
An Experimental
Implementation of the Tilde
Naming System

Douglas Comer Purdue University

Ralph E. Droms Bucknell University

Thomas P. Murtagh Williams College

ABSTRACT: The Tilde naming system identifres
files in a distributed computing system in a novel
way, providing a consistent mechanism for referenc-
ing both local and remote files that is independent
of the details of the underlying computing environ-
ment. The Tilde naming system achieves this
independence by providing each user with control
of a private name evaluation environment. In con-
trast, several contemporary distributed systems try
to disassociate file names from the structure of the
computing environment by hiding complex, hetero-
geneous computing systems beneath a uniform, glo-

bal name evaluation environment. The private
naming environments supported by Tilde naming
incorporate local and remote names into a single

naming mechanism while improving software porta-
bility and retaining the familiar advantages of
hierarchical file naming systems.

We have constructed an experimental implemen-
tation of the Tilde naming system, and created a

computing environment sufficiently rich to support
significant software development. With this proto-
type, we have been able to study the effects of the

@ Computing Systems, Vol. 3 'No. 4'Fall 1990 487



Tilde naming scheme on the system's user interface,
software project development, information sharing
and other issues. This paper summarizes Tilde nam-
ing and discusses insights into naming mechanisms
gained through the use of the experimental system.

I. Introduction

One important element of the UNIX computing environment
is its hierarchical file naming mechanism [Quarterman et al. 1986;
Thompson 19781, which gives the user the ability to group related
files under a single directory, and allows the identification of files
relative to specific locations within the naming hierarchy. There
are, however, problems with UNIX file naming - primarily with
scaling and in distributed systems. The file naming mechanism in
UNIX interprets names through a single, global naming hierarchy
shared by all users. As UNIX file systems are extended to distri-
buted computing environments, it becomes increasingly difficult
to address the issues of scale raised in both the implementation
and administration of such a naming environment. We refer to
such a globally shared naming environment as an absolute naming
mechanism, because each file name has an interpretation that is
independent of the machine, user or process that uses it.

The alternative to absolute file names is relative naming.
Many contemporary operating systems, including UNIX, already
incorporate forms of relative naming. The UNIX current working
directory, the UNIX C-shell command interpreter's "-userid'
mechanism [4.2 Manual 1983], VAX/VMS device aliases IDEC
19821 and the VM/SP CMS mini-disk search order IIBM 1986] are
all examples of relative file naming mechanisms. However, in
most systems these and other relative naming mechanisms are
included as conveniences for the user, while an underlying abso-
lute file naming system is considered the primary name evaluation
mechanism.

488 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



It is possible to build a file naming system in which relative

names provide the primary naming mechanism. The Tilde nam-

ing system [Comer and Droms 1985; Comer et al. 1989; Comer

and Murtagh 1986; Droms 19861 developed as part of the TILDE
project [Comer 1984] is just such a relative naming system. The

Tilde naming system is based on a collection of small, disjoint,
hierarchical namespaces, which replace the single, global

namespace of UNIX and UNIX-like systems.

There are two primary motivations for this fundamental

difference between Tilde naming and more familiar naming

mechanisms. First, the local naming environment and name

evaluation mechanism remove the constraint that a file's name be

unique across the entire distributed system. Allowing relative

names eliminates many of the obstacles faced in scaling the sys-

tem to alarge distributed environment without introducing loca-

tion dependencies into file names. Second, the organization of
files into disjoint namespaces that can be identified by local names

provides a valuable style of abstraction for the management of
large software subsystems. Thus, our new naming mechanism
provides identifrcation of local and remote frles independent of
the structure of the distributed computing environment, while

enhancing software system modularity and portability.
The primary penalty associated with Tilde naming is the

added burden to the user of managing a local naming environ-

ment. To evaluate methods for minimizing the impact of name

management, and to explore the effect of Tilde naming on file
naming and software portability, we have constructed an experi-

mental implementation of the Tilde naming system. This paper

concentrates on our experiences with the experimental system.

We have organized the remainder of this paper into three

parts. The next two sections reviews the characteristics of the

naming mechanisms in several contemporary distributed file sys-

tems and summarizes the Tilde naming system. Section 4.1

describes the Tilde naming prototype system. The third part of
the paper, sections 5 and 6, illustrates the use of Tilde naming

mechanisms, discusses insights into relative naming gained

through the use of the experimental system, and presents future
directions for this research.

An Experimental Implementation of the Titde Naming System 489



2. Background

Many distributed computing systems rely on shared access to
files as the primary form of persistent shared data. The majority
of these systems, including the Newcastle Connection
[Brombridge et al. l982l,IBIS [Tichy and Ruan 1984], Locus
[Halker et al. 1993], Athena ISaltzer 1987] Vice/Virtue (Andrew)
[Satyanarayanan et al. 1985], and Sprite [Welch and Ousterhout
1986] use an absolute file naming mechanism, in which all frle are
organized into a single, globally shared namespace.

Ideally, the naming service in a distributed computing system
should provide location independent naming and scale to large
systems. Location independence is important to the users of a
computing system, in that increased location independence
implies increased flexibility and decreases dependency on the
specific architecture of the underlying system. To the extent that
a system does not exhibit location independence, users must be
conscious of changes in the computing environment, and software
systems must be altered in response to changes in the computing
system itself. Location independence involves two components:
storage site independence - avoiding file names that depend,
explicitly or implicitly, upon the physical location at which a frle
is stored - and evaluation site independence - ensuring that the
interpretation of a file name is independent of the processor on
which it is issued. The rapid growth of large, heterogeneous net-
works that can span administrative and geographic boundaries
motivates the need for distributed file systems that can grow to
include thousands of computers in distinct administrative
domains.

Systems such as Locus, Athena, Andrew and Sprite all attempt
to extend the UNIX model of a single, global, absolute frle naming
environment to a distributed computing system. These naming
systems hide the distributed nature of the underlying computing
system by disassociating a file's name from its location. The price
for this abstract view of the computing environment is that glo-
bally shared naming contexts do not scale well. The implemen-
tation of a globally shared naming environment can become
unwieldy when extended to large networks. In addition, the more

490 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



difficult administrative problem of sharing a single naming hierar-

chy among computers managed by separate administrative struc-

tures becomes unworkable in systems that cross administrative
boundaries.

IBIS and the Newcastle Connection explicitly include informa-
tion location in a file name, by including in the file's name the
name of the site at which the file is stored. Such a scheme scales

easily to a large system. When such techniques are employed,
however, the user must know explicitly where a file is located

before the file can be identifred. If the frle is moved to a new

storage site, all references to that file's name must be modified to
reflect its new location.

The alternative to absolute file naming is relative naming, in
which the interpretation of file names is controlled by the user.

As an example, the Network File System (NFS) uses a relative

naming scheme, where file names are evaluated in an environment
established at each processor. This naming context is tied to the
processor, however, so that processes executed on remote hosts

use a (possibly) different naming environment, which is likely to
yield unexpected results.

The other major proposal for a relative file naming system is

called QuickSilver. Both naming systems support forms of rela-

tive naming in which names are interpreted relative to an

environment associated with the user rather than the processor.

In their work, the designers of the QuickSilver file system have

emphasized issues related to the efficient implementation of rela-

tive naming. We have devoted less effort to implementation
issues and more to aspects of the naming system that determine
the impact on users of the replacement of absolute naming by
relative naming. Section 3. includes a brief discussion of the
major differences between Tilde and QuickSilver. Cabrera and
Wyllie give a complete description of the QuickSilver frle naming

system [1987] The Tilde naming scheme is discussed in detail in
the remainder of this paper.

An Experimental Implementation of the Titde Naming System 491



3. The Tilde Naming System

In the Tilde naming system each process establishes and
manages a relative naming environment called a Tílde forest.
Based on the way in which the UNIX command processor runs
programs for the user (as we will explain in more detail in section
4.1) the Tilde forest can be thought of as a per-user naming
environment. The Tilde forest is composed of disjoint naming
hierarchies known as Tilde trees. ln a hierarchical file system,
users often structure their directories in such a way that all the
files associated with a particular activity or project can be found
in one subtree of the system's directory hierarchy, which we refer
to as a project subtree. Our intent in partitioning the naming
hierarchy is that each Tilde tree will correspond to one project
subtree. Nothing in the design of the Tilde naming system
enforces the organization of Tilde trees as project subtrees.
Rather, the mechanism is designed to encourage and support the
collection of the components of a software subsystem into a single
Tilde tree, just as directories in a hierarchical file system
encourage the organization of related files into directories.

A Tilde forest represents the entire file naming environment
for a process. That is, a process can only access files in the Tilde
trees within its Tilde forest. File names are of the form -tree/path

where -tree selects a Tilde tree, and path gives a complete path
from the root of the Tilde tree to the file itself. The Tilde naming
system also supports the resolution of file names relative to a
current working directory, which are resolved in the same way as
UNIX relative file names. The first component of a file name, the
Tilde name, is interpreted relative to the set of trees in the Tilde
forest. The process chooses its own Tilde names as identifrers for
the roots of the Tilde trees in its Tilde forest.

Each Tilde tree also has an unique, absolute name by which it
can be identified independent of any user's Tilde forest. The
name resolution mechanism identifies a Tilde tree by this unique
name, which we call a Medusa name.r A Tilde forest is
represented by a list of bindings from Tilde Names to Medusa

l. So named because Medusa names are so ugly that the user should not see them.

492 Douglas Coryrer, Ralph E. Droms, and Thomas P. Murtagh



names, so that a file's Tilde Name is first resolved to a Medusa

name, which the resolution mechanism then uses to locate the tree

itself.
In our model of a distributed system, each user establishes

computing sessions on processors belonging to a local network of
processors. This local network is in turn connected to a more

loosely integrated internet of processors. The network connec-

tions between processors within a local network will generally be

more reliable and will provide higher transmission rates than the

connections available to the other machines on the network.
More importantly, the machines within a local network will gen-

erally be operated by a single organization or by closely cooperat-
ing organizations. Our goal is to provide completely location
transparent access to files within the local network and to provide

access to remote files using mechanisms identical to those used

within the local network. To accomplish this, each Tilde tree's

Medusa name must be independent of the tree's location within
the local network but may depend on the local network within
which the tree is stored.

Figure I shows an example of a process and its Tilde forest.

In the figure, the Tilde forest extends across the local network to
Tilde trees residing on several remote nodes. The naming
environment provided by the Tilde forest is, therefore, not limited
to a single node, but can span the entire network.

Figure l: A process and its Tilde Forest

An Experimental Implementation of the Titde Naming System 493

Execution Server Storage Server

Storage ServerStorage Server



Figure 2 shows the internal structure of a identifled tree by the
Tilde name -systen, and illustrates the resolution of the frle
name -systen/cnd/1s. The process shown in the frgure has
three trees in its Tilde forest. The resolution begins by parsing
the file name into two components, -system and /cnd/Is. The
Tilde tree named by the component -systen is identified by the
entry in the Tilde forest that maps -system to the root of the
tree. The remaining component of the flle name, /cnd/ts, then
identifies the desired file within the Tilde tree through the frle
name resolution mechanism.

There are two key differences between Tilde naming as

described above and QuickSilver. First, the user controlled nam-
ing environment in our system, the Tilde forest, is a run-time
structure associated with each process while the closest corres-
ponding entity in QuickSilver, the user index, is a persistent entity
stored in the file system. Our choice of this more dynamic form
for the user's frle naming environment was motivated by the
desire to allow the user to take full advantage of relative naming
by creating transient naming environments where appropriate.
Examples of situations where this flexibility have proved useful
are included in Section 5.

The other major difference between the two systems centers
around our use of the notion of a project subtree as supported by
the Tilde tree. The Tilde tree serves several purposes in the
design of Tilde naming. First, it represents a recognition of the
fact that it is sometimes inappropriate to associate file names with

Figure 2: Tilde Name Resolution Mechanism

494 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



users. If a group of frles together represent some independent
soltware system or other project, it is appropriate to recognize

that collection as an independent object in the system. The Tilde
tree makes this possible, at least from the point of view of nam-

ing. The absolute name system underlying QuickSilver uses pairs

composed of a user name and a path relative to that user's nam-

ing environment as frle names. Every frle's name is associated

with some user. As a result, while QuickSilver is designed to
gracefully handle situations in which a user moves from one

domain in the system to another, it runs into problems if a user

simply leaves. Subtrees of a user's namespace that were of
interest to other users become orphans when their owner departs.

If such a tree is to remain available, it must be migrated to some

other user's private tree. All users of the migrated subtree must

then update their private namespaces to reflect the new location
ofthe subtree.

More importantly, the Tilde tree provides a means to control
naming conflicts between software systems by localizing embed-

ded, self-referential file names in a way that makes no assump-

tions about the organization of a user's naming environment.
Consider what may occur if users are allowed as they are in

QuickSilver to make arbitrary binding between frle names within
their environment and frles. Suppose that one user constructs

some useful program in the directory /utilities/src/useful
and its subdirectories. Further, assume that like many complex
programs this program makes reference to data files stored in
/utilities/src/useful. Now, suppose that some other user

wishes to include the program in his namespace. It is not
sufficient to simply make a link to the program itself. Instead a

link must be made to the directory /utilities/srcluseful
using a path identical to that chosen by the creator. Even if the

second user likes to keep source materials in a directory separate

from /utilities or prefers some name other than utilities (such

as /uin) for his directory of executables, he must include the

directories /utilities and /utilities/src in his namespace.

It is not hard to imagine that users will quickly find their
namespaces crowded with extra directories included simply to
ensure that their namespaces mimic those of other users with
whom they wish to share files. By organizing software into Tilde

An Experimental Implementation of the Titde Naming System 495



trees, all the components of a software system are incorporated
into the namespace in the Tilde forest, independent of the rest of
the user's namespace.

4. A Prototype Implementation of
the Tilde Naming System

We have constructed a prototype implementation of the Tilde
naming system, based on the Berkeley Software Distribution
(BSD) of the UNIX operating system and NFS. The prototype
runs on a network of VAX computers and Sun workstations. The
goal of the prototype was to gain insight and experience with dis-
tributed naming within a computing environment capable of sup-
porting the typical edit-compile-test program development cycle.
In addition to implementing support of Tilde naming in the
modified UNIX kernel, we converted a subset of UNIX commands
to work under the experimental Tilde environment.

The prototype includes several main components:

Modified UNIX kernel:
The Tilde system functions, including simulation of Tilde
trees, interpretation of Tilde file names and management of
Tilde forests are implemented through changes to the UNIX
kernel.

Modified command interpreter:
The user interface to the Tilde naming system is incor-
porated into the UNIX command interpreter, csh I4.2
Manual 19831 along with other modifrcations to convert csh
to use the Tilde frle naming scheme.

Modified UNIX utilities:
The directories containing the executables of a subset of the
UNIX utilities together with associated source code, docu-
mentation and other ancillary frles were reorganized into
project subtrees stored as Tilde trees. Thus, users of our
prototype operate within an environment that includes
UNIX compilers, editors, debuggers, utilities and other
software subsystems to support signifrcant software develop-
ment. This process required no modifrcations to these

496 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



utilities except for the substitution of Tilde system names

for embedded UNIX file system names.

The key problems in the development of the Tilde prototype

included the implementation of Tilde trees and the Tilde forest,

the interpretation of Tilde file names, the use of NFS as a remote

file access mechanism for Tilde tree access and the implemen-

tation of the user interface to Tilde naming. We will concentrate

on interpretation of frle names and the management of the Tilde
naming environment in this paper; other details of the prototype

implementation are discussed in "Naming of Files in Distributed

Systems" [Droms 1986].

4.1. File Name Resolution

The resolution of a file name in the Tilde system is performed in

three steps. First, the Tilde tree component of the name involved

must be resolved into the Medusa name for the tree. Next, the

system must locate the tree identified by the Medusa name within

the system. Finally, the system interprets the remainder of the

path relative to the tree's root as in a conventional hierarchical

frle system.
our prototype implementation of Tilde narning is layered on

top of a standard uNIx frle system including support for sun's

NFS protocol [suN l9s9] The Tilde name evaluation mechanism

is independent of the data transport mechanism, so that an imple-

mentation of Tilde naming can be built on top of any distributed

frle access mechanism. The current implementation is based on

the mounting of remote directories and could therefore use any of
the systems such as AFS [Morris et al. 1986] RFS lRifkin et al.

lgg6l or NFS that provide this mechanism. we chose NFS for

the prototype because of the authors' familiarity with NFS and

the availability of source code for the hardware and software used

in the development of the prototype.

Our implementation uses the facilities of the UNIX file system

and NFS to accomplish the last two steps in the resolution of a

Tilde name. To illustrate this process, consider the resolution of
the ñle name -systen/cmd/Is in the context of the process

whose Tilde naming environment is shown in figure 3'

An Experimental Implementation of the Tilde Naming System 497



t-0132

Figure 3: Tilde Names and Medusa Names in the Tilde Forest

In the frgure, the process is shown to have a Tilde forest with
three bindings. These bindings are stored in a data structure
added to the per-process data maintained by the UNIX kernel.
V/hen the file name -system/cnd/ls is processed by the kernel
primitive to open a frle, the kernel searches this table of bindings
and determines that the Medusa name for the tree name -systen
within the user's Forest is hostI-OOOO.

In our prototype, each Medusa name has two components: the
name of the processor within the local network on which the tree
was created and a tree identifrcation number guaranteed to be
unique among the trees created on that processor. such names
appear to violate the goals of our system in two ways. First,
including a host name as a component of a tree's name certainly
seems to make the name storage site dependent. In our imple-
mentation, however, the host name component (host1 in the
example) represents the host on which the tree was created, not
the site at which the tree is currently stored. The host name is
only included to provide a simple, distributed Medusa name gen-
eration mechanism. once the Tilde tree has been created, it
retains its original Medusa name even if it is moved to another
storage site within the local network. Thus, even if a Tilde tree is
moved while it is a part of any Tilde forests, the bindings in the
various Tilde forests that refer to the Tilde tree need not be
modified to reflect that new location.

Second, while we have achieved location independence, it is
apparently at the cost of reintroducing a globally unique, flat,

498 Douglas Comer, Ralph E. Droms, and Thomas p. Murtagh



absolute namespace represented by Medusa names. In the Tilde

naming system, however, Medusa names are hidden from the

user, who identifies fites using Tilde names, not Medusa names.

We view Medusa names as a part of the underlying implemen-

tation - similar to "i-node numbers" or "disk block numbers".

Given a tree's Medusa name, the system still needs a way to

locate and access the Tilde tree in the system. If the Medusa

name does not contain any information about the associates Tilde

tree's current location, how can the tree be located in the local

network? As indicated above, our implementation takes advan-

tage of NFS and the underlying UNIX frle system to accomplish

this.
The hosts participating in the Tilde naming system all use

NFS as a transport mechanism, and all organize their local file

naming hierarchies as shown in figure 4. Note that the figure

denotes the underlying UNIX file naming environment from our
prototype - not the Tilde naming system that the user sees. Each

host using the Tilde naming system collects its Tilde trees under a

single directory dedicated to that host. In the figure, three hosts,

host1, host2 and host3 are represented by host directories.

The individual host directories are all collected into a single direc-

tory, called /.tiIde, on each host. Thus, on hostl the sub-

directories /.titde and /.tilde/host1 are part of the local

storage attached to host1, while / .til.de/}i'ost2 and

/ .tlLde/host3 represent remote links to directories residing on

host2 and host3. Figure 4 also shows that Tilde tree

host2-0079, created on host2, has migrated to hostl while

retaining its original Medusa name.

within each host subdirectory, Tilde trees are represented by a

subtree whose root is given that tree's Medusa name. With this

common structure in place on all participating hosts, any host can

search the set of Tilde trees currently managed by all hosts by

scanning the subdirectories under the /. tilde directory. We can

now fill in the missing step in the Tilde naming evaluation

mechanism - once the evaluation mechanism has located the

Medusa name of the desired Tilde tree, the UNIX subtree that

represents that Tilde tree can be located by scanning for a UNIX

directory with that Medusa name in the set of directories

managed by the participating Tilde system hosts'

An Experimental Implementation of the Tilde Naming System 499



A
.tilde bin usr

A
hostl host2 host3

hostl-0000 host2-0079

Figure 4: The Organization of Host Directories

To create a new Tilde tree, a host simply creates a new sub-
directory representing the Tilde tree in its local host directory.
The host constructs a unique Medusa name for that Tilde tree and
identifies the subdirectory by the Medusa name of the Tilde tree it
represents. Because the collection of subdirectories in the .tilde
directories represents a global database of Tilde tree and Medusa
names, creation of a new Tilde tree subdirectory in one of the
host directories implicitly adds the new Tilde tree to the global set
of Tilde trees.

Migrating a Tilde tree requires simply moving the subdirectory
representing the Tilde tree to a new host directory. As frgure 4
shows, the Tilde tree retains its original Medusa name, regardless
of the host on which it resides. As long as the Tilde tree resides
in some host directory, it is a part of the set of Tilde tress and can
be located by the Tilde name evaluation mechanism.

In essence, our prototype uses a linear search mechanism to
locate Tilde trees. The search mechanism does include some
optimizations. one optimization is the use of a cache in the file
evaluation mechanism that retains the last known location of
Tilde trees. The name evaluation mechanism consults the cache
and first probes for a Tilde tree at its last known location. If that
probe fails, or the Tilde tree is not represented in the cache, the
name evaluation mechanism next looks for the Tilde tree on the
host at which the tree was created (as recorded in the Tilde tree's

500 Douglas Comer, Ralph E. Droms, and Thomas p. Murtagh

hostl-0132



Medusa name) by simply probing for the Tilde tree in the direc-

tory in which the appropriate host's Tilde trees are stored. Our
use of caching is predicated on the assumption that Tilde trees

will tend to remain on the same machine on which they were

created.

4.2. Tilde Forest Management

The details of the Tilde forest management mechanisms are the

result of a conscious effort to build an experimental system suit-

able for extension. As a result, the kernel primitives are minimal
and the csh interface is extensible. the Tilde forest management

system consists of four main components:

l. Kernel Primitives - New kernel primitives are provided to
enable a process to manage its tilde forest

2. Shell built-in functions - csh commands give the user access

to the kernel primitives for management of the csh process'

Tilde forest.

3. Command scripts - The primitive csh intetface is extended

through the use of the cså command language to provide

more powerful Tilde forest management tools

4. Tilde Tree Registry - A simple data base is provided

through which elements of the collection of trees managed

by the local network can be identified.

The first two components were constructed as part of the initial
prototype implementation, and are discussed here, while the

remaining components were developed through the use of the pro-

totype and are covered in section 5.

The local network employs the UNIX model of process crea-

tion, in which a new child process is instantiated as an exact copy

of the requesting parent process. The child process inherits the

execution environment of the parent process, including open frles

and current working directory. under Tilde naming, this inheri-

tance model is extended to include the Tilde forest, so that a new

process inherits its initial Tilde forest from its parent. A child
process, therefore, initially resolves file names in the same

environment as its parent process, just as the child process shares

other parts of its execution environment with its parent process.

An Experimental Implementation of the Titde Naming System 501



Once a process begins independent execution, it can dynamically
alter its local Tilde forest without affecting the naming environ-
ment of any other processes.

A process' requirements for modification of its Tilde forest are
simple. As mentioned earlier, the Tilde forest consists of a list of
bindings from Tilde names to Medusa names. A process can
modify its Tilde forest by adding a new binding to the forest or by
deleting an existing binding from the forest. A process can also
list the bindings in its Tilde forest to obtain information about its
current naming environment. Adding a new binding between a
Tilde name and a Medusa name effectively adds a new Tilde tree
to the process'naming environment, making files in that new
Tilde tree accessible to the process. Similarly, deleting a binding
from the forest effectively removes the tree from the process'
naming environment. These simple management mechanisms can
be combined into more complex operations, as we will see in a
later section.

Tilde hosts use a process-based command interpreter mechan-
ism, an extension of the UNIX cså, which executes commands on
behalf of the user as separate, child processes. Command
processes, instantiated by the command processor, inherit the
command processor's Tilde forest and, therefore, execute in the
same naming environment as the command processor itself. The
command processor's Tilde forest can be thought of as the user's
Tilde forest. Modifications to the command processor's forest
alter the naming environment perceived by the user.

The basic csh interface consists of a small set of builtin com-
mands providing functions similar to the Tilde forest management
kernel primitives available to a process. That is, by issuing a sim-
ple command a user can add a new tree to his forest, delete a tree
from his forest, or list the current contents of his forest. Thus, the
Tilde version of csh includes additional command interpretation
to recognize user requests for forest modifrcation and to execute
the appropriate kernel commands for modifyíng csh process' Tilde
forest as requested.

A user's initial Tilde forest, established by the local network's
session initiation mechanism, consists of a small set of Tilde trees,
including a tree in which the user can store session customization
information. This mechanism is analogous to initial profile

502 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



mechanisms such as the UNIX .login or the VM/CMS PR0FILE

EXEC files. Once the initial forest is established, the user can

establish a Tilde forest composed of bindings to a working collec-

tion of Tilde trees either interactively or through command scripts

included as part of the session customization information.
The inheritance of a process' Tilde forest extends to processes

created on remote hosts as well as processes created locally. This
ensures that name interpretation is evaluation site independent.
Regardless of which processor within the system a process is

spawned on (or migrates to), the interpretation of names is always

determined by the Tilde forest established by the user.

5. Experience with Tilde Naming

We now present an informal summary of our experiences with
our experimental Tilde naming implementation. First, we

describe extensions made to the csh intefiace that support two

different classes of users: novice users, who work in a static
environment of globally shared Tilde trees, and expert users, who
modify their Tilde forests dynamically to share Tilde trees with
other groups of users. Section 5.3 explains the Tilde Tree Regis-

try mechanism for identification of Tilde trees. The next subsec-

tions illustrates the use of Tilde naming to solve naming conflicts

between software subsystems. This section then concludes with a

description of a uniform organization of the components of a
Tilde tree that we developed to enhance the project subtree

abstraction.

5.1. Novice Users

The goal of minimizing the impact of Tilde naming on novice

users led us to design static, unobtrusive mechanisms that can be

used and managed with little interaction on the part of the user.

Ideally, the user interface should consist of a single command,
perhaps under the control of a system administrator, that estab-

lishes a standard, consistent Tilde forest at the initiation of a com-

puting session. The novice user or the system administrator can

add that single command to the user's session initiation file, so

An Experimental Implementation of the Titde Naming System 503



that the user need never issue any explicit Tilde forest manage-
ment commands. As a result, the novice user can function in the
Tilde naming environment without being aware of the change
from an absolute naming system.

We take advantage of the ability of csh to read sequences of
commands from command scripts to extend the basic Tilde nam-
ing interface mechanisms to include simple primitives for manage-
ment of a standard Tilde forest. For example, the local network
administrator can maintain command scripts that define lists of
trees, such as standard system trees or users' home trees, so that
the user can, with a single csh command, incorporate standard
sets of trees into his forest when initiating a computing session.
These lists of Tilde trees also allow the system administrator to
install new system trees by simply changing the lists of standard
trees.

A user who wishes to establish a personalized forest, different
from the standard system forests, at the beginning of each com-
puting session, defines his own list of trees in a local file. Reading
the file during session initiation then automatically sets up the
desired local naming environment. The mechanism for listing the
user's Tilde forest is integrated with the other forest management
primitives, so that a personalized forest can be created by interac-
tively constructing the desired Tilde forest and saving a listing of
the forest in a local file.

5.2. Expert Users

More experienced users use the ability to manage their private
Tilde forests to better control their naming environments. The
ability to quickly switch between multiple naming environments is
especially useful to software developers. For example, when
developing a software subsystem for distribution to other local
networks, the user will want to test the components of the system
in a minimal Tilde naming environment composed of only com-
monly available Tilde trees, while developing the code in a more
extensive environment. This management function is accom-
plished by listing both Tilde forests in files, and creating a com-
mand script that deletes the existing forest and reads in a new
forest from a specified file. Users collaborating on a project can

504 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



introduce a new version of a project by adding the project's Tilde
tree to their Tilde forest, and then return cleanly to their usual

environment by removing the Tilde tree.
We found several styles of command scripts to be useful in

enhancing a user's interface to the Tilde naming system. A user

who makes modifications to his Tilde forest may want to maintain
a consistent environment across computing sessions, retaining
changes to the environment rather than establishing a standard,

default environment. If the user saves a copy of his forest when

he terminates a session, and reestablishes that forest when he ini-
tiates the next session, the user's naming environment can be

retained across sessions. Switching between two Tilde forests can

be easily accomplished with two scripts, generated by saving the
current Tilde forest, each containing commands to establish a

specific Tilde forest.

5.3 The Tilde Tree RegistrY

The environment management primitives discussed in the previ-

ous sections assume a mechanism for the identification of Tilde
trees that are not in the Tilde forest. V/hile the kernel and csh

primitives for forest management use Medusa Names for this pur-
pose, Medusa names are not an appropriate mechanism for users

to identify Tilde trees. Medusa names are not mnemonic and are

not chosen by the user; they exist only for the convenience of the

underlying name resolution mechanism. Therefore, in the Tilde
naming system prototype, we constructed another mechanism for
the identification of Tilde trees.

The Tílde Tree Registry is a collection of information describ-

ing each of the trees managed by the local network. Each Tilde
tree has an entry in the Registry that lists the tree's distinguishing

characteristics. The Registry accepts database-like queries and

returns information about identified trees. The Registry mechan-

ism is coordinated with the user interface to the Tilde forest, so

that the results of Registry requests can be composed with Tilde
forest management commands into more powerful mechanisms.

Figure 5 illustrates the information retained in the Tilde tree

Registry database. The information stored in the Registry

includes the Tilde tree's owner and creation date, a short

An Experimental Implementation of the Tilde Naming System 505



comment describing the contents of the Tilde tree, and the tree's
Tilde and Medusa names.

5.4 Establishing New Project Subtrees

Frequently, new subtrees must be added to hierarchical file sys-
tems to install new software subsystems, add a new user to a com-
puting environment or develop an experimental version of an
existing software subsystem. In a globally shared hierarchical
naming system, each new subtree must be given a system-wide
unique name. In the Tilde system, this need for the selection of
common names is eliminated in many cases. Furthermore, in
cases where it remains necessary to select a common name the
number of users who must agree on a common name is reduced.

First, in cases where the files in a tree contain no file names
that reference files within the tree itself, each user is completely
free to assign any Tilde name to the tree when adding it to the
user's Tilde forest. In the more difficult cases where the tree does
contain self-references its users will all be forced to use a common
Tilde name for the tree. Because naming is user-relative, how-
ever, the name selected need not be a system-wide unique name.
It needs only be unique within the Tilde forests of the users who
wish to share the tree. Thus, the resolution of each name conflict
is localized to a group of users who are directly interested in the
ûles being named. This is critical to the administrative scaling of
the system since it implies that the bulk of name assignment prob-
lems can be resolved locally.

One interesting case we have observed in which the use of
relative naming makes it possible to avoid what would become a
name conflict in an absolute naming system is the development of

Medusa
Name

Tilde Owner Creation
Name Date

Comment

-system sysadmin ll/02185 host2's system Tilde tree
"system sysadmin 01104186 hostl's system Tilde tree-edit jones 0l/10/86 experimental Edit"edit sysadmin 01/05/86 production Edit-smith smith 12110/86 user smith's home Tilde tree

Figure 5: Tilde Tree Registry Database

host2-0000
hostl-0000
host2-0080
host2-0079
hostl-0132

506 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



a new version of an installed software subsystem. Suppose that
there is a large user community that depends on the availability
and stability of the original, or production, version of some sub-

system which is also being revised as a development project. One

solution is to create a copy of the subsystem's project subtree,

which can then be modified without affecting the users of the ori-
ginal version. Figure 6 gives an example of a global naming
hierarchy in which a new, experimental version of the edit pro-
ject subtree has been installed under the directory edit-exp.

In Figure 6, references to the components of the experimental
version of the editor subsystem must all be changed from

/cnds/edit to /cmds/edit-exp to reflect the new name of the
root of the project subtree. In typical software subsystems, these

references are scattered throughout the subsystem source code,

and generated in obscure and arcane ways, so that it is incon-
venient to locate and alter all these internal references.

In the Tilde naming environment, the experimental version of
the editor can be created as a new Tilde tree containing copies of
all the components of the production Tilde tree. The experimen-
tal Tilde tree is entered into the Tilde tree Registry with the same

cmd lib

/\
search

Figure 6: Creation of an Experimental Version of a Software Subsystem

,1\
cmd exec exec

/ -.------

/
edit

/\

edit-exp

/\
cnd exec

/\
search

An Experimental Implementation of the Tilde Naming System 507



Tilde name as the production tree, but with a unique Medusa
name differentiating the experimental and production trees. In
this instance, then, a user developing the new version of the editor
can bind the development tree into his Tilde forest under the
Tilde name -edit, while the rest of the user community will con-
tinue to bind the production tree to the name -edit. Figure 7
gives an example of two processes, both of which use -edit to
reference the production and experimental versions of the editor
subsystem. In the frgure, the two Tilde trees are identified by
their respective Medusa names.

The two processes are able to use the two versions of the edi-
tor without making changes to the software subsystems; the bind-
ings in the Tilde forests cause internal references between editor
system components to resolve to files in the appropriate Tilde
tree.

/\
search

/\
search

Figure 7: Creation of an Experimental Tilde Tree

Tilde tree host2-0079

Tilde tree host2-0080

508 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



5.5 Organization of Tilde Trees as Project
Subtrees

The set of Tilde trees in our prototype system represents a reor-
ganization of the files supplied with the UNIX operating system.

The trees are organized according to the project subtree paradigm,
so that each Tilde tree represents a separate software subsystem.

Components of a software subsystem are collected into a single
Tilde tree, rather than stored in directories shared by many
software subsystems.

As work on the experimental system progressed, we found that
many software subsystems share a common internal organization.
Reorganizing the files in these subsystems according to a standard
structure creates a uniform external interface for the software
packages. Components of software subsystems fall into seven

categories:

. Commands - commands executed by the user; the system's
external interface.

. Executables - executable modules not directly invoked by
the users.

. Databases - text-oriented data files shared by the system

components.

. Libraries - collections of non-textual information (e.g.,

separately compiled modules)

. Sources - used to construct the system components.

. Included files - text modules shared among system source

files.

. Documentation - all documentation such as user manual
entries and descriptive papers.

These categories are defined based on our experience with UNIX-
based software subsystems. We do not claim that this otganiza-
tion would be useful in other environments.

The Tilde tree structure shown in figure b illustrates the organ-
ization of the components of the C compiler within the naming
structure suggested by the categories listed above. In the figure,

application programs like the compiler and the assembler are

stored as -cc/cmd/cc and -cc/cmd/as. Executable

An Experimental Implementation of the Tilde Naming System 509



components not usually invoked directly by the user are stored as
-cc/exec/ccom and -cc/exec/c2. Source code files are stored
under -cc/src in subdirectories that reflect the subdirectories at
the root of the Tilde tree, so the source for cc is stored in
-cc/src/cmd-exec/Cc. Header files are stored in -cc,/include
and documentation frles like cc. 1 and ls. 1 are stored in
- cc/doc.

6. Conclusions

The design of flexible, effective and convenient naming sys-

tems is a difficult problem, especially in distributed computing
environments. Through our experience with distributed comput-
ing environments, we have established several important features
desirable in naming mechanisms. The Tilde naming system incor-
porates these features.

The Tilde naming system increases the independence of frle
naming from the structure of the distributed computing environ-
ment and enhances software portability by isolating the

cc.1
as'1

Figure 8:

Structure of the C Compiler Tilde Tree

doc

_1"

db lib src

ll
libc,a cmd-exec/l\

Cc ld.c
As

\
ld

t\ I
.z ."o I

I

include

I

stdio.h

nl

ld.l

5 l0 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



identification ol a file from the access to that file. The local, per-

process Tilde naming environment provides storage and resolu-

tion site independence. These advantages incur an additional
overhead of name environment management; this overhead is
minimized partly through careful design of the process and user

interfaces to the naming mechanism and partly through the recog-

nition of the importance of a mechanism for grouping related files

- the Tilde tree.
Experience with the prototype implementation described in

this paper has reinforced our conviction that the basic design of
the Tilde naming system is sound, and has further directed our
research into distributed naming systems. We have experimented
with extensions to the user interface of the Tilde naming environ-
ment, and have constructed new software subsystems that use the

enhanced portability provided by Tilde naming. As a result of
our effort to convert existing UNIX software to the Tilde naming

system, we have identified a useful strategy for the organization of
the files within a Tilde tree.

It might appear that the introduction of Tilde naming increase

rather than decreases the complexity of name management. UNIX
already includes a rich set of mechanisms with which users can

construct name evaluation environments. How does Tilde nam-

ing make the task of managing a user's naming environment
easier?

Many of the name mappings provided by Tilde naming can, in
fact, be implemented using existing mechanisms such as environ-

ment variables, symbolic links and remotely mounted directories.
Tilde naming unifies the management of a user's naming environ-
ment under a single, explicit mechanism, eliminating the need for
other, ad hoc mechanisms. And, because Tilde naming is a per-

user, rather than a per-processor, naming mechanism, a useros

naming environment can be replicated on remote hosts, where the

per-processor naming environment constructed of local symbolic
links and a local mount structure may be different than the nam-

ing environment on the local host.
There are several directions for future work in this area:

. The current experimental system uses a broadcast mechan-

ism to locate a Tilde tree in the local network. As we dis-

cussed in section 4.1, this mechanism will not scale well to

An Experimental Implementation of the Titde Naming System 5 I I



larger local networks, and should be replaced by a dynamic
location mechanism. The use of o'hints" as described in the
design of QuickSilver could provide the basis for such an
efficient location mechanism.

. Trusted software can be spoofed by the current Tilde forest
inheritance mechanism. To ensure security, a trusted pro-
cess must be able to verify its file naming environment by
examining and specifying its Tilde forest.

. There is no inherent limitation that precludes the extension
of the Tilde naming environment across administrative
boundaries between local networks. However, the details of
Tilde tree identification and location in an inter-network
environment will require changes in our underlying tran-
sport and identification mechanisms. For example, as we
suggested in section 3, a tree's Medusa name may be depen-
dent on the local network at which the tree is stored (but
not on the tree's specific location within the local network).

. We have explained how the Tilde naming mechanism pro-
vides a system-independent naming environment through
inheritance of the Tilde forest by child processes. There is
another mechanism for remote execution, called the Client-
Server model, which uses inter-process communication
between clients and servers for the execution of services, as
opposed to the command interpreter's use of child
processes. Inheritance of the Tilde forest does not apply,
since the two communicating processes do not share a com-
mon ancestor in the process tree.

Members of the DASH project [Korb 1984] experimented with
the sharing of Tilde forests between Client and Server processes

[Wills 1986]. The DASH system uses a Client-Server mechanism
for service execution, in which Client processes on workstations
request services from Server processes on hosts. To preserve its
naming environment, a Client must transmit its execution
environment to the Server, so that the service can be performed
in the expected environment. For example, a Client can share its
Tilde forest with a Server by first listing the forest, sending a
representation ofthe forest bindings to the Server, and requesting
that the Server establish those bindings in its Tilde forest. This

512 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



mechanism for passing a Tilde forest between processes is

equivalent to the inheritance of an initial Tilde forest by a child
process.

References
D. R. Brownbridge, L. F. Marshall, and B Randell. The

Newcastle Connection or UNIXes of the World Unite!
Software-Practice and Experience, l2:l 147 -l 162, 1982.

L. F. Cabrera and J. Wyllie. QuickSilver Distributed File
Services: An Architecture for Horizontal Growth.
newblock Almaden Research Center Research Report
RJ 5578, IBM, April 1987.

D. Comer. Transparent Integrated Local and Distributed
Environments (TILDE) Project Overview. Technical
Report CSD-TR-466, Department of Computer Sciences,

Purdue University, West Lafayette, Indiana, 1984.

D. Comer and R. Droms. Tilde Trees in the UNIX
Environment. Proc. of the Winter 1985 Usenix Conf ,

I 985.

D. Comer, R. Droms, and T. Murtagh. Process-Relative File
Naming. ACM Transactions on Computing Systems,
(submitted August, 1989).

D. Comer and T. Murtagh. The Tilde File Naming Scheme.
Proc. of the IEEE Sixth Int. Conf. on Distributed
Computing Systems, pages 509-514, Cambridge, MA,
May 1986.

Computer Science Division, Department of Electrical
Engineering and Computer Science, University of
California, Berkeley, CA. UNIX Programmer's Manual,
4.2 Berkeley Software Distribution, Virtual VAX-Il
Version,1983.

Digital Equipment Corporation, Maynard, MA. VAX/VMS
Command Langaage User's Guide, Volume 2a,

Command Language and System Messages,1982.

R. Droms. Naming of Files in Distributed Systems. PhD
thesis, Purdue University, ril/est Lafayette, Indiana,
I 986.

An Experimental Implementation of the Tilde Naming System 5 13



IBM Corporation, Information Development, Dept. G60,
Endicott, NY. VM/SP CMS Command Reference,
1986. SCl9-6209-4.

J. T. Korb. An Overview of the DASH Intelligent Terminal.
Technical Report CSD-TR-492, Department of
Computer Sciences, Purdue University, West Lafayette,
Indiana, September 1984.

J. H. Morris et al. Andrew: a distributed personal computing
environmenf. Comm. of the ACM,29(3):184-281, March
I 986.

J. S. Quarterman, A. Silberschatz, and J. L. Peterson. 4.2BSD
and 4.3BSD as Examples of the UNIX System. ACM
C omputing Surveys, 17 (4):37 9 -4 I 8, December I 985.

A. P. Rifkin et al. RFS architectural overview. Proc. of the
Summer 1986 Usenix Conf., pages 248-259,1986.

J. Saltzer, November 1987. Private communication.

R. Sandberg. The Sun Network File System: Design,
Implementation and Experience. FEl46-0/20K, Sun
Microsystems, Inc., Mountain View, California,
November 1987.

R. Sandberg et al. Design and implementation of the Sun
Network File System. Proc. of the Summer 1985 Usenix
Conf., t98s.

M. Satyanarayanan et al. The ITC Distributed File System:
Principles and Design. Proc. of the Tenth ACM
Symposium on Operating Systems Design, December
I 985.

Sun Microsystems, Inc. NFS: Network File System protocol
specification. RFC 1094, NIC, March 1989.

K. Thompson. UNIX Implementation. The Bell System
Technical Journal, 57(6): l93l-1946, July-August 1978.

W. Tichy and Z. Ruan. Towards a Distributed File System.
Proc. of the Summer 1984 Usenix Conf., pages 87-97,
l 984.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The
LOCUS Distributed Operating System. Proc. of the
Ninth ACM Symposium on Operating System Principles,
October 1983.

514 Douglas Comer, Ralph E. Droms, and Thomas P. Murtagh



B. Welch and J. Ousterhout. Prefrx Tables: A Simple
Mechanism for Locating Files in a Distributed System.
Proe. of the IEEE Sixth Int. Canf,, on Distributed
Computing Systems, pæies 184-189, May 1986.

C. Wills. The Use of Services in the TILDE Environment.
Technical Report CSD-TR-656, Department of
Computer Sciences, Purdue University, West Lafayette,
Indiana, Ðecember 1986.

lsubmitted Nov. 8, 1989; revßed Møy 30, 1990; accepted July 28, 19901

An Experhnental Implementøtion of the Tílde Narning Slxtern 515


