variable of
type Library, the statement lib::Library_list. New creates a

new (uninitialized) instance of class Library_list and assigns it to
lib. Thereafter, methods may be invoked on this object by calls like
lib. search(. . .) . The variable Iib may be reassigned to another
object of type Library, possibly with a different representation (e.g.

an instance of another class Lib_array that would use an array as an

internal representation).

2.2 Object Storage

Objects in Guide reside in a distributed permanent secondary storage.

An object is entirely located on one node, i.e. there are no fragmented

distributed objects; however, an object may contain references to other
objects on remote nodes. The distribution of objects is hidden from
the programmer, who does not need to know where a particular object

is located. In addition, objects can migrate from one node to another.
The addressing and execution space provided by jobs may be

related in two possible ways to the permanent storage supporting ob-

Balter et al.40

jects. Either it is an addressing window on a large, single-level global

object space, or it acts like a cache for a permanent repository where

objects are stored, but cannot be directly manipulated (a two-level

store). The concept of a persistent object memory that appeared in re-

cent work on object-oriented databases [Thatte 1986], is an example of
the first design choice. In this approach, every object is always directly
addressable without explicit loading and linking operations. The sec-

ond approach is similar to distributed file mapping. An example of a
distributed implementation is proposed in the Apollo/Domain system

[Leach et al. 1983]. V/e adopted the second approach because we do

not think that a single-level distributed object storage can be efficiently

implemented in the current state of the art (remember that it has to be

garbage-collected). Therefore, our global object memory is imple-

mented as a two-level storage. At the lower level, a Storage Subsystem

(SS) is in charge of long-term conservation of persistent objects. At
the upper level, a Virtual Object Memory (VOM) acts as a cache sup-

porting the execution ofjobs (i.e. objects linked to jobs are addressed

in the VOM). Both VOM and SS are distributed.

The Virtual Object Memory is composed of the contexts of all
jobs. It can be viewed as a uniform space of all objects currently
linked to jobs in the system. Thus, only a single image of an object
(class instance) should be present at a given time in virtual memory.

The code of classes is shared between activities executing on the same

node. Several copies of classes may exist on different nodes. A map-

ping between object references and virtual addresses is maintained for
all objects used by a job.

The Secondary Storage subsystem is organized as a set of logical
containers. A container is an abstraction of a physical secondary stor-

age unit. It may be composed of several replicated physical containers

for better safety and availability. The physical containers are mapped

on different nodes. The secondary storage provides a set of primitives
supporting persistent objects in a distributed environment.

2.3 Execution Structures

2.3.1 Jobs and Activities

A job is composed of sequential threads of control called activities,

which operate on passive objects. A job may span several physical

nodes, it may dynamically extend itself or shrink, according to the pat-

Architecture and Implemenntion of Guide 4I

tern of object invocations. The execution of an activity consists of suc-
cessive invocations of methods on objects. The invocations may take
place on any node in the system. During each invocation, the refer-
enced object is located, loaded and dynamically linked to the virtual
memory of a job. The set of all objects linked to a job is called the
context of the job. A job provides an addressing window on the global
object space through the mapping of objects shared by its activities.
Jobs and activities are system-wide, distributed notions.

A job is created by an activity of another job using a creation
primitive. The primitive specifies an initial method of an object and
creates a main activity to invoke the method. Initially, the new job
entirely resides on the creation node. Once started, the main activity
invokes the initial method. Then, as other (possibly remote) objects
are invoked, the context is extended. New activities may be created
and the job may diffuse to other nodes. There is no explicit communi-
cation between activities; however, they can communicate through in-
vocations of shared objects. Jobs and activities are represented in the
system as instances of predefined system objects. The user can control
their execution by invoking methods such as creote, start, suspend,
resume, destroy.

The concepts of jobs, activities and job context are illustrated in
Figure 1. There are two jobs: the context of job"/1 is composed of ob-

O activity O object

Figure 1: Jobs and activities

Balter et al.42

jects a, b, c, d and the context of jobJ2 is composed of objects d, e,

f , g. Object d is shared by the two jobs. Activities p, q execute within
job JI and activities r, r, / execute within job J2.

The context of each job is represented by a context table main-
tained by the kernel. Each object present in the context of the job has

a descriptor in this table. More details will be found in section 3.2.
An important design decision was how to relate objects to execu-

tion structures. Two solutions could be adopted: a) associate execution

structures with objects, i.e. define active objects, each object contain-
ing a fixed or variable number of processes; and b) separate objects

from execution structures, i.e. define passive objects executed by inde-
pendently defined processes. We did not find strong arguments in favor

of either solution. Both have been adopted in existing object-based
systems (e.g. active objects in Emerald [Black et al. 1987]; passive ob-
jects in Clouds [Leblanc & Appelbe 1988], Amoeba [Mullender et al.
19901, and SOS [Shapiro et al. 1989]). The two solutions are dual:

both can offer the same functionality to the user, but in different
ways. The choice is mostly influenced by considerations of efficiency
and adequacy to the hardware and to the applications. Our system is

intended to be a collection of services, each service being visible as an

object. The user, or more precisely a job representing the user behav-

ior, selects a desired service and executes it by calling one of its meth-
ods (i.e. entry points). In the active object model, execution structures

are associated with objects acting as servers and providing some ser-

vice to passive users. The passive object model can be compared to a
self-service supermarket and the active object model to a traditional
store. In the first case, the user chooses goods by himself; in the sec-

ond case, he is served by a server. It appears to us that passive objects

contain less context information than active objects. Therefore their
creation, invocation and migration can be implemented more

efficiently than for active objects. The classes of applications that we
intend to support involve creating many (usually small) objects, and

building large compound structures out of object components. Paral-

lelism is likely to be coarse-grained. Passive objects are well suited for
such applications. The active object model is conceptually simpler,
since a single abstraction encompasses the two concepts of processes

and data structures. It is also suitable for ensuring synchronized and

protected access to objects, because it is easier to control the execution
inside an active object. On the other hand, the composition of active

Architecture and Implementation of Guide 43

objects leads to nested virtual memory structures. All these consider-
ations led us to adopt the passive object model.

2.3 .2 Object Invocation

A basic operation in the system is object invocation. An invocation
specifies the system reference (uniqrre internal name) of the invoked
object, the name of a method and the parameters of the invocation.
The reference contains a unique object identifier, called oid, and loca-
tion hints. If the object is not currently loaded in Virtual Memory on
the node where the execution takes place, an objectfazll occurs. The
object is located in secondary storage using the reference. A node is
selected for the execution and the object is loaded on that node. The
method is then invoked like a traditional procedure call. The selection
of the execution node is described at the end of this section.

Object invocation is supported by two operations essential to the
management of the object memory: loading and linking. Loading re-
trieves an object from Secondary Storage and creates an object image
in the Virtual Object Memory on the execution node. Linking adds it
to the job context and maps it into the virtual memory. The operations
are executed dynamically on object invocation. An invocation may
take place locally or on a remote node. In both cases, it is synchro-
nous, i.e. the activity is blocked waiting for results.

A remote ínvocation takes place if the node selected for execution
is different from the node on which the object fault occurred. In this
case, the job and the activity diffuse to the remote node and the object
is invoked there.

The choice of the execution node is determined by an execution
policy which is separate from the basic kernel mechanisms. Ideally,
such a policy should be based on system information about the avail-
ability of resources and about performance indices such as processor
load or response time, in order to do adaptive load balancing. Load
balancing is not implemented in the current version of Guide. The
default execution policy is as follows: if the invoked object is already
loaded in virtual memory on a remote node, the execution takes place
on that node; if not, the object is loaded on the node where the object
fault occurred. An object may also be specified as unmovable, in
which case it always remains on its creation node.

44 Balter et al.

2.4 Parallelism and Synchronizatíon

The execution of concurrent activities within a job is controlled by the

following construct (concurrent clause):

COBEGIN
label-l: <invocation of objectl>

label-n: <invocation of objectn>
COEND <optional condition>

Each object invocation enclosed between coBEGrN and conlgo is

executed as a separate activity. All these activities share the context of
the current job. The calling activity (i.e. the activity in which the con-

current clause is called) is suspended. Its resumption is controlled by

the termination condition, which has the form of a boolean expression

using the labels of the concurrent invocations. Each of these labels is

interpreted as a boolean variable that specifies whether the correspond-

ing invocation is terminated. By default, if no termination conclition is

specified, the calling activity is resumed when all concurrent invoca-

tions are terminated.
Activities communicate through shared objects. Object sharing

must be controlled in order to ensure that the shared data remain in
a consistent state. Our basic choice is to express synchronization as a

set of constraints associated with objects, not as primitives appearing

within activities. This is fully consistent with the object approach,

since the specification of the synchronization constraints is concen-

trated in the class that describes the object instead of being spread out

in a number of methods that use the object. In addition, this synchro-

nization specification is shared by all instances of the class.

The only way for an activity to access or modify an object is to ex-

ecute a method of this object. Therefore, we specify synchronization

as a set of activation conditions, which form a control clause. Each ac-

tivation condition is attachecl to a method and must be satisfied before

the execution of this method may start. If no activation condition is at-

tached to a method, then the execution of this method is uncon-

strained. The syntax of the control clause is as follows:

CONTROL [<rnethod name> : <activation condition>1 r'

45Architecture and Implementation of Guide

where <activation condition> is a boolean expression which
may contain the following parameters: instance variables which repre-
sent the internal state of an instance; actual parameters of the method;
and synchronization counters. These counters are internal variables
which specify, for each method of a given object, the total number of
invocations, the total number of completed executions, the current
number of pending invocations, etc. These counters are automatically
updated by the system. Synchronization based on counters was intro-
duced in another context by Robert and Verjus U9771.

Synchronization constraints are illustrated by the following class
definition, which implements a bounded buffer used for communication
between activities. The types ProducerConsumer and Item are
supposed to have been introduced elsewhere:

CLASS FixedSizeBuff er IMPLEIIIENTS ProducerConsumer IS
CONST size:<a constant>;
buffer : .ARRAY[0..size-l] OF Item;
first, last: Integer : 0, 0:

nmTHOD Put (IN n: Item);
BEGTN
buffer Ilast] ::n;
last::Iast*l MOD size;
END Put;

METHOD Get (OUT n: Item);
BEGIN
m::buffer [first] ;

first:: first +1 MOD size;
END Get;

CONTROL
Put: (completed(Put) - completed (Get)<size)

AND current (Put) :01
Get: (completed (Put) > completed (cet))

AND current (Get) :0;
END FixedSizeBuffer.

In this example, completed(m) and curuent(m) are counters that
record, respectively, the number of completed executions and cur-
rently active invocations of a method m.

It should be noted that activation conditions are expressed using
only boolean expressions. As a consequence, some synchronization
schemes cannot be directly expressed. This limitation may be over-
come by introducing additional methods. The implementation of this
synchronization scheme is described in Decouchant et al. [1986].

Balter et al.46

2.5 Tiansactions

Tiansactions are defined as consistent units of computation. In the'
current well accepted model, transactions are characterized by four
properties: failure atomicity, failure isolation, permanence and serial-
izability. To ensure consistency and safety, a transaction in Guide
must start and end within the same object method. A transaction is

entirely contained within a single activity and within a single job. In
the current version, transactions are limited to a single node. Multi-
node transactions are envisaged for a future version.

Objects are divided into two categories: atomic and non-atomic;
consistency and permanence properties are only guaranteed for atomic
objects. The system requires all updates of atomic objects to be done

within a transaction. The atomic property of an object is fixed at ob-
ject creation and cannot be modified afterwards.

2.6 Interface of the Virtual Machine

The Guide virtual machine provides a set of primitives supporting pro-
grams written in the Guide language. The main primitives are related
to the management of jobs, activities, objects and transactions. They
are summarized in Table 1. Some primitives related to the I/O are not
specified here. Clearþ, the virtual machine has two interfaces: the
low-level interface of the Secondary Storage and the high-level inter-
face of execution structures, object invocation and transactions. The

interface of the Secondary Storage is not visible at the higher level.

3. Implementation of Guide

The implementation of Guide on top of UNIX is described in this sec-

tion. V/e first present the implementation of jobs and activities as

UNIX processes, then the organization of the Virtual Object Memory
and the mechanisms for local and remote object invocation; after-
wards, the communication protocol and the organization of the
Secondary Storage.

Architecture and Implementation of Guide 47

Jobs and activities

CreateJob
KilUob
StartJob
SuspendJob
ResumeJob
JobStatus
JobRef

Create a job
Kill a job
Start an initial activity ofajob
Suspend a job
Resume a job
Returns job status

Returns job reference

NewActivity
KillActivity
StartActivity
SuspendActivity
ResumeActivity
ActivityWait
ActivityStatus
ActivityRef

Create and start an activity
Kill an activity
Start an initial activity of a job
Suspend an activity
Resume an activity
Wait for parallel activities
Returns activity status

Returns activity reference

Objects

ObjectCall
ObjectCreate
Objectlnfo

Call a method on an object
Create an object
Get information about an object

Tiansactions

BeginTrans
CommitTrans
AbortTrans

Begin of a transaction
Transaction commitment
Transaction abortion

Table 1: Primitives of the Guide virtual machine

3.1 Job and Activity Management

3.1.1 Principles

The Guide system provides two execution structures: jobs and activi-
ties, which can be implemented in two ways. The f,rst way is to use

one UNIX process to represent a job, activities running as lightweight
processes managed internally inside the job. Their addressing space is
the virtual memory of the UNIX process. This solution requires the
implementation of a lightweight process kernel inside a UNIX process.
The second way is to implement an activity as one UNIX process. A

48 Balter et al.

collection of processes implementing activities represents a job. The
processes must be able to map objects at the same addresses in their
virtual memory and job management should be done by a separate
process. We chose the second approach because it minimizes the im-
plementation effort by directly using UNIX process management and
makes debugging easier. Also, we wanted to share the processor time
equally among activities and not among jobs. Moreover, the common
virtual memory of activities can be easily implemented using the
shared memory facility of UNIX System V.

The management of jobs and activities requires cooperation of
Guide systems running on different nodes, because jobs and activities
are distributed execution structures and have system-wide meaning.
One UNIX process per node is in charge of this cooperation and of the
management of local jobs and activities. The process is called a Guide
daemon. It maintains data structures for job and activity management
and serves queries requesting operations on jobs and activities.

An activity communicates with the Guide daemon by queries to
request some operations on jobs and activities (creation, destruction,
suspension, resumption and diffusion). The processing of a query may
involve daemons on other nodes as well. Communication between the
daemon and activities is based on two different mechanisms provided
by UNIX 4.2BSD and UNIX System V, namely sockets and message
queues. The daemon sends messages to local activities via message
queues. The daemon may receive messages from local activities as

well as from remote daemons. Since remote communication involves
sockets and the daemon waits for messages using the select primitive,
the same mechanism must be used by the daemon for local communi-
cation. Thus, activities send messages to the daemon via the socket
mechanism. Figure 2 presents the structure of the UNIX implementa-
tion.

The Guide daemon maintains a data structure called a Node Object
Thble (NOT) representing the Virtual Object Memory of the node. It
contains the information about all objects currently linked on the
node. The Guide daemon also maintains a data structure for each job
representing its context. The data structure is called a Context Object
Table (COT). It contains the information about the objects mapped into
the addressing space of a job. Since these tables are shared by all ac-
tivities of a job, they are implemented as segments of shared memory
mapped into the addressing space of the activities.

Architecture and Implemenntion of Guide 49

Guided
(Unix process)

Guided
(Unix process)

C)

(¿

X

t
C)
(Þ
Ø
Ø

Ø
Ø
6)
Ook
Þ.
X

>'

O

3.1 .2 Internal Synchronization Primitives

Several data structures in the Guide kernel are shared among several
UNIX processes. The access to these data must be synchronized. Syn-
chronized objects and the implementation of COBEGIN - COEND also
use synchronization primitives. In the first prototype, we used UNIX
semaphores. However, measurements showed that almost 90Vo of ob-
ject invocation execution time was spent in non-blocking semaphore
operations. Therefore, we developed a UNIX driver implementing the
P and V operations on a semaphore. In addition, non-blocking P oper-
ation and V operation with an empty process queue (the most common
case) are implemented as assembly language routines incrementing or
decrementing a counter atomically.lf a P operation needs to block a
process or if a V operation must wake up another process, a corre-

Balter et al.

K
E
R
N
E
L

o
B
J
E
C
T
S

o
B
J
E
C
T
S

K
E
R
N
E
L

K
E
R
N
E
L

o
B
J
E
C
T
S

fl Message queue

O Socket

Figure 2. Structure of the UNIX implementation

50

sponding operation on the driver is executed. The synchronization
primitives are about 100 times faster than the UNIX System V sema-
phore primitives. For more details see Decouchant et al. [1989].

3.1.3 Job Management

Operations on jobs are executed by the Guide daemon. In addition to
the information in the NOT and COT, it uses other tables containing:
the internal name of a job (the system reference of the object repre-
senting a job), the UNIX identifier of the shared memory segment
containing the COT of a job, the number of job diffusions, the address
of each diffusion node, the address of the job creation node (called the
root of the job). The diffusion of a job is a result of an object invoca-
tion on a remote node not previously visited by the job. The infor-
mation about the job diffusion is updated after the first diffusion to a
given node and is used later to reply to queries requesting diffusions to
the node. The address of the job creation node is necessary for the de-
struction of a job. It is done recursively: the KilUob query is sent to
the daemon residing on the root of the job, it is then transferred to all
nodes where the job has diffused and the job management information
is updated.

3.1 .4 Activity Management

The management of activities has the following aspects: creation of
the main activity of a job, management of processes representing an
activity, and management of activities created by the COBEGIN -
COEND primitives. When a job is started, the main activity repre-
sented by a UNIX process is created and started using the NewActiv-
ity primitive. If an object invocation takes place on a remote node, the
invoking activity and its job must diffuse to that node. A UNIX pro-
cess representing the invoking activity and serving remote object invo-
cations is created on the remote node. Only one such process for a
given activity exists on a node. The Guide kernel maintains data struc-
tures concerning remote processes and their communication ports for
each activity.

The COBEGIN primitive creates parallel subactivities. The activity
executing COBEGIN is blocked on a semaphore and waits until the
condition associated with the COEND primitive is satisfied. Then any

Architecture and Implemennrton of Guide 51

remaining activities are killed and the parent activity resumes its exe-
cution.

3.2 Virtual Object Memory

The Virtual Object Memory is implemented by the virtual memories
of the UNIX process that implement all activities currently being exe-
cuted on the node. The activities of a job share the Guide kernel code,
the objects linked to the job and some management data structures:
COT, NOT and other information concerning the job and its activities.
Sharing is achieved via shared memory segments.

3.2.1 Structure of the Virtual Memory

The virtual memory of the UNIX process representing an activity is
composed of three parts: a part shared with other activities, a private
part owned by the activity, and a part reserved for the stack. The
shared part contains the Guide kernel (mapped into the UNIX .r¿xr
segment), the NOT, the COT and the object memory used to handle
the objects currently linked on the node. The private part of the vir-
tual memory contains Guide kernel data and the heap of the activity.
The shared segments of the NOT, the COT, and object memory as

well as the private part reside in the UNIX .data segment. The activ-
ity stack corresponds to segment .stack of the UNIX process.

Each shared memory segment has a key used by the UNIX attach
and detach operations. The management of the key is done by the
kernel. The list of current keys is a part of the data contained in the
NOT. When an activity invokes a method on an object not yet loaded
into the virtual object memory, it requests a region in the shared ob-
ject memory. Storage allocation is done by the kernel using a general-
ized buddy algorithm. Then, the object is loaded into the segment.
Other activities of the same job which need to access the object only
have to link it to their context. The objects not linked to any job re-
main in the object memory and are asynchronously transferred to the
Secondary Storage. Figure 3 presents the structure of the virtual ob-
ject memory on a node.

In this example, two jobs (Job_l and Job_2) are currently active
on the node. Job_1 has two activities, while Job_2 has only one. The
figure represents the organization of the virtual memory of the UNIX
processes which implement the three activities and shows the mapping

Balter et al.52

Figure 3: Virtual Object Memory of a node

of memory regions on segments of shared memory. The Context Ob-
ject Table (COT) of a job is shared by all activities of that job; the
Node Object Thble and the object memory itself are shared by all ac-
tivities on the node. The code of the kernel is also shared by all activ-
ities.

3.2.2 Object Invocation

The invocation is done by a system primitive ObjectCatl. It receives a

parameter block containing the parameters, the reference to the class

of the invoking method, the identifier of the method and the reference

Architecture and Implementation of Guide 53

to the invoked object. If the object is not loaded in virtual memory on
any node, the invocation may be local or remote independently of its
current location in secondary storage. If the object is already loaded
and linked to ajob context on a node, the invocation takes place on
that node. Otherwise, as mentioned in section 2.3.2, the default policy
in the current version of Guide is to choose the node on which the ob-
ject was created.

a) Local object invocation

Consider the case when a method is to be executed locally. The
Guide kernel performs the following operations.

1. The current context of the UNIX process representing an
activity is pushed onto the stack.

2. If the object is not in the job context, the Virtual Object
Memory on the local node is looked up. If the image of the
object does not exist on the node, the class and the object (class

instance) are loaded using the primitive LoadObject. The class

is loaded from the local Secondary Storage. If the object is
stored on a remote node, it is located and transferred.

3. The class and the object are linked to the job context. This
operation may be simple (a link counter is incremented) if the
class and the object are already present on the node, or it
may require updating the COT and NOT tables. Because of
inheritance, several classes may need to be loaded until the
invoked method is found.

4. A new context is constructed: the addresses of the method and
the object are calculated using the data prepared by the Guide
compiler and the parameter addresses are pushed onto the stack.

5. The method invocation is done as a standard procedure call.
6. After the return from the method, the object and its class are

unlinked.
7. The context of the UNIX process representing the activity is

pulled from the stack.
8. The control returns to the invoking method.

b) Remote object invocation

The following operations are performed during the remote object
invocation.

1. The kernel checks whether the invoking activity and its job have

already diffused to the remote node. If not, their diffrisions are

Balter et al.54

performed: the extension of the job and the process representing
the invoking activity are created on the remote node; the
process creates a socket used for all subsequent communications;
the local daemon is notified and the address of the remote
process is given to the invoking activity.

2. The parameter block is prepared before the transfer to the
remote node: all parameters passed þy address are replaced by
their values. The data is translated into a machine independent
format if machines are of different types. In the first
implementation, the XDR format is used.

3. The parameter block is sent to the UNIX process which
represents the activity on the remote node.

4. The receiving process performs the operation inverse to the
preparation: the data are translated from the machine
independent format and the parameters passed by address are
copied into temporary variables.

5. The process performs a local ObjectCalt passing the parameter
block.

6. After the execution of the local ObjectCall, the results passed

by address in the parameter block are prepared and their format
is translated.

7 . The parameter block is sent back to the kernel at the origin
node and the control is returned to the invoking activity.

This scheme of execution is similar to the standard Remote Procedure
Call, as described e.g. in Birrell & Nelson U9841. Nevertheless, there
are two important differences. First, the binding is dynamic: the refer-
ence to the called object and the identifier of the method are passed in
the parameter block and the method is linked dynamically just before
execution. Efficiency is improved by using a method cache. Second,
nested back-calls between two nodes are possible and are conveniently
handled by the UNIX processes which implement activities. A nested
back-call refers to a situation in which an activity executing on a node
N performs a remote invocation which eventually causes an invocation
to an object located on N, before the initial invocation has returned.
This is illustrated in Figure 4.

The process which implements the invoking activity is blocked in
the ObjectCall on the initial node waiting for the results of the invo-
cation. Thus, it can accept the remote invocation, execute it and return
results. Then, the process on the remote node resumes its execution,

Architecture and Implementation of Guide 55

remote
object invocat

c.q(...);
job diffusion

node Nl

. no job diffusion from N2 to N
(the job already exists)

. the call D.r is executed by the
same process as A.m

node N2

terminates the method and transfers the results back to the invoking
activity.

3.3 Communication

Different coûrmunication primitives are needed in the Guide imple-
mentation. First, a blocking request-reply message exchange protocol
is necessary for the remote object invocation. The protocol should be
able to send a request message to a destination and wait for a reply ar-
riving from any destination (possibly different from the receiver of the
request message). It is used by an activity and its remote process

Balter et al.

¡
object B

method p

Figure 4: Remote object invocations and activity diffusion

56

during object invocation. Each process has only one pending message

and expects to receive only one message. This semantics simplifies the
protocol and the message transfer delay can be optimized. Second, the
management functions of Guide daemons require a non-blocking re-
quest-reply message exchange protocol. Each Guide daemon acts as a
server providing job and activity management functions to other dae-
mons. This implies that a daemon may receive several messages and
should treat them asynchronously. Communication between daemons is
infrequent, so the execution performance does not strongly depend on
the performance of the communication. Third, a non-blocking mes-

sage transfer protocol with high throughput is needed. It is used by the
secondary storage daemons for object transfers and migration. The
throughput of this protocol is optimized by overlapping transfers with
disk operations. These three types of communication are supported by
a connectionless specialized protocol built on top of UDP/IP and the
socket layer.

Operations requiring communication could have been implemented
using standard protocols, e.g. TCP/IP, but there are several reasons

for using a specialized protocol. For instance, the remote invocation
has a request-reply nature. Thus, if there are no transmission errors,
using a connectionless protocol minimizes the number of packets sent:
the reply is at the same time the acknowledgement of the request. As
a new request is the acknowledgement of the last reply, only two
transfers are necessary for one invocation in the best case. A special-
ized, request-reply oriented protocol can be built on top of a
lightweight, rudimentary and unreliable protocol. The end-to-end
argument justifies this approach minimizing the time necessary for
an invocation. Another issue is the limitation that UNIX imposes on
the number of sockets simultaneously connected to a process: they
cannot exceed 20 or 30 depending on the UNIX implementation. This
is insufficient for our system, where a process representing an activity
may potentially communicate with remote processes on any node of
the system.

Our protocol provides a reliable message transport service similar
to the Birrell-Nelson packet level transport protocol designed for RPC.
The main difference is the way of recovering from transmission errors
(selective retransmission) and the possibility of supporting nested
back-calls. The protocol handles the retransmission of lost messages

and the suppression of duplicated messages. The standard Internet

57Architecture and Implementation of Guide

addressing scheme is used and the following function is provided:
sending a message to a remote node and receiving a message from any
node (not necessarily from the node where the message was sent). The
protocol provides a blocking primitive sendRecv optimized to be used
for the remote object invocation; there only being one pending invoca-
tion per activity. Servers can be implemented using asynchronous
primitives sendTo and recvFrom.

Two timeout values are associated with each message. If the mes-
sage is not received before the first timeout, it is retransmitted. If the
processing of a received message takes more than the second timeout,
a separate acknowledgement is sent back. A message specifies the type
of a requested service (e.g. remote object invocation, object migration,
beginning of a transaction). The reception of a message is acknowl-
edged by a reply message or by a separate acknowledgement if the
service lasts too long. The protocol is implemented as a library of pro-
cedures linked to the Guide kernel code.

3.4 Secondary Storage

Our first implementation of the secondary storage provides basic prim-
itives for supporting persistent objects in a distributed environment.
Replicated physical containers are not provided in the current imple-
mentation. Each logical container is mapped on one physical container
implemented using disk partitions accessed by the UNIX kernel in raw
mode; a disk access is a synchronous operation that bypasses the UNIX
buffer cache. Disk operations are optimized using an internal cache.
There is a single cache on each node on which at least one container is
supported and this cache is common to all containers located on this
node.

Figure 5 presents the structure of the Secondary Storage subsys-
tem. It has four layers: object management, block management, con-
tainer management and cache. The object management layer provides
the interface to the Secondary Storage subsystem. It checks if the ob-
ject is stored on the local node and requests remote operations if nec-
essary. The block management layer supports the mapping between
disk blocks and objects. A disk partition provides the physical support
for storage and is managed by the container layer. The cache module,
implemented as a region of shared memory, is similar to the UNIX

58 Balter et al.

Figure 5: Organization of the Secondary Storage subsystem

buffer cache and thus makes disk accesses more efficient. Modified
blocks in the cache are stored asynchronously by a dumping process.

All layers of the Secondary Storage subsystem are linked to the UNIX
processes which implement activities. The primitives are summarized

in Tâble 2.

Secondary Storage

CreateObject
DeleteObject
GetDesc
LoadObject
Storeobject
ReleaseObject

Create an object
Delete an object
Get an object descriptor; lock the object
Load an object into VOM
Store an object
Unlock an object

Table 2: Primitives of the Secondary Storage System

Architecture and Implementation of Cuide 59

60

objects are loaded on demand. If an object is present on the local
node, its blocks are loaded from the disk via the cache. The second-
ary Storage subsystem guarantees the uniqueness of the image of
loaded objects. If an object is already loaded on a remote node, the
secondary storage subsystem attempts to fetch the object from that
node. Job and activity diffusion are used for all remote operations: re-
mote requests to Secondary Storage are sent to the UNIX process
which represents the invoking activity on a remote node; this process
acts as a local secondary storage server. The process receives request,
executes an appropriate local operation and sends a reply to the re-
questing node. If the object is not linked to any job, the Secondary
storage subsystem of the remote node returns the permission to fetch
the object. If the object is linked on the remote node, the identifier of
the node is returned; it will be used for subsequent remote object
invocations.

Physical containers are organized in 512 bytes blocks. An object
descriptor is stored in one block. Since the size of the descriptor is
less than the block size, the remaining space in the block containing
the descriptor may be used to store the corresponding object data. If
the object size extends beyond this space, its contents is stored in in-
dependent data blocks using a mechanism similar to that of the UNIX
file system. The resulting maximum object size is 8,287 Kbytes.

An object is considered garbage when there is no way to access it
from the root of the object graph, formed by inter-object references.
since the lifetime of an object is usually independent of the execution
structures lifetime, garbage collection is needed. our current garbage
collection algorithm uses the mark and sweep method.

4. Evaluation and Experience

The first prototype of Guide has allowed us to assess both the archi-
tecture of the system and the object model, as well as to evaluate the
implementation techniques.

4.1 Evaluation of the Model

Several distributed applications have already been developed. They
include a mail service, a distributed diary, and a simple browser for

Balter et al.

types; we also have modified a document editor to allow multiple au-

thors to work on shared documents. Some useful conclusions result
from this experience. Guide execution structures seem to be well
suited for developing complex applications in a distributed environ-
ment. They offer the programmer a simple way to exploit the paral-
lelism of applications. Synchronization structures are powerful enough

to deal with programmer requirements. Persistent objects free the
programmer from the burden of explicitly saving and restoring files.
Indeed, the notion of a file system disappears, since it is subsumed in
the object management system. Another useful feature of the system is

location transparency. The location of the objects is invisible to the
progranìmer and is controlled by the system. At the language level,
there is no distinction between local and remote method invocations.
As a consequence, it is easy to develop and debug an application on a
single node and to distribute it over the network without change. The
mail application was developed in this way. However, explicit control
of the object location may still be applied if needed. For instance,
server applications can be developed to provide a service on a particu-
lar node.

4.2 Supporting Object-Oriented Systems

on UNIX

Implementating Guide on top of UNIX has allowed us to rapidly
provide a portable version of the system capable of supporting simple
applications. Some conclusions as to the suitability of UNIX to imple-
ment object-oriented systems can be drawn from this experience.

The Virtual Object Memory on a node is implemented using a sin-
gle shared memory segment for all objects. The segment is mapped at

the same address in all jobs. Regions in the segment are allocated to
objects by the Guide kernel. Variable size objects can be handled in an

efficient way and there is no memory fragmentation. However, since

all objects are visible to all jobs, there is no memory protection be-
tween jobs. A preliminary version of Guide used another approach:

each object was mapped into one separate shared memory segment.

However, the management of shared memory in UNIX System V has

some limitations, e.g. only the process that has attached a shared seg-

ment can detach it. Sometimes, a segment should be detached by an-

other process. Also, the attach and detach operations on shared mem-

Architecture and Implementation of Guide 6t

ory segments are inefficient and introduce a considerable overhead. As
these operations are used almost each time an object is linked or un-
linked, the performance of object invocation was strongly affected.
Furthermore, the size of shared memory segments is fixed at their cre-
ation and cannot be changed. This feature is not useful for implement-
ing variable size objects. Moreover, the minimal size of a segment on
DPX 1000 and DPX 2000 is SKbytes, resulting in memory fragmenta-
tion for small objects. This approach has been abandoned, and we use
a single shared memory segment per node; as a consequence, the pro-
tection provided by separate segments is lost.

As was discussed in Section 3.3, UNIX System V synchronization
mechanisms are not suitable for implementing systems like Guide.
Synchronization is extensively used in our implementation, and the
performance of the Guide virtual machine primitives strongly depends
on the synchronization mechanism. We developed efficient synchro-
nization primitives based on a semaphore driver and atomic increment
and decrernent routines written in assembly language. The perfor-
mance of object invocation was increased by a factor of 20 after re-
placing the standard UNIX synchronization mechanisms.

The Secondary Storage uses the raw disk access scheme. The disk
space is managed internally by the Guide kernel; the standard caching
mechanism of UNIX is therefore bypassed.

The issues related to communication were discussed in 3.3. The
standard UNIX mechanisms (sockets and message queues) were used
for internal communication in the kernel, but we developed our own
communication protocol to support object invocation. This was moti-
vated both by the limitation on the munber of sockets per process and
by efficiency considerations.

As it can be seen from this discussion, UNIX imposes strong limi-
tations on the implementation of systems such as Guide. In almost all
parts of the kernel, standard UNIX mechanisms had to be bypassed,
modified or used with care. However, the following UNIX features
were useful: development environment, memory management, process
management,IlO management, sockets and message queues. Another
positive point is the portability resulting from using UNIX as a base
for the development. Guide can be ported to a new machine in a few
days. The main work involves modifying the synchronization driver
and rewriting the loader.

62 Balter et al.

4.3 Performance
'We expected that the gain in development time and portability which
resulted from the use of UNIX would be paid in performance. System

calls incur an important overhead which adds to the Guide kernel
overhead. However, we tried to optimize the use of Unix system calls
to improve performance. Some measurements are presented in this
section to show the performance of the principal operations.

We measured the following operations at the language level: local
invocation of Self object, local invocation of another object and

remote object invocation. The measurements have been done on
Sun 3-60 workstations connected by a l0MBit/s Ethernet. The opera-

tions were repeated a large number of times and the elapsed time of
the loop was divided into the number of iterations to obtain the
elapsed time of a single operation. Object invocations were done with-
out any parameters and the invoked object executed a null method.
For comparison, the elapsed time of a procedure call within an object
is given. Thble 3 summarizes the performance figures. As it can be

seen from this table, the operations have an acceptable performance.
However, comparable systems directly implemented on bare hardware
clearly perform better [Schroeder & Burrows 1990]. Efficiency can be

improved by increasing the granularity of objects within an applica-
tion. Further experiments and measurements will be done to evaluate

the overhead of using UNIX and will serve as a basis for an improved
design.

Operation time (ms)

null procedure call
null local ObjectCall of Self
null local ObjectCall
Null remote ObjectCall

0.011
o.294
0.387
6.960

Table 3: Performance of some operations

5. Conclusions

The paper has presented the architecture and the implementation of
the object-oriented distributed operating system Guide. The system

provides an execution environment for an object-oriented program-

63Architecture and Implementation of Guide

ming language. The main features of the system are: persistent objects
supported by a distributed two-level storage, transparent distribution of
objects, execution model based on concurrent, distributed jobs and ac-
tivities, support for synchronization and transactions.

A first implementation has been done on top of UNIX for fast pro-
totyping. Using UNIX avoided the need for implementation of low-
level machine-specific and device-specific software. we had to over-
come some limitations imposed by UNIX and to tune the system to
obtain satisfactory performances. our first experience shows that the
architecture of Guide is well suited for supporting a language with ob-
ject persistence, concurrent activities, synchronization and transac-
tions.

W'e summarize the main conclusions that we have drawn from this
first experience.

. The use of a high level language tightly coupled with the under-
lying system provides an effective development tool for pro-
gramming distributed applications. The main mechanism that the
run-time system has to support is remote method invocation
with dynamic binding.

. Location transparency proved to be an essential feature. Appli-
cations developed on a single node were ported to a distributed
environment with virtually no additional work. object location
may still be controlled by the user if necessary.

. Using persistent objects greatly simplifies storage management
for the user. However, the system bears the load of garbage col-
lection, which involves a performance penalty. Mechanisms re-
lated to the expected lifetime of objects (e.g. generation scav-
enging) could be a way to reduce this penalty.

. Dynamic binding and resolution of object references are well-
known sources of performance overhead in persistent object sys-
tems. The situation can be improved by the use of clustering
mechanisms (to transfer a group of objects as a whole) and par-
tial static binding.

In the next phase of the project, we plan to investigate the above men-
tioned proposals for performance improvement and to develop a new
implementation of the system on top of a low-level kernel, which we
expect to provide process and memory management primitives better
suited than those of UNIX to support a distributed object system. The
selection of this kernel is under way.

Balter et al.64

6. Acknowledgements

We wish to acknowledge the contribution of the COMANDOS project
object-oriented working group: especially our partners from INESC
(Lisbon, Portugal) and TTinity College (Dublin, keland).

In addition to the funding of the Commission of European
Communities through Esprit, the Guide project is supported by
the Universities of Grenoble (Institut National Polytechnique de
Grenoble - Université Joseph Fourier) and Centre National de la
Recherche Scientifique. Initial support was provided by Centre
National d'Etudes des Ttilécommunications.

Architecture and Implemenntion of Guide 65

Reþrences

Almes, G. T., Black, A. P., Lazowska, E. D., and Noe, J. D., ,.The Eden
System: A Tþchnical Review,,, IEEE Trans. Software Engineering,
vol. SE-11, no. 1, pp.43-59, January 19g5.

Alves Marques, J., Balter, R., Cahill, V., Guedes, p., Harris, N., Horn, C.,
Krakowiak, S., Kramer, 4., Slattery, J., and Vandôme, G.,
"Implementing the comandos Architecture," proc. Sth Annual Esprit
Conference, pp. 1140-1157, Brussels, November 19gg.

Birrell, A. D. and Nelson, B. J., "Implementing Remote procedure calls,,'
ACM Tians. on Computer Systems, vol.2, no. 1, February 19g4.

Decouchant, D., Duda,4., Freyssinet,4., paire, E., Riveill, M., Rousset
de Pina, X., and Vandôme, G., ..GUIDE:

an Implementation of the
COMANDOS Architecture on Unix,,, proc. EUùG Autumn Conf ., pp.
181-193, Lisbon, October 1988.

Decouchant, D., Krakowiak, S., Meysembourg, M., Riveill, M., and Rous_
set de Pina, X., "A synchrohization Mechanism for Typed objects in
a Distributed System," SIG?LAN Notices, vol.24, no. +, Rpril tl8g.

Decouchant, D., Paire, 8., and Riveill, M., ,,Efficient Implementation of
Low-level synchronization primitives in the unix-bãsed Guide Ker-
nel," Proc. EUUG Conf., pp.283-294, Vienna, October 19g9.

Jones, M. B. and Rashid, R. F., "Mach and MatchMaker: Kernel and Lan-
guage Support for Object-Oriented Distributed Systems,,, proc. OOp_
SLA'86, pp. 67-77, Portland, 1986.

Krakowiak, S., Meysembourg, M., Nguyen Van, H., Riveill, M., Roisin,
C., and Rousset de Pina, X., ..Design

and Implementation of an Ob_
ject-oriented, Strongly Typed Language for Distributed Applications,,,
Journal of Object-Oriented programming, vol. 3, no. 3, [p. tt_ZZ,
September-October 1990.

I'each, P. J., Levine, P. H., Douros, B. p., Hamilton, J. A., Nelson, D. L.,
and Stumpf, B. L., "The Architecture of an Integrated Local Net_
work," IEEE J. Selected Areas in Comm., pp. g42_g56, 19g3.

Leblanc, R. J. and Appelbe, w. F., "The clouds Distributed operating Sys-
tem," Proc. 9th Int. Conf . on Distributed Computing Sysiems, pp.
2-9, San Jose, Calif., June 1988.

66 Balter et al.

Liskov, B. H., "The Argus Language and System," in Distributed Systems:

Methods and Tools for Specifications, pp. 343-430, læcfure Notes in
Computer Science no. 190, Springer-Verlag, 1985.

Mullender, S. J., van Rossum, G., Thnenbaufl, A. S., van Renesse, R., and

van Staveren, H., "Amoeba: A Distributed Operating System for the

1990s," IEEE Computer, vol.23, no. 5, pp. 44-53, May 1990.

Robert, P. and Verjus, J., "Toward Autonomous Description of Synchroniza-
tion Modules," Proc. IFIP Congress, pp. 981-986, North-Holland,
1977.

Rozier, M., Abrossimov, V., Armand, F., Boule, L, Gien, M., Guillemont,
M., Herrmann, F., Kaiser, C., Langlois, S., Léonard, P', and Neu-

hauser, W., "The Chorus Distributed Operating System," Computing

Systems, vol. 1, no.4, pp.305-370, December 1988.

Schroeder, M. and Burrows, 4., "The performance of the Firefly RPC,"
ACM Trans. on Computing Systems, vol. 7, no. l, February 1990.

Shapiro, M., Gourhant, Y., Habert, S., Mosseri, L., Ruffin, M., and Valot,
C., "SOS: An Object-oriented Operating System - Assessment and

Perspectives," Computing Systems, vol.2, no. 4, pp. 287-338,De-
cember 1989.

Thatte, S. M., "Persistent Memory: A Storage Architecture for Object-Ori-
ented Database Systems," Proc. Int. Workshop on Obiect-Oriented
Database Systems, pp. 148-159, Asilomar, 1986.

[submitted Oct.]7, 1990; revised Nov. 30, 1990; accepted Jan.24, I99Il

Archítecture and Implementation of Guide 6l

