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ABSTRACT We present an I/O architecture, called
Swift, that addresses the problem of data rate mis-
matches between the requirements of an application,
storage devices, and the interconnection medium. The
goal of Swift is to support high data rates in general
purpose distributed systems.

Swift uses a high-speed interconnection medium to
provide high data rate transfers by using multiple
slower storage devices in parallel. It scales well when
using multiple storage devices and interconnections,
and can use any appropriate storage technology, includ-
ing high-performance devices such as disk arrays. To

address the problem of partial failures, Swift stores

data redundantly.

Using the UNx operating system, we have constructed
a simplified prototype of the Swift architecture. The
prototype provides data rates that are significantly faster
than access to the local SCSI disk, limited by the ca-

pacity of a single Ethernet segment, or in the case of
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multiple Ethernet segments by the ability of the client
to drive them.

We have constructed a simulation model to demonstrate
how the Swift architecture can exploit advances in pro-
cessor, communication and storage technology. We
consider the effects of processor speed, interconnection
capacity, and multiple storage agents on the utilization
of the components and the data rate of the system. We
show that the data rates scale well in the number of
storage devices, and that by replacing the most highly
stressed components by more powerful ones the data
rates of the entire system increase significantly.

1 . Introduction

The goal of our I/O architecture is to support high data rates in a gen-
eral purpose distributed system. This architecture, called Swift, ad-
dresses the problem of data rate mismatches between the requirements
of an application, the maximum data rate of the storage devices, and
of the interconnection medium. Swift accomplishes this goal by using
a high-speed interconnection medium to provide high data rate trans-
fers by using multiple slower storage devices in parallel. swift has the
flexibility to use any appropriate storage technology, including high-
performance devices such as disk arrays. It can adapt to technological
advances to provide for ever increasing I/O demands.

The current generation of distributed computing systems do not
support I/O-intensive applications well. In particular, they are inca-
pable of integrating high-quality video with other data in a general
purpose environment. For example, multimedia applications require
this level of service and include scientific visualization, image process-
ing, and recording and play-back of color video. The data rates re-
quired by some of these applications range from I .2 megabytes/second
for DVI compressed video and 1.4 megabits/second for CD-quality au-
dio [1], up to 90 megabytes/second for uncompressed full-frame color
video.
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Advances in VLSI, data compression, processors, communication
networks, and storage capacity mean that systems capable of integrat-

ing continuous multimedia will soon emerge. In particular, the emerg-

ing ANSI fiber channel standard will provide data rates in excess of I
gigabit/second over a switched network. In contrast to these advances,

neither the positioning time (seek-time and rotational latency) nor the
transfer rate of magnetic disks have kept pace.

The architecture we present solves the problem of storing and re-
trieving very large data objects from slow secondary storage at very
high data rates. Its goal is to support high I/O data rates in a general

purpose distributed storage system. It stripes data over several disks

[2], much like R¡n [3], driving the disks in parallel to provide high
data rates. Swift, unlike R^oll, was designed as a distributed storage

system. It provides the advantages of easy expansion and load sharing,
and also provides better resource utilization since it will use only those

resources that are necessary to satisfy a given request. In addition,
Swift has the flexibility to use any appropriate storage technologY, in-
cluding a disk aÍray, or other high-performance storage devices such as

an array of tapes.

We have conducted two studies to validate the Swift architecture.
The first was a proof-of-concept prototype of a simplified version of
Swift implemented on an Ethemet using the UNIx operating system.

This prototype provides a UNx-like file system interface, that includes

open, close, read, write and seek. It uses distributed disk striping
over multiple servers to achieve high data rates. In the case of syn-

chronous writes, the prototype on a single Ethernet segment with
three servers achieves data rates that are more than double that pro-

vided by access to the local SCSI disk. In the cases of reads and asyn-

chronous writes, the data rates achieved by the prototype scale approx-

imately linearþ in the number of storage agents up to the saturation of
the Ethernet segment.

The second study is a discrete-event simulation of a simplified
local-area instance of the Swift architecture. It was constructed to
evaluate the effects of technological advances on the scalability of the

architecture. The simulation model shows how Swift can exploit a
high-speed (gigabit/second) local-area network and faster processors

than those currently available. The simulation is also used to locate the

components that will limit I/O performance. Our simulation includes
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processor utilization, taking into account not only the data transmis-
sion but also the cost of computing parity blocks for the data.

The remainder of this paper is organized as follows: the Swift ar-
chitecture is described in $2 and our Ethernet-based local-area proto-
type in $3. Measurements of the prototype are presented in $4. Our
simulation model is then presented in $5. In $6 we consider related
work and present our conclusions in $7.

2. Description of the Swift Architecture

swift builds on the basic notion of striping data over multiple storage
agents and driving them in parallel. The principle behind our architec-
ture is simple: use a high-speed interconnection medium to aggregate
arbitrarily many (slow) storage devices into a faster logical storage
service, making all applications unaware of this aggregation. several
concurrent I/O architectures, such as Imprimis ArrayMaster [4],
DataVault [5], CFS [6,71, RADD [g] and Ren [3, g], are based on
this observation. Mainframes [10, 11] and super computers [12] have
also exploited this approach.

Swift is a client/server distributed architecture made up of inde-
pendently replaceable components. The advantage of this modular ap-
proach is that any component that limits the performance can either
by replaced by a faster component when it becomes available or can
be replicated and used in parallel. W'e first describe the architecture in
general terms and then present a more detailed description of each of
its components.

Since Swift is a distributed architecture with many independent
components, partial failures are an important concern. If no precau-
tions are taken, then the failure of a single component, in particular a
storage agent, could hinder the operation of the entire system. For ex-
ample, any object which has data in a failed storage agent would be-
come unavailable, and any object that has data being written into the
failed storage agent could be damaged. The accepted solution for this
problem is to use redundant data, including multiple copy ll3l and
computed copy (eraswe-correcting codes) [3]. While either choice is
compatible with our architecture, we plan to use computed copy re-
dundancy (in the form of parity) in a future version of the prototype.
This simple approach will provide resiliency in the presence of a sin-
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gle failure (per parity group) at a low cost in terms of storage but at

the expense of some additional computation.

Swift assumes that objects are created and used by clients and that
they are managed by the several components of Swift. In particular,
objects are stored by storage agents. An implementation of Swift op-
erates as follows: when a client issues a request to store or retrieve an

object, a storage mediator reserves resources from all the necessary

storage agents and the communication subsystem in a session-oriented

manner. The storage mediator then presents a distribution agent with a

transfer plnn. Swift assumes that sufficient storage and data transmis-
sion capacity has been reserved and thus will be available, and that ne-
gotiations between the client (that can behave as a data producer or a
data consumer) and the storage mediator will allow the preallocation
of these resources. Resource preallocation implies that storage media-

tors will reject any request with requirements it is unable to satisfy.

The request can be delayed and reissued later when more resources are

available. To then transmit the object to or from the client, the distri-
bution agent stores or retrieves the data at the storage agents following
the transfer plan with no further intervention by the storage mediator.
The components of the Swift architecture are depicted in figure 1.

In Swift, the storage mediator selects the striping unit (the amount
of data allocated to each storage agent per stripe) according to the data

rate requirements of the client. If the required transfer rate is low,
then the striping unit can be large and the data can be spread over

Stongc
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Figure 1: Components of the Swift Architecture
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only a few storage agents. If the required data rate is high, then the
striping unit must be chosen small enough to spread the data over
sufficient storage agents to exploit all the parallelism needed to satisfy
the request. By allowing variable striping units the Swift architecture
achieves better resource utilization by using only the resources that it
needs to satisfy a request.

In the following subsections the distribution agent, storage media-
tor, and storage agent are presented in more detail.

2.1 Distribution Agent

The distribution agent acts on behalf of its clients, the data producer
and the data consumer, in the storage and retrieval of all data. Al-
though not strictly required, we expect that in practice both the data
producer and the data consumer will be co-resident with the distribu-
tion agent serving them.

The distribution agent interacts with the storage mediator to obtain
directory service, access rights to objects, encryption keys, and trans-
fer plans. In addition, all computed transformations of the data, such
as encryption and erasure correcting codes, are done by the distribu-
tion agents. Authentication is accomplished through a secure exchange
of keys with the storage mediator to obtain a trusted communication
channel.

The primary task of the distribution agent is to implement striping
of the data over several storage agents. lVhen retrieving an object
from storage the distribution agent assembles the object from the in-
coming data streams according to the transfer plan. When storing an
object, the distribution agent distributes the object among the several
storage agents. In both cases the distribution agent performs all neces-
sary redundancy computations to provide fault tolerance. As we shall
see in $5.2, these computations can put a significant burden on the
processor. Fortunateþ, this will be mitigated by the availability of in-
creasingly powerful processors.

2.2 Storage Mediator

The storage mediator is central to establishing and administering the
storage and communication resources of the system. First, it deter-
mines the size of the data block that is used for computing parity
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blocks and for transmission over the interconnection medium. Second,
the storage mediator negotiates with the storage agents to reserve
sufficient space and communication capacity. Third, the storage media-

tor determines how to best meet the resiliency requirements and re-
turns this as part of the transfer plan.

The transfer plan contains all the information necessary to store or
retrieve an object administered by the system. In particular, it con-
tains the transfer unit for the request, a list of storage agents to hold
the data, a list of storage agents to act as checks on the data, and the
internal handles to be used when transferring data to and from these

storage agents.

The storage mediator is the sole repository for encryption keys.
Encryption is the mechanism that will be used to provide authentica-

tion, access control, and security of the data. The storage mediator
will use a secure key exchange protocol to authenticate the distribution
agents.

In order to achieve high performance, a pessimistic storage alloca-

tion strategy is used. Since all resources are preallocated, requests that
would exceed current storage or communication capacity will be de-

nied. These requests can be reissued at a later time when more re-
sources are available.

The storage mediator will use a call-back mechanism to provide
cache coherency. V/hen a distribution agent requests access to an ob-
ject that still may exist in the cache of some other client, the storage

mediator will cause that cache to be flushed as part of the resource al-
location protocol. Resource preallocation allows Swift to effectively
support sequential write sharing, as alternative access to the same data

will always find the data in only one cache, making invalidation
simple.

The storage mediator must be available and the metadata it main-
tains be fault tolerant. For example, each directory entry would con-

tain the name of the object, its protection status, a list of data seg-

ments and storage agents that hold the object. The loss of directory
information implies the inaccessability of all objects referenced by that
directory. The integrity of the storage mediator's data can be insured

in several ways. Our preferred method is to let Swift administer the

metadata and specifying a high degree of redundancy. Another ap-

proach would be to use standard data base techniques such as a write-
ahead log [14, 15].
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2.3 Storage Agents

The storage agents administer all aspects of secondary storage media,
including data layout optimization and off-line data alignment. Each
storage agent may administer many storage devices. These storage
devices can be disks or other high speed devices including arrays of
disks or tapes.

Since the Swift architecture is intended for objects much larger
than any cache, we believe that caches will be used most often for
staging data into transfer units than for storing complete objects. For
small objects, we expect that caches will be as beneficial as in other
systems [16].

Swift achieves reliability through the appropriate use of redun-
dancy. For example, object descriptors store redundant information
that allows the reconstruction of all objects by scavenging the data in
the storage agents, should a catastrophic failure, or a software error,
render the storage mediator inoperative. By using the error detecting
capabilities of the disks, a single parity disk is sufûcient to tolerate a
single failure U7,3l.In this way, if a disk fails it can be reconstruct-
ed using the information on the other disks. Higher level erasure-
correcting codes can be used if more than one failure is to be toler-
ated [18].

3. Ethernet-based Prototype of Swift

A simplified prototype of the Swift architecture has been built as a set
of libraries that use the standard filing and interprocess communication
facilities of the UNx operating system. We have used the UNrx file sys-
tem facilities to name and store objects, making the storage mediators
unnecessary. There is no need to explicitly build transfer plans since
the library interleaves data uniformly among the set of identical stor-
age agents that are used to service a request.

Objects administered by the prototype are striped over several
servers, each of which has its own local SCSI disk and acts as a stor-
age agent on an Ethernet-based local-area network. Clients are pro-
vided with a UNx-like file system interface that includes open, close,
read, write and seek operations.
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Figure 2: An Ethernet-based implementation of the Swift architecture.

The structure of the prototype is depicted in figure 2. The Swift
distribution agent is embedded in the libraries that are invoked by the
client. The storage agents are represented by Unx processes on serv-

ers that use the standard UNx file system.

When an I/O request is made, the client communicates with each
of the storage agents involved in the request so that they can simulta-
neously perform the I/O operation on the striped file. Since a file may
be striped over any number of storage agents, the most important
performance-limiting factors are the rate at which the client and its
servers can send and receive packets, and the maximum transfer rate
of the Ethernet.

The current prototype has allowed us to confirm that a high aggre-
gate data rate can be achieved with the Swift architecture. The data
rates of an earlier prototype using a data transfer protocol built on the
rcr [19] network protocol had proved unacceptable.

In our first prototype a TCp connection was established between the
client and each server. These connections were multiplexed using se-

Iect. Since rcp delivers data in a stream with no message boundaries,
a significant amount of data copying was necessary. The data rates
achieved were never more than 45Vo of the capacity of the Ethernet.
Initially, select seemed to be the point of congestion. A closer
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inspection revealed that using rcp was not appropriate since buffer-
management problems prevented the prototype from achieving high
data rates.

The current prototype has been built using a light-weight data
transfer protocol on top of the uor [19] datagram protocol. To avoid as

much unnecessary data copying as possible, scatter-gather I/O was

used to have the kernel deposit the message directly into the user
buffer.

In the current prototype the client is a Sun 4/75 (Seancstation 2)
with 64 megabytes of memory and 904 megabytes of local SCSI disk
(unused in our experiments). It has a list of the hosts that act as stor-
age agents. All storage agents were placed on Sun 4120s (SLC) each

with 16 megabytes of memory and identical local SCSI disks each

with a capacity of 104 megabytes. Both the client and the storage
agents use dedicated uop ports to transfer data and have a dedicated
server process to handle the user requests.

3.1 The Data Transfer Protocol

The Swift client uses a unique um port for each connection that it
makes. This was done in an effort to allocate as much buffer space as

possible to the client. The client services an open request by contact-
ing a storage agent at its advertised uop port address.

Each Swift storage agent waits for open requests on a well-known
uor [19] port address. When an open request is received, a new (sec-

ondary) thread of control is established along with a private port for
further communication regarding that file with the client. This thread
remains active and the communications channel remains open until a

close request is received from the client; the primary thread always
continues to await new open requests.

When a secondary thread receives a read or write request it also
receives additional information about the type and size of the request
that is being made. Using this additional information the thread can
calculate which packets are expected to be sent or received.

In the case of a read request, the client sends requests for the first
several blocks to the client. This work-ahead allows several blocks to
be in various states of transmission to the client and has resulted in
significant data-rate benefits. The client and its servers implement a
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simple sliding window protocol to assure that packets are not lost and
are assembled in the correct order at the client.

With a write request, the client sends out the data to be written
one block at a time, and receives an explicit acknowledgment for
each. Using explicit acknowledgments was necessary to prevent the
client from flooding the servers with packets while they were perform-
ing synchronous writes. In our experiments, the extra acknowledg-
ments did not have a significant impact on the measured data rate, al-
though in a faster network a more sophisticated protocol should be

used. On receipt of a close request, the client expires the file handle
and the storage agents release the ports and extinguish the threads
dedicated to handling requests on that file.

4. Measurements of the Swtft Prototype

To measure the performance of the Swift prototype, one, four, eight,
and sixteen megabytes were both read from and written to Swift ob-
jects. In order to calculate confidence intervals, ten samples of each

measurement were taken. Analogous tests were also performed using
the local SCSI disk and the NFS file service. For all data rate mea-

surements in this section, kilobytes is used to denote thousands (103

instead of 2ro) of bytes per second.

In order to maintain cold caches, the file was mapped into the vir-
tual address space of a flushing process. All pages of the file were
then invalidated, which requires them to be refetched from disk when
the file is next accessed. Finally, the mappings were removed to delete
all references to the pages of the file. Other methods, such as dis-
mounting the disk partition containing the file, were also tried and
yielded similar results.

To calibrate the performance of the prototype we first measured
the performance of the local SCSI disk on each Sun 4/20 that would
act as a server. The measurements were similar for each host, and the
results from one of these hosts is presented in table 1.

The results of the local SCSI measurements indicate that a Sun

4120 with a Quantum 1045 local disk is capable of reading data at ap-
proximately 425 kilobytes/second. The measured values descrease

slightly as the amount of data to be read increases, with a precipitous
drop when the file is 8 megabytes in length. The experiments with
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Täble 1: Measured performance of local SCSI disk in
kilobytes/second.

synchronous write measure the rate at which the local SCSI disk can
write data to the actual device in 8 kilobyte blocks. This rate is ap-
proximately 70 kilobytes/second, and decreases with the length of the
file. The most probable reason for this is the increased complexity in
accessing data blocks as the length of the file increases. The experi-
ments with asynchronous write measure the rate at which writes can
be made by the file system to memory and then written to disk when
the file system can do it most efficiently. This is the performance a
user perceives when writing to the local disk. The data is not guaran-
teed to be written to disk even after the file has been closed. These
measurements reveal that the rate at which the local file qystem of a
Sun 4/20 will asynchronously write data is approximately 420 kilo-
bytes/second for large files. There is a significant drop in performance
from a relatively small file (one megabyte) at over 550 kilobytes/
second to a large file (sixteen megabytes) at 4L6 kilobytes/second. The
reason for this drop in perfotmance is that buffer space is exhausted
and so the file system is forced to begin writing data to disk.

The performance of a single Swift server is presented in table 2.
The prototype performs nearly as well as accessing the local SCSI
disk, with the prototype being slightly slower due to data transmission
and protocol processing delays. The prototype sends several requests
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Table 2: Swift performance with a single server in kilobytes/second.
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(in this case two), which allows the server to work-ahead on the file,
processing further accesses to the local disk while the data is being
transmitted. This enables the prototype to read approximately 350
kilobytes/second using a single Sun 4/20 as a server. When syn-
chronous writes are considered, the prototype performs almost identi-
cally to the local file system, with the prototype being only slightly
slower due to transmission delays. When asynchronous writes are con-
sidered, the performance of the prototype with a single server is com-
parable with the local file system. The prototype is able to write ap-
proximately 400 kilobytes/second for large files. This is only slightly
slower than the local file system, and can be attributed to the transmis-
sion delay introduced by the Ethernet.

The performance of the prototype with two servers on a single
Ethernet segment is summarizedin table 3. In all cases, the prototype
with two servers performs approximately twice as well as the proto-
type with a single server. When reads are considered, the prototype
performs slightly less than twice as well with two servers as it did
with a single server. The primary reason for this disparity, which as

we will see becomes increasingly an issue when more servers are em-
ployed, is the ability of the Sp¡ncstation 2 to receive data over the

Ethernet. In the case of synchronous writes, the data rate of the proto-

type with two servers almost exactly doubles its data rate with a single
server. There is no noticeable degradation since the Ethernet is only
lightly loaded by the approximately 130 kilobytes/second being trans-
ferred. In the case of asynchronous writes, the prototype with two
servers approximately doubles the data rate of the prototype with a

single server.
The results for the experiments with the prototype using three

servers on a single Ethernet segment are presented in table 4. In the
case of reads, the data rate is approximately three times that of a sin-
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Table 3: Swift performance with two servers on one Ethernet in
kilobytes/second.
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Täble 4: Swift performance with thee servers on one Ethernet in
kilobytes/second.

gle server. The data rate increase is not strictly linear since the Ether-
net is becoming saturated, and the ability of the Sp¡Rcstation 2 to re-
ceive data quickly over the Ethernet is limited. When synchronous
writes are considered, the data rate continues to scale approximately
linearly in the number of servers. For asynchronous writes, the in-
crease in data rate is also muted by the Ethernet. Even so, the perfor-
mance is better than that of reads since transmitting data over the Eth-
ernet requires fewer context-switches and less data copying than it
does in receiving it, which puts less load on the Sp¡ncstation 2.

For the purposes of comparison, measurements were also made of
the data rates provided by a high performance NFS file server. This
server was a Sun 4/490 with 64 megabytes of memory and 5 gigabytes
of disk space on IPI drives. This server is connected to the same
spARcstation 2 client that was used in the prototype experiments by a
second network interface. The network is a shared departmental Eth-
ernet, so measurements were conducted late at night to minimize in-
terference from other tasks.

The results of these experiments are presented in table 5. In the
case of reads, the high performance NFS file server performs approxi-
mateþ 73Vo better than the prototype with a single server. This is not
surprising since the Sun 4/490 is designed to act as a file server, and
the IPI disks are many times faster than the local SCSI disk used by
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Täble 5: NFS performance from Sun 4/75 client to Sun 4/490 server.
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the prototype. When synchronous writes are considered, the NFS file
server performs approximately 46Vo better than the prototype with a
single server. But when multiple Swift servers are used, the prototype
provides significantly better performance than the NFS file server.
When asynchronous writes are considered, the Swift server also pro-
vides significantly better performance when even a single server is em-
ployed. Vy'e must be careful when comparing Swift to NFS, since Swift
is a prototype and does not provide all of the features that NFS must
support. For example, NFS must be stateless and provide guarantees

even on asynchronous writes that are much stronger than those pro-
vided by Swift.

The measurements of the prototype on a single Ethernet segment
demonstrate that the Swift architecture can achieve high data rates on a

local-area network by aggregating data rates from slower data servers.
The prototype also validates the concept of distributed disk striping in
a local-area network. This is demonstrated by the prototype providing
data rates higher than both the local SCSI disk and the NFS file
server.

4.1 Measurements with a Second Ethernet
Segment

To determine the effect of doubling the data rate capacity of the inter-
connection, we added a second Ethernet segment to the client and
added additional storage agents. In this case the storage agents were
Sun 4/20s (SLC) in faculty offices which have only 8 megabytes of
memory, but have the same local SCSI disks as the hosts in the labo-
ratory. This second Ethernet segment is shared by several groups in
the department. Measurements were performed late at night, and dur-
ing this period the load on the departmental Ethernet segment was sel-
dom more than 5Vo of its capacity.

The interface for the second network segment was placed on the S-
bus of the client. As the S-bus interface is known to achieve lower
data rates than the on-board interface, we did not expect to obtain
data rates twice as great as those using only the dedicated laboratory
network. We also expected to see the network subsystem of the client
to be highly stressed.

The results for two storage agents on two separate Ethernet seg-

ments are presented in table 6. When compared with the results for
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Täble 6: Swift performance with two servers on two Ethernets in
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two storage agents on a single Ethernet segment, it is apparent that in
the case of reads, having storage agents on two networks is slightly
worse than having them on a single network. There are several rea-
sons for this anomaly. First, since there are two network interfaces
more interrupts must be fielded by the client. Second, the second net-
work is shared by the entire department and so there was a slight load
even late at night. Finally, the hosts on the departmental Ethernet seg-

ment have less memory than those in the laboratory. The results for
synchronous writes are comparable with those obtained with a single
Ethernet segment and the data rate scales linearþ. The measurements
of asynchronous writes are also comparable with those obtained with a

single Ethernet segment. The reason for the difference in scaling is
that a write puts less stress on the Spencstation2than a read does. A
write requires fewer context-switches and less data must be copied. A
write also does not require an interrupt to signal its completion.

The results for four storage agents on two separate Ethernet seg-
ments is presented in table 7. When reads are considered, it is appar-
ent that the data rate does not scale linearly since it is comparable with
that of three storage agents on a single Ethernet segment. This is again
due to the complexity of using two Ethernet interfaces. In the case of
synchronous writes, the data rate continues to scale linearþ, perform-
ing twice as well with four storage agents as it did with two. Asyn-
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Thble 7: Swift performance with four servers on two Ethernets in
kilobytes/second.
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Table 8: Swift performance with six seryers on two Ethernets in
kilobytesisecond.

chronous writes also perform very well, but has ceased to scale lin-
early since the client is approaching its capacity to transmit data over

the two Ethernet interfaces.
In table 8, the effect of adding another pair of storage agents is

considered. The data rate for read improves, although not in propor-

tion to the number of storage agents. The client is now highly stressed

in fielding interrupts and copying data.In the case of synchronous

writesn the data rate continues to scale linearly. This is not unexpected

since the low base data rates of the local SCSI disks do not stress the

network. In the case of asynchronous writes, there is essentially no

change from four storage agents since the client has reached the limits
of ability to transmit data.

The measurements made of the prototype validate the concept of
distributed disk striping and demonstrate that it scales well until a
component becomes saturated. With faster components, whether pro-

cessors or interconnection media, the Swift architecture will be able to

make immediate use of them and its data rates will scale accordingly.

5 . Simulation-based Perþrmance Study

We modeled a hypothetical high-speed local-area token-ring imple-
mentation of the Swift architecture. Our primary goal of the simula-

tion was to show how our architecture could exploit network and pro-

cessor advances. Our second goal was to demonstrate that distributed

disk striping is a viable technique that can provide the data rates re-
quired by l/O-intensive applications. Our third goal was to confirm
the scaling properties of Swift.

Since we did not have the necessary network technology available

to us, a simulation was the most appropriate exploration vehicle. The
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token-ring local-area network was assumed to have a transfer rate of I
gigabilsecond. All clients were modeled as disk less hosts with a sin-
gle network interface connected to the token ring. The storage agents
were modeled as hosts with a single disk device and a single network
interface. To evaluate the possible effect of processor bottlenecks we
simulated two processor types: 100 and 200 million instructions/second
processors.

5.1 Structure of the Simulator

The simulator implemented a simplified version of the Swift architec-
ture designed to address the goals stated above. It modeled neither
caching, nor preallocation of resources, nor the providing of perfor-
mance guarantees. These would have required appropriate traces of
file system activity and such traces were unavailable to us. In addition,
the simulator did not model the storage mediator. Since the storage
mediator is not in the path of the data transmitted to and from clients
but consulted only at the start of an I/O session, it is not part of the
critical path in data rate evaluation.

The system is modeled by client requests that drive storage agent
processes. A generator process creates client requests using an expo-
nential distribution to govern request interarrival times. The client re-
quests are differentiated according to pure read, pure write, and a
conservative read-to-write ratio of 4:1 [20]. There is no rnodeling of
overlapping execution, instead requests are modeled serially: only after
a request is complete is the next issued.

In our simulation of Swift, for a read operation, a small request
packet is multicast to the storage agents. The client then waits for the
data to be transmitted by the storage agents. For a write operation the
client transmits the data to each of the storage agents. once the blocks
from a write request have been transmitted, the client awaits an ac-
knowledgment from the storage agents that the data have been written
to disk.

The simulator models parity computations. Computing the data
parity is an important factor in processor utilization. The simulator
charges 5 instructions to compute the parity of each byte of data. 'We

consider this to be a processor-expensive way of computing the parity
that errs on the conservative side. Less expensive implementations
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would requfue less processor power to achieve the results we have sim-

ulated.
The disk devices are modeled as a shared resource. Multiblock re-

quests are allowed to complete before the resource is relinquished. The

time to transfer a block consists of the seek time, the rotational delay

and the time to transfer the data from disk. The seek time and rota-

tional latency are assumed to be independent uniform random vari-
ables, a pessimistic assumption when advanced layout policies are used

[21]. Once a block has been read from disk it is scheduled for trans-

mission over the network.
Our model of the disk access time is conservative in that advanced

layout policies are not considered, no attempt was made to order re-

quests to schedule the disk armo and caches were not modeled. Staging

data in the cache and sequential preallocation of storage would greatly

reduce the number of seeks and significantly improve performance. As

it is, our model provides a lower bound on the data rates that could be

achieved.
Tiansmitting a message on the network requires protocol process-

ing, time to acquire the token, and transmission time. The protocol
cost for all packets has been estimated at 1,500 instructions [22] plus

one instruction per byte in the packet. The time to transmit the packet

is based on the network transfer rate. These estimated costs remain ad-

equate as newer hardware technology has yet to decrease the total
software overhead of accessing the network.

5.2 Símulation Results

The simulator gave us the ability to determine what data rates were

possible given a configuration of processors, interconnection medium

and storage devices. The modeling parameters varied were the proces-

sor speed of the intervening computing nodes, the number of disk

devices representing storage agents and the size of the transfer unit.
The clear conclusion for obtainable data rate is that when sufficient

interconnection capacity is available, the data rate is almost linearþ
related to both the number of storage agents and to the size of the

transfer unit. Even though the cost of computing parity is non-

negligible, the processor becomes a clear bottleneck only for write re-

quests directed to large numbers of storage agents. When the 200 mil-
lion instructions/second processor is used the utilization at the storage
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agents increases some 507o at high loads, as the processor in the client
is less of a bottleneck.

For our simulation model, we have chosen disk parameters that are
typical for a high-performance disk like those that are commonly used
in the file servers. The disk is assumed to spin at 3600 revolutions/
minute, yielding an average rotational latency of 8.3 milliseconds. un-
less specific knowledge of the file system structure is available, the ro-
tational latency can be accurately modeled by a uniform distribution.
The average seek time is also assumed to be uniformly distributed with
a mean of 12 milliseconds. This assumption simplifies the seek time
distribution, which in actual disk drives has an acceleration and decel-
eration phase not modeled by the uniform distribution.

The reason the transfer unit has such a large impact on the data
rates achieved by the system is that seek time and rotational latency
are enormous when compared to the speed of the processors and the
network transfer rate. This also shows the value of careful data place-
ment and indicates that resource preallocation may be very beneficial
to performance.

As small transfer units require many seeks in order to transfer the
data, large transfer units have a significantly positive effect on the data
rates achieved. For small numbers of disks, seek time dominated to
the extent that its effect on performance was almost as significant as
the number of disks.

The per-message network data transfer processing costs are also an
important factor in the effect of the transfer unit. For example, it was
assumed that protocol processing required 1500 instructions plus I in-
struction per byte in the packet. As the size of the packet increases,
the protocol cost decreases proportionally to the packet size. The cost
of I instruction per byte in the packet is for the most part unavoid-
able, since it reflects necessary data copying.

In figure 3 we see that the demands on the processor are sig-
nificant even in the case of pure reads. The read costs are due to the
cost of protocol processing and the necessary cost of copying of data
from the system to the user address space. By having a hardware net-
work interface that could merge the striped data directly into the user
address space a significant amount of copying could be saved (in our
simulation one instruction per byte). In the case of writes the proces-
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sor can be seen to be a significant performance limiting factor. This is
due to the cost of computing the parity code (exclusive-or). We have

conservatively estimated that it would cost 5 instructions per byte to
compute the parity operation. In the case of a highly optimized imple-
mentation, we believe that this could be brought down to approxi-
mately one instruction per byte on the average.

In figure 4 we see that the utilization of the disks decreases as

more disks are used. This'is due to the saturation of the processor, es-

pecially for writes, and the increased load on the interconnection net-

work. Notice the correspondence to figure 3 processor utilization: the
processor utilization for writes is high, while the corresponding utiliza-
tion of the disks is low.

The fraction of the network capacity used is presented in figure 5.

While the network capacity is not at all close to saturation it does have

a significant load when a large number of disks are used. This high
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load has an effect on the data rate of the system (and on the utilization
of the disks).

The read-to-write ratio is considered in figure 6. As with processor

and disk utilization, the ratio of reads to writes has a significant effect
on the data rate of the system. This is because of the increased load on

the processor to compute the redundancy code when writing data.

Since we are only considering large requests, writes are not penalized

by the multiple access costs associated with small writes. To preserve

the parity fun"tion with small writes it is necessary to read the parity
block even if only one block has been modified, and then to write
both that block and the parity block.

In figure 7 we illustrate the effect of block size on the data rate.

As one expects, the larger the block size the higher the data rate. The
data rate will continue to increase until a cylinder boundary is reached

forcing a disk seek per logical request, or until the transfer rate capac-

ity of the device is reached. This illustrates that both the rotational la-
tency and the seek time are significant sources of delay in the system.
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5.2.1 The Effect of Doubling the processor Speed

we modeled the effect of doubling the processor speed, to evaluate its
effect on the processor bottleneck. In ûgure 8 we see that for the
highest number of disks, 32, the percent busy on the processor de-
creased from30vo to lSvo for a pure read load, and from 6ovo to 43vo
for a pure write load.

The simulation also showed that one client can now achieve pure
read data rates on the order of 23 megabytes/second for 32 disks, in
contrast to the 20 megabytes/second depicted in figure 6. For pure
writes the system can achieve data rates of 13 megabytes/second for 32
disks, versus the 9 megabytes/second depicted in figure 6. As for the
disk themselves, when 32 of them are being used simultaneously they
are now utilized to 68vo of their capacity for pure reads and to 3g7o of
their capacity for pure writes. The corresponding utilization percent-
ages, in figure 4 were 58 and 27, respectively.

The substantial increase of the data rate for pure writes highlights
the effect of the cost of computing error-correcting parity codes in
software. Ìvith the faster processor the bottleneck seems to have
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shifted to the serial nature of the data transmission protocol modeled.
This explains why the pure read data rates did not increase as much as

the write data rates did, even though both the network interconnection
medium and the disk storage subsystem had spare capacity.

6. Related Research

The notion of disk striping was formally introduced by Salem and

Garcia-Molina l2l. The technique, however, has been in use for many
years in the I/O subsystems of super computers [12] and high-
performance mainframe systems [10]. Disk striping has also been used

in some versions of the UNx operating system as a means of improv-
ing swapping performance Í21. To our knowledge, Swift is the first to
use disk striping in a distributed environment, striping files over multi-
ple servers.

Examples of some commercial systems that utilize disk striping in-
clude super computers [12], DataVault for the CM-2 [5], the airline
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reservation system TPF [10], the IBM AS/400 [11], CFS from Intel
16,71, and the Imprimis Array Master [4]. Hewlett-Packard is devel-
oping a system called DataMesh that uses an array of storage proces-
sors connected by a high-speed network [23]. For all of these the max-
imum data rate is limited by the interconnection medium which is an
I/O channel. Higher data rates can be achieved by using multiple I/O
channels.

The aggregation of data rates proposed in the Swift architecture
generalizes that proposed by the Ren disk array system [3,9,24] in
its ability to support data rates beyond that of the single disk array
controller. In fact, Swift can concurrently drive a collection of Rens
as high speed devices. Due to the distributed nature of Swift, it has
the further advantage over RtIo of having no single point of failure,
such as the disk array controller or the power supply.

Swift improves on traditional disk strlping systems in two impor-
tant areas: scaling and reliability. By interconnecting several commu-
nication networks, Swift is more scalable than centralized systems.
When higher performance is required additional storage agents can be
added to the Swift system increasing its performance proportionally.
By selectively hardening each of the system components, Swift can
achieve arbitrarily high reliability of its data, metadata, and communi-
cation media. In CFS, for example, there is no mechanism present to
make its metadata tolerant of storage failures. In CFS, if the reposi-
tory on which the descriptor of a multi-repository object fails, the en-
tire object becomes unavailable.

A third difference from traditional disk striping systems is that
Swift has the advantages of sharing and of decentralized control of a
distributed environment. Several independent storage mediators may
control a common set of storage agents. The distributed nature of
Swift allows better resource allocation and sharing than a centralized
system. Only those resources that are required to satisfy the request
need to be allocated.

Swift incorporates data management techniques long present in
centralized computing systems into a distributed environment. In par-
ticular, it can be viewed as a generalization to distributed systems of
I/O channel architectures found in mainframe computers [25].
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6.1 Future Work

There are two areas that we intend to address in the future: enhancing
our current prototype and simulator, and extending the architecture.

6.1.1 Enhancements to the Prototype

The current prototype needs to implement data redundancy. The pro-
totype will be enhanced with code that computes the check data, and
both the read and write operations will have to be modified accord-
ingly. With this enhancement in place, we plan to measure the effect
that computing the check data has on data rates.

rW'e also plan to incorporate mechanisms to do resource prealloca-
tion and to build transfer plans. With these mechanisms in place, we
plan to study different resource allocation policies, with the goal of
understanding how to handle variable loads.

6.1.2 Enhancements to the Architecture

The goal of this research is to develop a high-speed distributed storage
system that provides a general purpose file system with integrated stor-
age and retrieval of large data objects, such as digital audio and video,
at guaranteed data rates. Applications of such a system range from vi-
sualization of scientific computations to real-time recording, editing
and play-back of color video.

Support for integrated access to continuous media such as digital
audio and video is difficult for current computing systems. They lack
the necessary capacity to provide dataat a sufficient rate, and do not
support the necessary end-to-end performance guarantees. The interest
in fields such as scientiûc visualization require that this be addressed.

We intend to extend the architecture with techniques for providing
data rate guarantees for magnetic disk devices. While the problem of
real-time processor scheduling has been extensively studied 126,271,
and the problem of providing guaranteed communication capacity is

also an area of active research [28], the problem of scheduling real-
time disk transfers has received considerably less attention.

A second area of extensions is in the co-scheduling of services. In
the past, only analog storage and transmission techniques have been
able to meet the stringent demands of multimedia audio and video ap-
plications. To support integrated continuous multimedia, resources

such as the central processor, peripheral processors (audio, video), and
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coÍrmunication network capacity must be allocated and scheduled to-
gether to provide the necessary data-rate guarantees. This meta-
scheduling has been studied by Anderson ï291.

7. Conclusions

This paper presents two studies conducted to validate Swift, a scalable
distributed I/O architecture that achieves high data rates by striping
data across several storage agents and driving them concurrently. The
prototype validates the concept of distributed disk striping in a local-
area network.

A prototype of the Swift architecture was built using UNx and an
Ethernet-based local-area network. It demonstrated that the prototype
of the architecture can achieve high data rates on a local-area network
by aggregating data rates from slower data servers. Using three servers
on a single Ethernet segment, the prototype achieved more than dou-
ble the data rates than were provided by access to the local scSI disk,
and it achieved ten times the NFS data rate for asynchronous writes,
double the NFS data rate for synchronous writes, and almost twice the
NFS data rate for reads. The performance of our local-area network
prototype was limited by the speed of the Ethernet-based local-area
network.

V/hen a second Ethernet path was added between the client and
the storage agents, the data rates measured demonstrated that the Swift
architecture can make immediate use of a faster interconnection
medium. The data rates for writes almost doubled. For reads, the im-
provements were less pronounced because the client could not absorb
the increased network load.

Our simulations of the architecture show how Swift can exploit
more powerful components in the future, and which components limit
I/O performance. The simulations show that data rates under Swift
scale proportionally to the size of the transfer unit and the number of
storage agents when sufficient interconnection and processor capacity
are available.

Even though Swift was designed with very large objects in mind, it
can also handle small objects, such as those encountered in normal file
qystems. The penalties incurred are one round trip time for a short net-
work message, and the cost of computing the parity code. Swift is
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also well suited as a swapping device for high performance work sta-
tions if no data redundancy is used.

The distributed nature of Swift leads us to believe that it will be
able to exploit all the current hardware trends well into the future: in-
creases in processor speed and network capacity, decreases in volatile
memory cost, and secondary storage becoming very inexpensive but
not correspondingly faster. The Swift architecture also has the
flexibility to use alternative data storage technologies, such as arrays
of digital audio tapes.

Lastly, a system like our prototype can be installed easily into an
existing operating system without needing to modify the underlying
networking hardware or file specific software. It can then be used to
exploit the emerging high-speed networks using the large installed base
of current ûle servers.

Acknowledgments

Vy'e are grateful to those that contributed to this research including
Aaron Emigh and Dean Long for their work with the prototype, Laura
Haas and Mary Long for their thoughtful comments on the
manuscript, and John Wilkes for stimulating discussions on distributed
file systems. Simulation results were obtained with the aid of
SIuscRIrt, a simulation language developed and supported by CACI
Products Company of La Jolla, CA.

Swíft: Using Distributed Disk Striping to Provide High IIO Data Rates 433



References

A. C. Luther, Digital Video in the PC Environment. McGraw-Hill,
1989.

K. Salem and H. Garcia-Molina, "Disk striping," in Proceeding of the
2ñ International Conference on Data Engineering, pp. 336-342,
IEEE, Feb. 1986.

D. Patterson, G. Gibson, and R. Katz, "A case for redundant arrays of
inexpensive disks (RAID)," in Proceedings of the ACM SIGMOD Con-

ference, (Chicago), pp. 109-116, ACM, June 1988.

Imprimis Technology, ArrayMaster 9058 Controller, 1989.

Thinking Machines, Incorporated, Connection Machine Model CM-2
Technical Summary, May 1989.

P. Pierce, "A concurrent file system for a highly parallel mass storage
subsystem," in Proceedings of the 4'h Conference on Hypercubes,
(Monterey), Mar. 1989.

T. W. Pratt, J. C. French, P."M. Dickens, and S. A. Janet, "A com-
parison of the architecture and performance of two parallel file sys-
tems," in Proceedings of the 4'h Conference on Hypercubes, (Mon-
terey), Mar. 1989.

M. Stonebraker and G. A. Schloss, "Distributed RAID-a new multi-
ple copy algorithm," in Proceedings of the 6'h Internationnl Confer-
ence on Dan Engineering, (l-os Angeles), pp. 430-437, IEEE Com-
puter Society, Feb. 1990.

S. Ng, "Pitfalls in designing disk arrays," in Proceedings of the IEEE
COMPCON Conference, (San Francisco), Feb. 1989.

IBM Corporation, TPF-3 Concepts and Structure Manual.

B. E. Clark and M. J. Corrigan, "Application System/400 performance
characteristics," IBM Systems Journnl, vol. 28, no. 3, pp. 4O7-423,
1989.

O. G. Johnson, "Three-dimensional wave equation computations on
vector computers," Proceedings of the IEEE, vol. 72, Jan. 1984.

S. B. Davidson, H. Garcia-Molina, and D. Skeen, "Consistency in par-
titioned networks," Computing Surveys, vol. 17, pp. 341.-370, Sept.
1985.

J. Gray, "Notes on database operating systems," in Operating Systems:
An Advanced Course (R. Bayer, R. Graham, and G. Seegmüller,
eds.), pp. 393-481, Springer-Verlag, 1979.

.t1l

l2l

t3l

t4l

tsl

t6l

17l

t8l

tel

[10]

[1 1]

u2l

[13]

[14]

434 Luis-Felipe Cabrera and Darrell D. E. Long



[15] L.-F. Cabrera and J. Wyllie, "QuickSilver distributed file services: an
architecture for horizontal growth," in Proceedings of the 2ñ IEEE
conference on computer workstations, Santa Clara, CA, Mar. 1988.

[16] M. Nelson, B. \ilelch, and J. Ousterhout, "Caching in the Sprite net-
work frle system," ACM Transactions on Computer Systems, vol. 6, pp.
134-154, Feb. 1988.

[17] H. Garcia-Molina and K. Salem, "The impact of disk striping on reli-
ability," IEEE Daøbase Engineering Bulletin, vol. 11, pp. 26-39,
Mar. 1988.

[18] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Pat-
terson, "Failure correction techniques for large disk arrays," in Pro-
ceedings of the 3'd International Conference on Architectural Support

for Programming Languages and Operating Systerns, pp. 123-32, Apr.
1989.

[19] D. E. Comer, InternetworkingwithTCPllP: Principles, Protocols, and
Architecture. Prentice-Hall, 1988.

[20] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K.
Ousterhout, "Measurements of a distributed file system," in Proceed-
ings of the I3'h ACM Symposium on Operating Systems Principles, pp.
I98-2L2, Association for Computing Machinery SIGOPS, October
1991.

[21] M. Rosenblum and J. K. Ousterhout, "The design and implementation
of a log-structured file system," in Proceedings of the L3'h ACM Sym-
posium on Operating Sysîems Principles, pp. 1-15, Association for
Computing Machinery SIGOPS, October 1991.

l22l L.-F. Cabrera, E. Hunter, M. J. Karels, and D. A. Mosher, 'olJser-
process communication performance in networks of computers," IEEE
Transactions on Software Engineering, vol. 14, pp. 38-53, Jan. 1988.

l23l J. Wilkes, "DataMesh-project definition document," Tech. Rep. HPL-
CSP-90- 1, Hewlett-Packard Laboratories, Feb. 1990.

[24] S. Ng, "Some design issues of disk arrays," in Proceedings of the IEEE
COMPCON Conference, (San Francisco), Feb. 1989.

l25l J. Buzen and A. Shum, "I/O architecture in MVS/370 and MVS/XA,"
ICMG Tiansactions, vol. 54, pp. 19-26, 1986.

[26] V/. Zhao, A heuristic approach to scheduling hard real-time tasks with
resource requirements in distributed systems. Ph. D. dissertation, Uni-
versity of Massachusetts, Amherst, 1986.

l27l W. Zhao, K. Ramamritham, and J. Stankovic, "Preemptive scheduling
under time and resource constraints," IEEE Tiansactions on Comput-
ers, vol,36, no. 8, pp. 949-960, 1987.

Swift: Using Distributed Dßk Striping to Provide High ilO Data Rates 435



[28] D. P. Anderson, R. G. Herrtwich, and C. Schaefer, "SRP: A resource
reservation protocol for guaranteed-performance communication in the
internet," Tech. Rep. UCB/CSD 901596, University of California,
Berkeley, Sept. 1990.

l29l D. Anderson, "Meta-scheduling for distributed continuous media,"
Tech. Rep. UCB/CSD 901599, University of California, Berkeley,
Oct. 1990.

fsubmitted Apnl26,1991; revised Nov. 18, 1991; accepted Nov. 29, 1991]

Permission to copy without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantagen the Computing Systems copyright
notice and its date appear, and notice is given thæ copying is by permission of the Regents of
the University of California. To copy otherwise, or to republish, requires a fee and/or specific
permission. See inside front cover for details.

436 Luis-Felþ Cabrera and Darrell D. E. Long


