
An ASCII Database for Fast

Queries of Relatively Stable Data

Eric H. Herrin II and Raphael Finkel

University of Kentucky

ABSTRACT: This paper describes qddb, a database
program suite that addresses the common situation in
which data are infrequently changed. Searches in the
stable parts of databases are very efficient because they
use hash-based searching through a completely inverted
index, whereas searches in updated sections are less so.

All files used by qddb are in Ascii format, so they can

be easily modified by a knowledgeable user with a

simple text editor. The Ascii format does not detract
significantly from the efficiency of our database
package, and it allows databases to be distributed and
completely portable between architectures. The qddb
suite currently runs under both BSD and System V
Unix on a variety of machines. It is capable of
querying large databases on small machines with
limited memory.

@ Computing Systems, Vol. 4 ' No. 2 ' Spring 1991 127

I. Introduction

qddb is a database suite that attempts to provide a limited amount of
function with high efficiency. It incorporates the following unusual
ideas.

. A combination of hashing and indexing is used for quick re-
trieval. A complete inverted index is searched by hashing. Up-
dates create data outside the scope of the hash table that must be

searched in a less efficient manner.
. Although its exterior appears similar to other packages utilizing

the relational model, qddb allows attribute values to be missing

or multiple and of any length.
. Attribute values are stored as arbitrary-length Ascii strings. Or-

dinary text editors are used as data-entry and update tools.
. Attributes can be structured to contain other attributes.

qddb remedies many inefficiencies of general database packages when

the data are relatively stable, that is, when the data are changed infre-
quently. We concentrate on minimizing the number of system calls
(open and read calls) per query, since they are significantly more

time-consuming than small in-memory searches and computation. Our
file structure is designed to minimize system calls in the case of a sta-

ble relation, but it still performs acceptably for a relation with instable
parts.

A stable relation is one that has not been updated since the last

stabilization. \ü/e provide a stabilization routine that parses the entire
relation into keys and builds a hash table for quick retrieval of tuples

that contain any given key. This process may require a significant
amount of time in comparison to other database operations, but the

time is not excessive. An instable relation is one that has been up-

dated after the last stabilization; the instable parts of a relation are

the tuples that have been added or updated since stabilization.

I28 Eric H. Herrin II and Raphael Finkle

A key is defined to be any sequence of characters delimited by
white space or punctuation in any attribute value of a tuple. This defi-
nition is not crucial to our approach, but serves as a useful convention.
We could have been more restrictive (to uncommon English words)
or more inclusive (to all strings). Retrieval time is not affected by how
restrictive we are, but the size of one of the auxiliary files and the
time to stabilize is dependent on how many distinct keys appear in a
relation.

This paper begins by discussing the syntax and semantics of the
files that comprise a relation. We analyze the operations on these files
to demonstrate the performance benefits of our approach. The in-
memory structures used by qddb programs are presented and anaþed
to show how we use them to implement QSQL, a version of the query
language SQL appropriate to the qddb semantics. V/e then turn to en-
hancements of the basic model. Vy'e show how extra structure files can
make some searches faster. Finally, we discuss drawbacks to our ap-
proach and how an implementor might overcome them.

2. qddb Semantics and Syntax

The structure of each relation is defined by its schema, which specifies

the attributes associated with tuples in that relation. A qddb relation
is a set of tuples. Each tuple is a set of attribute values. Attributes
are either simple or expandable. Simple attributes contain at most
one value per tuple. An expandable attribute may have multiple val-
ues of the same tuple. We display these ideas in Figure 1.

In this example, attributes marked with "x" are expandable, that
is, they may be given multiple values. A student may have multiple ad-
dresses; each address may have multiple phone numbers. Each student
is expected to have taken multiple courses. Each occurrence of an ex-

pandable attribute is called an instance of that attribute. This example
also shows that attributes may have sub-attributes. The Address attri-
bute contains sub-attributes for such items as street address, city, and
zip code, and Street itself has sub-attributes for number, road, and

apartment number.
Tuples need not contain values for all defined attributes. For exam-

ple, we might leave off the Country attribute for addresses in the same

country as the school, or the MiddleNam¿ attribute for students with

An ASCII Database for Fast Qaeries of Relatively Stable Data 129

UniversitylD
Name (

FirstName
MiddleNane
LastName

)

Address (

Street (

Nu¡nber
Road
Apartnent

)

City
State
zíp

'Country
Phone*
EMaiI

)*
Course (

Number
Semester
Year
Grade
Credits

)*
Figure 1: A sample schema for student records

no middle name. No storage is occupied by attributes that have no

value.
The most fundamental query supported by qddb returns all tuples

containing a given key (independent of the attribute in which it is
found). More complex queries are also supported, such as Boolean

combinations, attribute-specific queries, and queries based on numeric
or other properties of attributes.

2.1 Schema syntØc

The scherna file specifies the names and order of a relation's attri-
butes. It can be constructed with any ordinary text editor. Once the

relation has been populated, the schema should be changed only by (1)

adding new attributes at the end, (2) adding subattributes at the end of
an attribute, or (3) using a program in the qddb suite that converts re-

130 Eric H. Herrin II and Raphael Finkle

Schena ::: I Options] [Record]+
Options ": ¡ ttashsize I I CacheSize] [CacheHasing]

I ReducedlD]
Hashsize ::: 'hashsize' r:r Integer
CacheSize ::= 'cachesize' r:r Integer
CachedHasing ::: rUse' 'Cached' 'Hasing'
ReducedID ::: 'Use' 'Reduced' 'Attribute' 'Identifiers'
Record ::: I IRecord 1+
IRecord ::: ID ['(' Record ')']'¡ ['*"]

ID::: String ['alias'String 1*, ['verbosename'Cstring]

String ,1: ¡a-zÃ-Zl la-zA-ZO-9l*
Cstring : : :r rr I I AnyPrintableASCllCharacter ¡ x I x I

Integer ':: [O-9]+
AnyPrintabIeASCIICharactet : : =

ÍA-Za-zO-sl@#'Eo^ &* O +-:l\, . /\+?-' { } Uu-l

Figure 2: BNF for the format of a scherna frle

lations from one schema to another by translating the entire relation
into presentation format by the first schema and then translating it
back to storage format by the second one. We discuss these forms
shortly.

The BNF grammar in Figure 2 defines the format of a schema file.

Items in single quotes are terminals of the grammar. White space in
the file is used as a separator and is otherwise ignored. Brackets indi-
cate optional items; if the brackets are followed bY "f ", the item must

appear one or more times; if they are followed by "*", the item may

appear zefo oÍ more times.
We have already seen a sample schema file in Figure 1. The

alias or verbosenane keywords may be used by programs that
present the relation to the user, but they have no impact on the con-

tents of the relation files. The hashsize keyword, if present, deter-

mines the number of hash buckets used during stablization. The other

options are discussed in subsequent sections.

2.2 Tuple syntarc

Tuples in the relation are also stored in Ascii and may be entered by
an ordinary text editor. The storage format is readable with some ef-

fort, but users typically deal with the presentation format of the data.

The qddb package includes routines to convert between presentation

and storage format.

An ASCII Database for Fast Queries of Relatively Stable Data 131

Each non-empty attribute in the tuple is presented as an attribute
name followed by its value. Expandable attributes are presented once

for each instance. The BNF grammar for the presentation format of tu-
ples is shown in Figure 3.

Figure 4 shows the presentation format of a tuple conforming to
the schema in Figure 1.

FullTuple ": '$NUMBER$' r:r rtrr [0-9]+ 'u' ';' Tuple
Tuple ':: I Record ¡*
Record ..: I lRecord]+
IRecord ::: I String ['(' Record ')']+
ID ::: String [':' CString]
String ' i: ¡a-z{-21+la-z{-20-9¡ x

Cstring::: "" I AnyPrintab]eASCllCharacter 1x rilr
AnyPrintableASCIlCharacter : : :

l*-Za-zo-9t@#|Eo^E"* O+-=l\,. /<>? -'{} U"_l
Figure 3: BNF grammar for the presentation format of tuples

$NLJilIBER$: rrorr'

Name (

FirstName : rrJoen

LastNane - uStudentu

)

Address (

Street (

Number - x456n

Road : "Sonewhere Lanerl
)
CitY : "Little Townrl
State : fAZn

Zipcode : "67890-1234"
)

Address (

Street (

Number r'123"
Road : "Zinbob Lanerl
Apartnent - n3A

)

CitY : "Lexingtonrl
State - trKYn

ZipCode :tt L2345-I234tl
)

Figure 4: An example of a tuple in presentation format

132 Eric H. Henin II and Raphael Finkle

3. File Structure

Each qddb relation is implemented as a Unix director containing sev-
eral files and subdirectories. The name of the relation is the same as

the name of the directory that contains these files. All files are in
Ascii. Some files are structure files, which assist in performing
searches. Structure files generally point into other files by means of lo-
cators, which are (offset, length) integer pairs. The files are as fol-
lows.

1. Schema--Jlhe schema for the relation, following the syntax
given in Figure 2 above.

2. StabIe-A file containing all stable tuples in the relation. They
are represented in storage format, in which tuples are separated
by blank lines, and every attribute starts on a new line with an
identifier, which is an (attribute identifier, instance number)
pair. Nested attributes include another such pair for each level
of nesting. For example, the apartment number of a student's
second address has the identifier "Vo3.2.1.1.3.1", meaning that
the attribute is the second instance of the third attribute given
by the schema in Figure 1. The meaning of this particular
attribute identifier can be summarized as follows:

. 3.2 : Address: second instance

. 1.1 : Street: first instance

. 3.1 : Apartment: first instance

Each tuple has an implicitly defined attribute called gNr.JrvrBERg

used as a unique identifier for that tuple in the relation.
Identifier "VoÙ" stotes both the unique identifier and a validity
flag (either "V" or "I"). The whole tuple can be marked invalid
(during an update, for example) by changing this flag; since
Stable has the same length afterward, all locators pointing into
it are still usable.

3. rndex-A structure file containing all hash buckets for the hash
table. Each bucket contains zeÍo or more entries. Each entry
contains a key followed by a list of locators for that key into
Stable.

4. HashTable-A structure file containing the hash table. Each
entry contains a locator into lndex, the number of keys that
hash to this entry, and the value of the hash function for this

An ASCil Database for Fast Queries of Relatively Stable Data 133

entry (so sparse tables are efficiently represented). The number

of buckets, hence the size of the hash table, is computed at

stabilization time to keep the number of collisions reasonably

small without making the table excessively long. The default

hash size may be overriden by the hashsize option in the

Schema.

5. changes-A directory containing a file for each tuple that has

been updated since the relation was last stablized. Each such file
is named by the serial number of the affected tuple and contains

that tuple in storage format. The affected tuples are marked

invalid in stable.
6. Additions-A directory containing a file for each tuple that

hass been added since the relation was last stabilized. Each such

file is named by the serial number of the affected tuple and

contains that tuple in storage format.
7. Additions/Nextuntry-A file containing the next serial

number to be used when a tuple is added.

Typically, programs that query the relation initialize themselves by
bringing HashTable into memory. Thereafter, a query on a single

key requires (l) computing the key's hash value, (2) examining the

hash table to find the locator into rndex for the associated bucket,

(3) reading a contiguous section of rndex to obtain locators into

stable for the tuples containing that key, and (4) reading a contigu-

ous section of Stable for each tuple to be presented. The list of loca-

tors built in step (3) is stored in an internal form called a Tuplelist
(see Section 4), which can be manipulated before step (4), for exam-

ple, to remove unwanted entries. Thus, the solution set X of a simple

query on stable data can be obtained in lXl + 2 read system calls,

including the one needed to bring the hash table into memory.
Each query must also search instable data. The additional cost is

one extra openlread pair plus one read of the changes or Additions
directories for each changed or added tuple. Thus, the number of ex-

cess openlread qystem calls is directly proportional to the number of
added and updated tuples in the relation, that is, the number of tuples

in the instable part.
In addition to the extra system calls, instable relations also require

significant computation, because a string-search routine like fgrep
must be used to determine the presence of keys.

134 Eric H. Herrin II and Raphael Finkle

rile have considered an alternative implementation: to log all up-

dates in a single Log file, with locators to that file stored in a separate

structure file called Loglocators. Each update would require invali-
dating the appropriate entry in Loglocators and appending the up-

date to l-og. This representation has the advantage that there are fewer

open calls needed to search updated tuples. (Open calls are potentially
expensive.) The log file approach is therefore more efficient than our

current method for querying instable parts of a highly modified rela-

tion.
The log file representation has the disadvantage that it requires

more computation to perform an update. Also, simultaneous updates to

different tuples require record locking in potentially many portions of
the two files. Our current approach has the advantage of less compli-
cated storage management and the expense of only a single pair of
open/write calls per update. Opening a single file for exclusive use is

suff,cient to prevent race conditions and allows all tuples to be updated

at once.
\ù/e accept the performance penalty of our method for instable rela-

tions because we assume that relations are changed infrequently; how-

ever, we believe that log files would be a useful addition to qddb.

4. TupleLists

A Tuplelist is an internal data structure (a singly-linked list of loca-

tors into stable) used by programs to represent sets of tuples. Search

routines generate a Tuplelist for each single-key query. Multiple-
key queries generate multiple Tuplel-ists that are merged in a man-

ner consistent with the type of query. Library routines accept, manipu-
late, and return these lists instead of dealing with tuples directly. The

values of the tuples can be extracted by following the locators.

More precisely, a Tuplel,ist node contains the following infor-
mation:

. The unique serial number of the tuple

. A locator for the tuple in Stable (if applicable)

' The type of the tuple: original for tuples in stable, change

for tuples in the changes directory, and addition for tuples in

the Additions directorY.

An ASCII Database for Fast Queries of Relatively Stable Data 135

id
offset
length

ryPe
next

Tuplclist

Stable

Figure 5: Tuplelists and a qddb relation

Changes/6

Additions20

Attribute values are not directly described by rupler,ists. Figure 5

shows the relationship between a Tuplel.ist and the various qddb
files.

Tuplelists allow us to prune the solution set of a search before
any tuples are read from the relation. The binary operations available
on Tuplelists are set union, intersection, and exclusion. We perform
these operations by traversing the two Tuplelists in the appropriate
manner. We keep these lists sorted by serial number to make the cost
of all operations linear in the combined size of the two Tuplelists.

For example, we might want to find a particular paper written by
several people in a bibliography relation. The intersection of the
Tuplelists that are produced by the individual searches for each per-
son produces a reasonable list.

5. Enhancements to basic qddb

The straightforward ideas presented so far constitute basic qddb. In
this section we describe enhancements to basic qddb, which generally
involve creating optional new structure files at stablization time in or-
der to make certain types of access more efficient. If these structure
files are missing, we disallow any query that would require them.
Most of the these enhancements were motivated by our sQLlike lan-
guage, QSQL, to which we will return in Section 6.

136 Eric H. Herrin II and Raphael Finkle

5.1 Attribute-specific queries

It is traditional in languages like sQL to base queries on characteristics

of particular attributes, not of tuples as a whole. To add such a facility,
we could join the attribute name to each word for the purpose of hash-

ing. Unfortunately, it would no longer be easy to perform attribute-
independent queries, and both HashTable and rndex would grow.

We chose a less restrictive method for attribute-specific queries

based on an extra structure file called Attributedrndex. For each

key, ettributedrndex augments each locator with an identifier that

describes the attribute in which the key occurs. Attributes are desig-

nated by enumerated attribute identifiers, which are single integers

that provide a way to uniquely identify each attribute name in the

schema. This information is readily available at stabilization time and

adds little overhead to the stabilization process. The corresponding

AttributedTuplel-ist data structure also decorates each entry by an

enumerated attribute identifier.
There is no extra system call overhead involved with this method.

The only performance penalties are: (1) space: Attributedrndex is
slightly larger than lndex to accommodate reduced attribute identifiers
and some new entries (if the same word appears in several attributes

of the same tuple), and (2) time: Uninteresting nodes must be deleted

from any AttributedTuplelist before tuples are read from the re-
lation.

Depending on the expected queries, relations may be stabilized
with either or both of tndex and ettributedrndex.

5.2 Regular Expression Searching

Basic qddb searches on keys. Instead, an SQL query might be posed

with respect to a regular expression to be matched directly against at-

tribute values. For example, searching for the pattern "606-293-([0-9]

t0-91t0-91t0-91)" should produce a list of telephone numbers in a par-
ticular city zone.

Regular expression searching usually requires a linear search of all
text in the relation. Some regular expressions are simple enough that
they are essentially equivalent to an intersection of ordinary word
queries. For example, the regular expression "operating systems" is

An ASCII Database for Fast Queries of Relatively Stable Duta 137

almost equivalent to the intersection of the queries "operating" and
"systems", although the intersection will include tuples that contain
these words in nonadjacent or reversed positions.

Reducing the regular expression to ordinary queries is often inade-
quate. Regular expressions cannot make use of hash tables, so we need

another way to naffow the search. It might seem reasonable to search

linearly through rndex, but that file is often longer than stable,
since it contains lists of locators.

Instead we rely on a new optional structure file, Keyrndex, con-
sisting of a single locator into the rndex file for each key. (See Figure
6.) Keyrndex is meant to be searched linearþ. Regular expressions to
be matched within a single key are matched against all the keys in the

Keyrndex file. However, regular expressions that are meant to cross

key boundaries (or involve non-key punctuation) must still be applied
to the Stable file and any instable parts of the relation. We have ob-

served that the size of Keyrndex is only about 15-35Vo the size of
rndex and about 20-3OVo the size of stable, so the time savings are

significant for appropriate regular-expression queries.

The expense of this method is two open system calls and

lizeqt(Keylndex)- i (number of entries found)
szeot(pleces read)

read system calls. An extra read of rndex is required for each key
found. When it is possible to read the entire list of keys into memory,
the computation required for regular expression searching will be pro-
portional to the number of keys in the relation, and the number of
reads will be one plus the number of entries found. The amount of
computation required for regular expression searches is, of course,
large.

5.3 Range Searching

sQl allows queries that treat attributes as numbers for comparison test-

ing. In order to handle such queries, we introduce another optional
structure file, Nunericlndex, which contains a sorted list of numeric
keys (represented in Ascii, decimal fixed point), each with a locator
into tndex. (See Figure 6.) A query program can then perform a bi-

138 Eric H. Herrin II and Raphael Finkle

HashTable

Figure 6: Oddb Files

nary search on Numericlndex to construct a Tuplel-ist matching

any numerical range or set of ranges. This binary search may read all
of Numericrndex and perform an internal search or may probe it as

an external data structure until the region of interest is small enough

to read into memory. Similarly, we use Keyrndex (defined above),
which we sort alphanumerically, for range searches of arbitrary
strings.

An ASCII Database for Fast Queries of Relatively Stable Data 139

5.4 Dírect Access Hash Tables

Large relations tend to have large hash tables. The space problem is

more severe when we run an sQL query that accesses several relations
at once. We wish to keep the memory requirements of query programs
as small as possible so that small machines can be used for queries,
even though larger ones might be needed for stabilization.

\iVe therefore allow an optional replacement for the HashTable
structure file called RandomHashTable. This table contains the same

information as Hashlable, but each entry has a fixed length, empty
entires are not omitted, and we omit recording each hashbucket num-
ber. When this table is present, query programs access individual hash

table entries on demand without reading and saving the entire table.
They may cache entries if they wish.

The time penalty that we incur is an occasional single read of the
RandonHashTable file or a search through the cashed entries on each

query. The space penalty is that RandornHashtable is generally con-
siderably larger than Hashtable because it does not suppress empty
entries and because each entry must be lengthy enough to hold the
largest entry.

5.5 Encoding Stable

The values in Stabte tend to occupy only a part of the file. The at-

tribute and instance identifiers (such as 7o3.2.1.1.3.1) sometimes re-
quire more storage than the actual data. In one genealogical database

we have designed, more than 40Vo of the stable file is occupied by
non-value information.

Since the identiûers are usually very repetitious, we can abbreviate
them for storage efficiency. The association between abbreviations and

full identifiers is stored in an optional Abbreviations file. The set of
abbreviations needed is discovered at stabilization time. The stable
file only uses these abbreviations, leading to a significant potential
space savings, especially in large relations with deeply nested attribute
structures. Entries in the changes and Additions directories may

use abbreviations where appropriate, or full identifiers where desired.

The performance penalty, which involves reading Abbreviations
once and then performing constant-time array lookup, is incurred only

140 Eric H. Herrin II and Raphael Finkle

by those programs that deal with presentation format. The identifiers
are not necessary for storage-format programs.

6. Support for QSQL

Implementing QSQL required that we define the meaning of standard
database operations in the presence of missing, expandable, and struc-
tured attributes.

Missing attributes can be either applicable or inapplicable [Codd
19901. An applicable missing attribute is one that should have a value,
but the value was unknown at the time of entry. An inapplicable miss-
ing attribute is one that has no value and the attribute does not have
meaning for a particular tuple. eSeL treats all missing attributes as in-
applicable. \ühen necessary, a user can put a "NULL" value into an
attribute to assert that it is applicable.

QSQL views tuples with expandable attributes as several tuples that
agree on their simple attributes and contain all combinations of values
of the expandable attributes.

Subattributes must be grouped together or chaos will result, as

seen in the subattribute grouping from the student database shown in
Figure 1. If each street is not grouped with the proper city, the ad-
dress is nonsense. We must not separate the subattributes when trans-
lating tuples to a relational format. eSeL extends standard SeL by
providing a syntax for specifying subattributes. In addition to tradi-
tional constructs of the form P.atffibute : "string", esel- also allows
constructs of the form P.attribute.subattribute : "string" .

Although QsQL methods for handling expandable and structured at-
tributes may appear to cause update anomalies, they do not. Decompo-
sition of a relation into a normal form is not necessary, because a tu-
ple containing expandable and structured attributes is still a single
tuple, albeit viewed as multiple tuples. Updates only operate on a sin-
gle physical tuple (multiple logical tuples). Consistency can be checked
at a higher level.

We chose UNIX-style regular expressions because they are much
more flexible than those defined by the standard. Standard sel allows
only wildcard replacement.

An ASCII Database for Fast Queries of Relatively Stable Data l4l

7. Current Status

Our first implementation of qddb, which only allowed Boolean combi-
nations of single-key queries, contained about 1000 lines of C code
and was programmed by one person over the course of about a month.
The name qddb stands for "quick and dirty", because our original in-
tent was to provide a simple database package that would not require
much effort to construct but would be useful to a wide community.
Since then, we have expanded, enhanced, and (hopefully) improved
qddb. Qddb now contains over 10,000 lines of C code, much of it
devoted to QSQL. The esel- interpreter is almost complete, and we
hope to add embedded esel, in the future. At present, there are few
users, but the suite of programs has not been publicized, nor has vari-
ous helpful software been written to assist the user.

qddb meets its goals of portability and speed. W'e access relations
from hosts of five different hardware architectures (Sequent Symme-
try, Sun 3, Sun 4, Yax, and DecStation) with identical code across the
network file system (NFS) on different versions of BSD Unix. The
same code also runs on various System V machines (AT8¿I 386, 381,
382).

qddb is relatively fast. It takes an average of 5 minutes on a 16
MHz 80386 machine to stabilize a relation of length 3,138,793 char-
acters (24,481keys). Single-key queries take only 35-300 millisec-
onds to return a Thplelist with 0-30 tuples on a stable relation using
Hashtable, not RandonHashTable. Reading and parsing a 20,000
entry sparse HashTabte (mostly full) consumes less than 6 seconds.
Reading and parsing a single hash table entry takes about 10-20 milli-
seconds on the average (used for reading the hash table on demand,
possibly caching entries). Individual tuples can be read in 0.6-40 mil-
liseconds, depending upon wehther the kernel has cached the relevant
portion of the stable file and on the location of the tuple in the file.
The most time-consuming single-key query that we can produce com-
pletes in under 800 milliseconds of real time (returning 30 tuples). Til-
plelist intersection using two or more keys consumes well under 800
milliseconds, since the number of tuples in the solution set is de-
creased by intersection. The time for Tuplelist union is slightly less
than linear in the number of keys.

142 Eric H. Herrin II and Raphael Finkle

We don't have many utilities yet. The following are fairly straighr

forward tools that would be worthwhile.

. Presentation utilities that present subsets of a tuple, eliding parts

that the user's view wishes to exclude.
. A tool for building user interfaces and pretty printers (report

generators) for individual relations.

8. Potential extensions

In this section we discuss ideas that might make qddb more suitable to

a wider range of applications. We do not contemplate implementing

them at this point.

8.1 Large Relations, Frequent Updates

Our approach is not appropriate for large relations that are heavily up-

dated. The penalties incurred by search increase linearly with each up-

date. However, stabilization is too expensive to undertake frequently

in a large relation.
V/e will present two approaches to this dilemma. The first partially

stabilizes after every few changes. The other incrementally stabilizes

after every change.

Each partial stabilization is a group of stable and structure

files, each group containing a subset of the total relation. Any query

needs to search all the groups, so we would prefer to limit how many

there are. However, such a limit implies that the groups have many

members, making them expensive to create.

One policy for maintaing groups is to merge groups when there

are too many. Let nbe a threshold value, say 100. We will allow at

most one group of size 2in for any i > 0. As soon as there are n in-

stable tuples, they are stabilized into a group by themselves. Such a

stabilization may lead to two groups of size n. In general, if there are

already groups of size Zinfor 0 = i (i, but not for i: i, all are

merged with the new group and become one new stable group of
size Vn.

An ASCII Database for Fast Queries of Retatively Stable Data 143

Incremental stabilization is an alternative approach that aims at

reducing the costs involved in searching a updated relation. These

costs are

The ndditions and Changes directories must be opened and

sequentially read to find the entries that have been added or
updated since the last stabilization.
Each addition or change entry is contained in its own file. Each

search must open and read the contents of all such entries.
The contents of each addition or change must be parsed into
keys during the search.

We can greatly reduce these costs by performing intermediate
calculations during each update. We maintain secondary structure
files that pertain to changes and additions: rndex. change,
HashTable. Change, rndex. Addition, and HashTable. Addition,
identical in function to their stable counterparts. The optional struc-
ture files could also be included. The locators in the new rndex files
contain only a file number (same as the file name in the changes and

Additions directories), that is, the serial number of the updated tu-
ple. The file number is used instead of an offset in the locator because

it is the file name and not the offset in stable that must be used to
retrieve the data.

Each search performs the following operations: (1) search via the
primary structure files, (2) search via the secondary files, (3) ignore
stable Tuplelist nodes that have the same identifier as a changed
node (we use the offset in stable as a unique identifier and use that
identifier to name the files that contain changed entries).

Each search suffers two additional open/read system-call pairs (one

for additions and one for changes) with an additional openlread qystem

call pair for each entry that matches the query. This method totally
eliminates cost I and greatly reduces the computation necessary for
costs 2 and 3.

An update to the relation is performed by deleting all previous ref-
erences to the updated entry in all secondary rndex files (to avoid in-
accurate locators) and appending a new locator to all appropriate en-
tries in the correct secondary rndex. An updated entry is marked

l.

2.

J.

I44 Eric H. Herrin II and Raphael Finkle

invalid in stable. The cost of this approach is quite reasonable when

the number of change and addition entries is relatively small. As the

number of updates increases, the cost of performing an update in-
creases due to the increasing size of the corresponding rndex file.

8.2 Transaction Support

We do not currently support transactions in qddb. Failure atomicity

could be implemented by giving each transaction private supplemental

Changes, Additions, and Deletions directories. These directories

would contain only those tuples that are updated from the standard di-
rectories. The stable file would not be updated during a transaction,

but entries in the supplemental oeletions or changes directories
would override entries in stable. The ordinary changes and

Additions directories would maintain their usual meaning.

Aborting a transaction only requires discarding the private directo-
ries. Committing a transaction requires merging private changes, addi-
tions, and deletions into the ordinary files. New changes replace

conflicting old ones. Where there is no conflict, the new change inval-
idates the corresponding entry in stable. New additions are renamed

if necessary to give them unique numbers. Deletions invalidate corre-
sponding entries in stable.

qddb currently uses record locking to insure that individual tuples

remain consistent. Implementation of appropriate locking strategies

would be necessary to guarantee serializable transactions.

8.3 Distributing qddb by Replication

qddb can be easily enhanced to distribute replicated data. Given the

structures outlined above for failure atomicity, we can transfer updates

performed on one site to the other sites by sending the changes, Ad-
ditions, and peletions directories. Restabilization can occur on

each site independently and concurrently, so there is no need for a
central site to transfer the entire relation at any time.

An ASCII Database for Fast Queries of Relativety Stable Data 145

9. Comparisons to Commonly Used

Approaches

Our design of qddb was influenced strongly by the refer stite of pro-
grams [Lesk 1978], which store and retrieve bibliographic data. Like
refer, qddb uses Ascii for the principal data file, allows arbitrary
strings as attribute values, allows attribute values to be missing, builds
index files for quick searches, and searches for keys independently of
which attribute they are in. Unlike refer, qddb permits a relation to
contain both a stable and an instable component, permits subattri-
butes, and distinguishes Ascii presentation from Ascii storage format.

We believe the flexibility of our approach is its major advantage
over many other approaches. Most techniques for retrieval are opti-
mized for access using keys in particular attributes. We do not think
that restricting to given attributes is always reasonable; some applica-
tions may require access to entries containing a specific key in an arbi-
trary attribute. Many other methods require that a key be unique in
the relation. We feel that this assumption is too restrictive. 'We

have

shown how to enhance our approach to allow attribute-specific re-
trievals, so our approach may be used whenever the other approaches

are apprpriate. Consistency checkers can police attribute uniqueness

when that restriction is useful.
Our implementation imposes a particular structure on the relation

file. Other methods, such as B-trees [Bayer 1972], impose a rigid
structure requiring a number of read system calls that increases loga-
rithmically (with a possibly large base) with the number of keys in the
relation. The number of reads required by our method does not in-
crease with the size of the relation, although the underþing file orga-
nization of uxtx will impose an increased number of low-level disk
reads for random access within very large files. A truly native imple-
mentation of qddb would place raw disk addresses in locators and
avoid this extra level of overhead [Stonebraker 1981].

9.1 Indexed Files

Methods that maintain indexed files, such as the indexed-sequential
methods, keep an index that consists of (key, index number) pairs.

146 Eric H. Herrin II and Raphael Finkle

Generally, index files are kept in a tree form so that a particular key

may be found in logarithmic time. The entire index is sometimes kept
in memory to make the search fast; but this step is not possible on ma-

chines with limited memory or with very large relations. An index

must be maintained for each attribute on which searches are allowed.
qddb only requires that the hash table and a single hash bucket

reside in memory at any given time. Using RandomHashTable, we re-
duce the memory requirement to one hash-table entry and one hash

bucket. The hash buckets are read at the time of the search and dis-

carded afterwards to free memory. qddb requires enough memory to
hold the largest hash bucket, so a good hash function will keep the

memory requirements small. The support of Tuplelist operations re-
quires enough memory to hold a Tuplelist for each key used in the

operations; a query using a dozen keys would require memory for a
dozen Tuplelists. A tuplelist requires memory proportional to
the number of entries in the solution set of the single key query.

9.2 Hashed Files

A classical hashed-file scheme builds a separate hash file for each at-

tribute on which searches might be made lWiederhold 1987]. Within
such a file, each hash bucket contains the contents of (not locators to)
all tuples that have keys in a given attribute that hash to that bucket.
Hashed files provide reasonable search times when:

1. The hash function is good (the number of collisions is very
small).

2. Only searches on keys within a single attribute are required.

3. The size of the individual entries is reasonably small.

The disadvantages of hashed database files include an extra read of an

entry for each collision and the inflexibility of hashing keys in a single

attribute.
qddb uses the method of hashed files in its indexes to produce the

speed we desire. Since we don't update the hash table until the next
stabilization, we need no extra space for future additions to buckets,

and the hash buckets are contiguous and of known length. We can al-
ways read an entire bucket with one system call.

An ASCil Datøbase for Fast Queries of Relatively Stable Data 147

9.3 Tree-structured Files

Thee-structured files provide a tree structure (usually binary) for a par-
ticular attribute in each entry. Multi-attribute searches require a sepa-
rate tree for each attribute on which queries are allowed. The number
of reads necessary for a single attribute query is logarithmic. Multi-
attribute searches require a search for each attribute, so the number of
reads is

number of attributes x logz (number of entries)

This estimate is based on a balanced binary tree.
Our approach also requires a search for each attribute in a multi-

attribute search, but the number of reads required for each search is a
constant (two) plus the number of entries that satisfy the query. The
number of trees required to allow a search on any attribute in a tree-
structured database is the number of attributes, so each attribute in
each entry must have two pointers associated with it. Any search that
is not specific to a particular attribute would require searching for the
key in every tree. Our approach requires a similar amount of storage,
but provides a significant performance improvement for large relations
and searches that are not specific to a particular attribute.

9.4 B-trees

B-tree implementations generally impose a fixed-length key so that
blocks of keys are of a fixed size (see Figure 7). Our approach is
somewhat similar to the following variant of a two-level B-tree: \Ve
could fix the size of the each bucket so that the size of each read of
rndex is of a given size (-r some percentage). The entire rndex file
is sorted by key. Instead of a hash table, we could access the tndex
file via the top-level node, which would be a list of key ranges and
associated locators to buckets. A binary search on the top-level node
produces a locator to the bucket containing the desired key, where
another binary search finds the appropriate locators to Stable.

The number of read system calls is identical to the number re-
quired by our approach, but it allows range searching on Ascii keys.
Another advantage to B-trees is that the size of the largest bucket is
somewhat constrained. We do not have control over the size of the

148 Eric H. Herrin II and Raphael Finkle

Root Index

a b c d E Í o h I I k

\\

Seco'nd Level Index

Daø BlocksrlrlGrh Bßn]
-Figure 7: A twolevel B-tree

Tuplelist associated with any given key, but our stabilization pro-
cess could easily find a good distribution. The b-tree approach costs

somewhat more than our hash-table approach in storage (keys are arbi-
trary lengths) and in memory lookup (a logarithmic number of string
comparisons must be made).

10. Discussion

rüe have shown that a large performance increase over general data-

bases can be achieved when managing relatively stable data. Our

approach allows a very flexible database format yet provides per-

An ASCII Database for Fast Queries of Relatively Stable Data 149

formance that is as good or better than other databases that have

inflexible formats. Our Ascii format allows portability between archi-
tectures, programmer readability, and a degree of error tolerance. The
error tolerance can be important if a particular disk error cannot be

corrected by the underþing operating system. A bad sector in our rela-
tion files does not affect the entire relation, and the relation can be

manually corrected by an experienced user. Tuplelists allow the
entire solution set of a query to be found without reading any tuples

from the relation.
rùy'e have detailed enhancements to the structure files that allow

fairþ efficient regular-expression and numeric-range searches and lim-
ited update without severely affecting search performance. Database

administrators may choose to build optional structure files at stabiliza-
tion time to provide only those features that enhance performance for
a particular application. These options are currently specified in
Schema.

We have compared our approach to the approaches commonly used

in generic database design. We purposely disregarded transaction man-
agement details such as file and record locking during update, since

we feel that such necessities are obvious. The fact that the instable
parts of a relation are segregated may make rollback particularly easy

in qddb. Increasing version numbers may be appended to the file
names of old updates to facilitate rollback of multiple updates.

V/e suggest that a specific implementation of our approach should
stabilize the relation on a regular basis; but of course, the interval
should depend upon the specific application. We foresee that some
large relations may need stabilization only a few times per year,
whereas others may need stabilization on a nightly basis. A conse-
quence of our current implementation is that the relation must be inac-
tive during a stabilization. We might be able to reduce the time a rela-
tion is unavailable by allowing new Additions and Changes directories
to be built during stabilization.

The major disadvantages of our approach are threefold: perfor-
mance degradation on updated relations, the computation needed for
stabilization and the attendant unavailability of the data, and the stor-
age required to hold the structure files. We accept the performance
penalties for updated relations, since our initial assumption was that

150 Eric H. Herrin II and Raphael Finkle

we are dealing with relations that are rarely updated. The computation

required to stabilize the relation cannot be avoided; the temporary un-

availability of the data, however, may make our approach unaccept-

able to applications that require high availability. We have noticed the

storage required for our rndex files is usually at least as large as the

relation, and in many cases, larger. Much of this size is attributable to

our definition of a key; some words such as ooRoad" (for the student

relation) or "the" (for the bibliography/abstract relation) appear many

times and produce large tndex files. A more restrictive definition of a
key would significantly decrease the size of the file' Even with large

relations, the storage cost should not be a prohibitive factor, since the

cost of large disk drives is rapidly decreasing. The stable part of the

relation could even be stored on write-once optical disks, with records

indicating which stable tuples are invalid kept on ordinary writable
store.

We have observed that our methods perform equally well regardless

of the size of the relation. A relation with 1,000 entries requires

roughly the same amount of time to satisfy a query as a relation with
1,000,000 entries. The major difference in speed is the startup time

for the query program to read HashTable. RandomHashTable seems

to virtually eliminate this difference. Query times do not increase no-

ticeably when multiple-attribute searches are perf"ormed. We suggest

that our methods are quite suitable for PC class machines or slow opti-
cal disks.

1I . Packaging

qddb is available as a set of utility programs and a library of routines

that are useful for building other programs. This code and documenta-

tion is available by anonymous ftp from f . ns. uky. edu: pub/unix/
qddb-<version>. tar . z. A listing for the 4s program is given in
Figure 8 to demonstrate how utility programs are easily built upon the

library routines.
Some of the programs in the suite are:

c nswiþ-Create an empty relation and build a schema file.
. qadd-Add a tuple to the specified relation.

An ASCil Database for Fast Queries of Retatively Stable Data 151

main(argc, argv)
int argc;
char *argvl;

{
char String[BUFSIZ];
char RelationlBUrSIZl;
Keylist *list;
unsigned long Length;

if (argc != 2) {
fprintf (stderr, trusage: %s Relation\n", argv [O] ;
exit (1) ;

Ì
strcpy(Relation, argv[1]) ;

printf("Reading hash table; please wait\n");
hitHash O ;

MakeHash (Relation) ;
printf ('tDone with hash table; you may begin\n");
while (gets(String) != NLILL) {

char *ptr;
Keylist *Lastlist = NULL;

ptr : String;
while lxptr !: '\0') {

char *token;

token: ptr;
while (!isspace(*ptr) && {cptr t: '\Ot

ptrl-l;
if 1*ptr !: tr\g') {*ptr#: '\O'i

while (isspaee 1*ptr))

ptr+r;
Ì
list = Search(Belation, token, &Length);
if (Lastlist != NULL)

Iist : Lastlist =
Keylistlntersection (1ist, Lastlist) ;

else
Lastlist : líst; 40

)
PrintKeylist (Relation, list) ;

Ì
exit (O) ;

Figure 8: C Listing for 4s

10

20

30

152 Eric H. Herrin II and Raphael Finkle

. qconv
-Convert

a relation in presentation format to qddb inter-
nal format.

. qedit-search a qddb database for a Boolean combination of
single-key queries and edit or list all entries found.

. qindex-Rebuild structure files, such as HashTable, rndex,
Keyrndex, and Nunericrndex. The current implementation re-

quires that all keys fit into memory. On small machines, such as

a PC, this restriction is unacceptable. We plan to build a second

version of qindex that uses temporary files instead of memory;

however, the stabilization process will be considerably slower.

We recommend that stabilization occur on large machines when

they are available. The relation files can then be transferred to a

PC for query sessions, since our format is machine-indepedent.
. qkeys-Rebuild staule. keys.
. qs-Perform interactive queries; initializes by reading

HashTabIe.
. qstab-Merge all changes and additions into stable.
. qschemamod-Allows arbitrary update of schema-
. qsql-Interactively process QsQr, queries and updates.

The principal library routines are:

. void rnitHash t I -Initialize
the internal hash table.

. void MakeHash (char *RelationName)
-Read

HashTable
for the given relation.

. void ChangeEntry (char *RelationName, Entry
TheEntry)

-Make
a change to a tuple by invalidating the old

entry and adding the new one to the appropriate location.
. void AddEntry (char xRelationName, Entry TheEntry)-

Add a new tuple to the relation.
. Schema *ReadRelationSchema (char xRelationNane)

-
Read the schema file for the relation, parse it and return an in-
ternally represented schema.

' Tuplelist *Search(char *Re1ationName, char
xsearchstring, unsigned long
*NunberOf Entr i esRead)

-search
the relation for a particular

string and return the tupleList and the number of entries

found.
. Tuplelist *TupIeListUnion (Tuplel,ist *Tuplel,istl,

Tuplelist *Tuplelist2)-Perform the set union on the

An ASCil Database for Fast Queries of Relatively Stable Data 153

given Tuplelists and return the result. The given Tuplelists
are destroyed upon return from this routine.

. Tuplel,ist *Tuplel,istlnterseetion (Tuplel,ist
*Tupleli st1, Tupl el,i st *TupIeLi st2)

-Perform
the set

intersection on the given ruplelists and return the result. The
given Tuplelists are destroyed upon return from this routine.

. Tuplelist *TupIeListNot (Tuplelist *In, Tuplelist
*ButNotln¡

-Perform
the set exclusion on the given

Tuplelists; return all nodes in In but not in ButNotln. The
given Tuplelists are destroyed upon return from this routine.

. unsigned long SizeOfFile (int FileDesc)-Return the
size of the given file; usually used to read the contents of a file
in a single read.

. void ReadEntry (int FileDesc, Entry ThisEntry,
unsigned long Start, unsigned long l-ength)-Read an
entry with the given offset and length in the file.

' void WriteEntry (int FileDesc, Entry Thisnntry-rù/rite
the entry into the file at the current location.

. unsigned long GetEntryNumber (Entry TheEntry)
-Returnthe unique identifier of the entry.

. Boolean Entrylnvalid (Entry TheEntry)
-Return

Thue if
the entry has been updated; false otherwise.

154 Eric H. Herrin II and Raphael Finkle

References

R. Bayer. Symmetric binary b-trees: Data structure and maintenance al-
gorithms. Acta Informatica, I(4):290-306, 1972.

E. F. Codd. The Relational Model for Database Management, Version 2. Ad-
dison Wesley, 1990. ISBN 0-201 -14192-2.

C .J. Date. A Guide to the SQL Standard. Addison-Wesley, 1987. ISBN 0-
201-05777-8.

Henry F. Korth and Abraham Silberschatz. Database System Concepts. Com-
puter Science Series. McGraw-Hill, 1986. ISBN 0-07-044752-7.

M. E. Lesk. Some applications of inverted indexes on the unix system. Unix
Programmer' s Manual, 2b, I97 8.

Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line
string searches. Proceedings of the first Symposium on Discrete Al-
gorithms, January, 1990.

Michael Stonebraker. Operating system support for database management.
Communications of the ACM, 24(7), 1981.

Gio Wiederhold. File Organizationfor Database Design. Computer Science
Series. McGraw-Hill, 1987. ISBN 0-07-070133-4.

[submitted Feb. 4, 1991; revised July 7, l99I; accepted July 24, I99l]

Permission to copy without fee all or part of this material is grânted provided that the copies are not
made or distributed for direct commercial advantage, the Computing Systems copyright notice and its
date appear, and notice is given that copying is by permission of the Regents of the University of
Califomia. To copy otherwise, or to republish, requires a fee and/or specific permission. See inside
front cover for details.

An ASCil Database for Fast Queries of Relatively Stable Data 155

