
CHORUS Distributed
Operating Systems

M. Rozier, V. Abrossimov, F. Armand,

I. Boule, M. Gien, M. Guillemont,

F. Herrmann, C. Kaiser, S. Langlois,

P. Léonard, and W. Neuhauser

Chorus systèmes

CHORUS: in ancient Greek drama, a company of
performers providing explanation and
elaboration of the main action.
(Webster's New World Dictionary)

ABSTRACT: The Cnonus technology has been
designed for building o'new generations" of open,
distributed, scalable Operating Systems. CHoRus
has the following main characteristics:

¡ Ír comÍ[tnication-based technology, relying on
a minimal Nucleus integrating distributed
processing and communication at the lowest
level, and providing generic services used by a
set of subsystem servers to provide extended
standard operating system interfaces (a UNIX
interface has been developed, others such as

OS/2 and object oriented systems are
envisaged);

@ Computing Systems, Vol. I 'No. 4 ' Fall 1988 305

. real-time services provided by the real-time
Nucleus, and accessible by "system program-
mers" at the different system levels,

. a modular architecture providing scalability,
and allowing in particular dynamic
configuration of the system and its applica-
tions over a wide range of hardware and net-
work configurations, including parallel and
multiprocessor systems.

CHonus-v3 is the current version of the Cuonus
Distributed Operating System, developed by Chorus
systèmes. Earlier versions were studied and imple-
mented within the Chorus research project at INRIA
between 1979 and 1986.

This paper presents the Cnonus architecture and
the facilities provided by the CHonus-v3 Nucleus.
It describes the UNIX subsystem built vvith the
Cnonus technology that provides:

. binary compatibility with UNIX,

. extended UNIX services supporting distri-
buted applications (network IPC, distributed
virtual memory), light-weight processes, and
real-time facilities.

l. Introduction

The evolution of computer applications has led to the design of
large distributed systems for which the requirements for efficiency
and availability have increased, as has the need for higher level
tools to help in their construction, operation and administration.

This evolution introduces requirements for new system struc-
tures which are difficult to fulfill merely by extending current
monolithic operating systems into networks of cooperating

306 M. Rozier et al.

systems. This has led to a new generation of distributed operatíng
systems.

. Separate applications running on different machines, from
different suppliers, supporting different operating systems,
and written in a variety of programming languages need to
be tightly coupled and logically integrated. The loose cou-
pling provided by current computer networking is insuffic-
ient. The requirement is for tighter logical coupling.

. Applications often evolve by growing in size. Typically this
leads to distributing programs on several machines, to
grouping several geographically distributed sets of files into
a unique logical one, to upgrading hardware and software to
take advantage ofthe latest technologies, newer releases, etc.
The requirement is for a gradual online evolution.

. Applications grow in complexity and get more and more
difficult to master, i.e., to specify, to debug, to tune. The
requirement is for a clear,logical architecture, which allows
the mapping of the modularity of the application onto the
operational system and to hide distribution when it does not
directly reflect the distributed nature of organizations.

These structural properties can best be accomplished through a
set of unified, coherent and standard basic concepts and structures
providing a rigorous framework adapted to constructing distri-
buted operating systems.

The CnonUS architecture has been designed to meet these
requirements. Its foundation is a generic Nucleus running on
each machine; communication and distribution are managed at
the lowest level by this Nucleus; customary operating systems are
build as subsystems on top of the generic Nucleus using its basic
services; user application programs run in the context of these
operating systems. CHonus provides the generic Nucleus and a
set of servers implementing generic operating system services,
which are used to build complete host operating systems. The
generic Cnonus Nucleus implements the real-time services
required by real-time users. Although it is not dedicated to a par-
ticular system, CnoRus provides also a standard UNIX subsystem
that can execute UNIX programs with a distributed architecture,
as a direct result of the CHonus technology.

Cnonus Distributed Operating Systems 307

This paper focuses on the CHonus architecture, the facilities
provided by its Nucleus, and the - distributed - uNlx subsystem

implementation. Extensions to UNIX services concerning real-

time, multi-thread processes, distributed applications and servers

are outlined.
The CHonuS history and its transition from research to indus-

try is summarized in section 2. Section 3 introduces the key con-
cepts of the CHoRUS architecture and the facilities provided by
the CHoRUS Nucleus. Section 4 explains how the "old" UNIX
kernel has been adjusted to state-of-the-art operating system tech-
nology while preserving its semantics, and gives examples of how
its services can then be easily extended to handle distribution.
Section 5 gives some implementation considerations and conclud-
ing remarks.

Comments about some of the important design choices, often
related to previous experience, are given in small paragraphs enti-
tled ,,RATIONALE.''

2. Background and Related Work

o'Chorus" was a research project on Distributed Systems at
INRIAI in France from 1979 to 1986. Three iterations were

developed, referred to as CHoRUS-VO, CHoRUS-V1, and CuoRus-
Y2, all based on a communications-oriented kernel [Zimmermann
et al. 1981; Guillemont 1982(2); Zimmermann et al. 1984; Rozier &
Legatheaux-Martins 19871. The basic concept for handling distri-
buted computing within CuoRus, for system as well as applica-
tion services, is for a "Nucleus" to manage the exchange of "Mes-
sages" between "Ports" attached to "Actors."

While early versions of Cnonus had a custom interface,
CHonus-v2 [Armand et al. 1986] was compatible with UNIX Sys-

tem V, and had been used as a basis for supporting half a dozen
research distributed applications. CuoRuS-V3 is the current ver-
sion, developed by Chorus systèmes. It þuilds on previous
CnoRus experience [Rosier & Legatheaux-Martins 1987] and
integrates many concepts from state-of-the-art distributed systems

1. INRIA: Institut National de Recherche en Informatique et Automatique.

308 M. Rozier et al.

developed in several research projects, while taking into account
constraints of the industrial environment.

The CHonus-V3 message-passing Nucleus compares to the
V-system ICheriton l9s8(l)] of Stanford University, distributed
virtual memory and "threads" are similar to that of Mach

[Accetta et al. 1986] of Carnegie Mellon University, network
addressing incorporates ideas from Amoeba [Mullender et al.

19871 of the University of Amsterdam, and uniform file naming is
based on a scheme similar to the one used in Bell Laboratories'
9th Edition UNIX [Presotto 1986; Weinberger 1986].

This technology has been used to implement a distributed
UNIX system [Herrmann et al 1988] as a set of servers using the
generic services provided by the Csonus Nucleus.

2.1 Early Research

The Chorus project at INRIA was initiated with a combined
experience from previous research in packet switching Computer
Networks - Cyclades [Pouzin et al. 1982] - and time sharing
Operating Systems - Esope [Bétourné et al. 1970]. The idea was

to bring distributed control techniques originated in the context of
packet switching networks into distributed operating systems.

ln 1979INRIA also launched another project, Sol, to reimple-
ment a complete UNIX environment on French micro and mini
computers [Gien 1983]. The Sol team joined Chorus in 1984,

bringing their UNIX expertise to the project.

2.2 CH)RUS-V} (1950-1952)

CHoRus-vO experimented with three main concepts:

. A distributed application which was an ensemble of
independent actors communicating exclusively by exchange

of messages through ports or groups of ports; port manage-
ment and naming was designed so as to allow port migra-
tion and dynamic reconfiguration of applications.

. The operation of an actor which was an alternate sequence

of indivisible execution phases, called processing-steps, and

Cnonus Distributed Operating Systems 309

of communication phases; it provided a message-driven
automaton style of processing.

. The operating system was built as a small nucleus, simple
and reliable, replicated on each site and complemented by
distributed system actors, in charge ofports, actors, files,
terminal and network management.

These original design choices were revealed to be sound and
were maintained in subsequent versions.

These Cuonus concepts have been applied in particular for
fault tolerance: the "coupled actors" scheme [Banino & Fabre
1982] provided a basis for non-stop services.

Cnonus-v0 was implemented on Intel 8086 machines, inter-
connected by a 50 Kb/s ring network (Danube). The prototype
was written in UCSD Pascal and the code was interpreted. It was

running by mid-tsaz.

2.3 CHqRUS-W (1982-1984)

This version moved CHonus from a prototype to a real system.

The sites were SM90 multi-processor micro-computers - based on
Motorola 68000 and later 68020 - interconnected by a l0 Mb/s
Ethernet. In a multi-processor confrguration, one processor ran
UNIX, as a development system and for managing the disk; other
processors (up to seven) ran CttoRUS, one of them interfacing to
the network. The Pascal code was compiled.

The main focus of this version was experimentation with a
native implementation of Cnonus on multi-processor architec-
ture.

The design had few changes from CltoRUS-vO, namely

. Structured messages were introduced to allow embedding
protocols and migrating their contexts.

. The concept of an activity message, transporting the context
of embedded computations and the graph of future distri-
buted computation, was experimented on for a fault tolerant
application IBanino et al. 1985(l)].

3 10 M. Rozier et al.

CHoRus-vl was running in mid-tgg4. It was distributed to a
dozen places, some of which still use it in 1988. It was docu-
mented for these users.

2.4 CH)RUS-V2 (1954-1986)

Adopting UNIX forced the CHORUS interface to be recast and the
system actors to be changed. The Nucleus, on the other hand, did
not change a great deal. The UNIX subsystem was developed
partly from results of the Sol project (File Manager) and partly
from scratch (Process Manager). Concepts such as ports, mes-

sages, processing steps, and remote procedure calls were revisited
in order to be closer to UNIX semantics and to allow a protection
scheme à la UNIX. The UNIX interface was extended to support
distributed applications (distant fork, distributed signals, distri-
buted files).

CgoRus-v2 was an opportunity to reconsider the whole UNIX
kernel architecture with two objectives:

l. Modularity: all UNIX services were split into several
independent actors. This implied splitting UNIX kernel
data into several independent CHoRUS actors along with
cooperation protocols between these actors.

2. Distribution: objects managed by system actors (files,
processes) could be distributed; services offered by system
actors could also be distributed (e.g. distant fork, remote file
access); this implied new protocols, naming, localization,
etc.; the designation and naming levels for distributed
objects, groups and the communication protocols were
redesigned.

A distributed file system was implemented. A distributed shell
for UNIX was also developed.

All this work was an irreplaceable exercise for CHoRUS-V3:
CHoRus-V2 may be considered as the draft of the current version.

CHoRus-v2 was running at the end of 1986. It has been docu-
mented and used by research groups outside the Chorus project.

Cnonus Distributed Operating Systems 31 I

2.s cHoRUS-v3 (1957-)

The objectives of this current version are to provide an industrial
product integrating all positive aspects of the previous experiences
and research versions of CHonus and of other systems along with
several new signiflcant features. CHonus-v3 is described in the
rest ofthe paper.

2.6 Appraisal of tour CHoRUS Versions

The first lesson which can be pulled out from the Cnonus story is
that several steps and successive whole redesigns and implemen-
tations of the same basic concepts provide an exceptional oppor-
tunity for refining, maturing and validating initial intuitions:
think about UNIX!

On the technical side, the basic modular structure, kernel, and
system actors never really changed; some concepts also resisted all
versions: ports, port groups, messages.

However, the style of communication (IPC) evolved in each
version: naming and protection of ports experimented with local
names, global names, protection identifrers. The protocols which
were purely asynchronous at the beginning moved by steps to syn-
chronous communications and led finally to synchronous RPC.
Consequently, structured messages were no longer useful and pro-
cessing steps within an actor were in contradiction with the çxtent
of the Rpc.

Actors evolved from a purely sequential automaton with pro-
cessing steps to a real-time multi-thread virtual machine, which is
now used for resource allocation and as an addressing space.

Protection and fault tolerance are still open questions since
UNIX leaves few choices and because earlier experiments were not
convincing as to the value of implementing specific mechanisms
inside the kernel (e.g., reliable broadcast, atomic transactions,
commit, redundancy).

Early versions of CnoRus handled frxed memory spaces, with
possibility to use memory management units for relocation. This
evolved to dynamic virtual memory systems with demand paging,
mapped into distributed and sharable segments.

312 M. Rozier et al.

Finally, although Pascal did not cause any major problem as

an implementation language, it has been replaced by C++ which
can rely on the wider audience that C has now in the industry.
C++ also brings facilities (classes, inheritance, tight coupling with
C) that have been quite useful as a system language.

Since the beginning of the project, most design concepts and
experiments have been reported. A summary of these publica-
tions is given in $8.

3. CnOnus Concepts and Facilities

3.1 The Cnonus Architecture

3.1.1 Overall Organization

A CHoRUS System is composed of a small-sized Nucleus and a
number of System Servers. Those servers cooperate in the context
of Subsystems (e.g., UNIX) providing a coherent set of services
and interfaces to their "users" (Figure l).

RATIoNALE This overall organization is a logical view of
an open operating system. It can be mapped on a centralized as

well as on a distributed configuration. At this level, distribution
is hidden.

The choice has been to build a two level logical structure,
with a "generic nucleus" at the lowest level, and almost auto-
nomous "subsystems" providing applications wilh usual operat-
ing system services.

Therefore the Cnonus Nucleus has not been built as the
core of a specifrc operating system (e.g., UNIX), rather it pro-
vides generic tools designed to support a variety of host subsys-

tems, which can co-exist on top of the Nucleus.
This structure allows support of application programs which

already run on existing (usually centralized) operating systems,

by reproducing those existing operating system interfaces within
a given subsystem. This approach is illustrated with UNIX in
this paper.

Note also the now classic idea of separating the functions of
an operating system into groups of services provided by

Cnonus Distributed Operating Systems 313

tl] t-ïl fl ooo'"a'1ionPrograms

v.l l'* l v4
Subsystem I Interface

Subsystem I

C aonus Nucleus Interface

CnoRus Nucleus Generic Nucleus

Figure l: The CHoRus Architecture

autonomous servers inside subsystems. In monolithic systems,
these functions are usually part of the "kernel." This separa-
tion of functions increases modularity and therefore portability
and scalability of the overall system.

3.t.r.r THE cHoRUS NUCLEUS The Cuonus Nucleus (Fig-
ure 2) plays a double role:

l. Local services:
It manages, at the lowest level, the local physical computing
resources of a "computer," called a Site, by means of three
clearly identified components:

. allocation of local processor(s) is controlled by a
Real-time multi-tasking Executive. This executive pro-
vides frne grain synchronization and priority-based
preemptive scheduling,

. local memory is managed by the Virtual Memory
Manager controlling memory space allocation and
structuring virtual memory address spaces,

Subsystem 2 Interface

Subsystem 2
System Servers

&
Libraries

314 M. Rozier et al.

IPC Manager

(Portable)

Real-time Executive I VM Manager
(Portable) | @ortabte)

Supervisor | (Machine'

(Machine dependent) | dePendent)

: rr^-r----^ :. Hardware
:..............:

Figure 2: The Cuonus Nucleus

. external events - interrupts, traps, exceptions - are
dispatched by the Supervisor.

2. Global services:
The IPC Manager provides the communication service,
delivering messages regardless of the location of their desti-
nation within a CuoRus distributed system. It supports
RPC (Remote Procedure Call) facilities and asynchronous
message exchange, and implements multicast as well as

functional addressing. It may rely on external system
servers (i.e., Network Managers) to operate all kinds of net-
work protocols.

RATIoNALE Surprisingly, the structure of the Nucleus is
also logical, and distribution is almost hidden. Local services

deal with local resources and can be mostly managed with local
information only. Global services involve cooperation between
nuclei to cope with distribution.

In Cuonus-V3 it has been decided for efficiency reasons

experienced in Cnonus-v2, to include in the nucleus some
functions which could have been provided by system servers:

Cnonus Distributed Operating Systems 315

actor and port management (creation, destruction, localization),
name management, RPC management.

The "standard" CHORUS IPC is the only means - or "tool"
- used to communicate between managers of different sites;
they all use it rather than dedicated protocols - for example,
Virtual Memory managers requesting a remote segment to ser-
vice a page fault.

The nucleus has also been designed to be highly portable,
even if this prevents using some speciflc features of the underly-
ing hardware. Experience with porting the nucleus to half a
dozen of different Memory Management Units (MMU's) on
three chip sets has shown the validity of such a choice.

3.1.1.2 THE SUBSYST:EMS System servers implement high-
level system services, and cooperate to provide a coherent operat-
ing system interface. They communicate via the Inter-Process
Communication facility (IPC) provided by the CHoRus Nucleus.

3.1.r.3 sysTEM TNTERFACES A CHORUS system exhibits
several levels of interface (Figure l):

. Nucleus Interface: The Nucleus interface is composed of a
set of procedures providing access to the services of the
Nucleus. If the Nucleus cannot render the service directly,
it communicates with a distant Nucleus via the IPC.

. Subsystem Interface: This interface is composed of a set of
procedures accessing the Nucleus interface, and some Sub-
system specific protected data. If a service cannot be ren-
dered directly from this information, these procedures "call"
(RPC) the services provided by System Servers.

The Nucleus and Subsystem interfaces are enriched by
libraries. Such libraries permit the definition of programming
language specifrc access to System functionalities. These libraries
(e.g., the "C" library) are made up of functions linked into and
executed in the context of user programs.

3.1.2 Basic Abstractions Implemented by the
Cuonus Nucleus

The basic abstractions implemented and managed by the Csonus
Nucleus are:

316 M. Rozier et al.

Actor

Thread

Message

unit of resource collection, and
rnemory address space

unit of sequential execution

unit of communication

Port, Port Groups unit of addressing and
(re)configuration basis

Unique Identifier (UI) global name

Region unit of structuring of an Actor
address space

These abstractions (Figure 3) correspond to object classes which
are private to the Cnonus Nucleus: both the object representa-

tion and the operations on the objects are managed by the
Nucleus. Those basic abstractions are object classes to which the

services invoked at the Nucleus interface are related.
Three other abstractions are also managed both by the

Cnonus Nucleus and Subsystem Actors:

Communication Medium

Figure 3: CHoRus Main Abstractions

Cnonus Distributed operating Systems 317

Segment unit of data encapsulation

Capability unit of data access control

Protectionldentifier unitofauthentication

RATIONALE Each of the above abstractions plays a
speciflc role in the System.

An Actor encapsulates a set ofresources:

. a virtual memory context divided into Regions, coupled
with local or distant segments,

o â cornfnunication context, composed of a set of ports,

. an execution context, composed of a set of threads.

A Thread is the grain of execution and corresponds to the
usual notion of a process or task. A thread is tied to one and
only one actor, sharing the actor's resources with the other
threads ofthat actor.

Messages are byte strings addressed to ports.
Upon creation, a Port is attached to one actor, allowing (the

threads of) that actor to receive messages on that port. Ports
can migrate from one actor to another. Any thread knowing a
port can send messages to it.

Ports can be grouped dynamically into Port Groups provid-
ing multicast or functional addressing facilities.

Actors, ports and port groups receive Unique Identffiers (UI)
which are global (location independent), unique in space and in
time.

Segments are collections of data located anywhere in the
system and referred to independently of the type of device used
to store them. Segments are managed by System Servers,
defining the way they are designated and handling their storage.

Two mechanisms are provided for building access control
mechanisms and authentication:

Resources (e.g., segments) can be identified within their
servers by a key which is server dependent. Since keys have no
meaning outside a server they are associated with the port UI of
the server to form a (global) Capability.

Actors and ports receive Protection ldentifiers which the
nuclei use to stamp all the messages sent and that receiving
actors use for authentication.

318 M. Rozier er al.

3.2 Active Entities

3.2.1 Physical Support: Sites

The physical support of a Cuonus system is composed of an

ensemble of sites ("machines" or "boards"), interconnected by a
communication network (or Bus). A site is a grouping of tightly
coupled physical resources: one or more processors, central
memory, and attached I/O devices. There is one CHoRUS Nucleus
per site.

RATI)NALE A site is not a basic CHonus abstraction
(neither are devices). Site management is performed by site

servers, i.e., system administrators, and the site abstraction is

implemented by these servers.

3.2.2 Virtual Machines: Actors

The actor is the logical "unit of distribution" and of collection of
resources in a CnoRUS system. An actor defrnes a protected
(paged) address space supporting the execution ofthreads (light-
weight processes or tasks), that share the address space ofthe
actor. An address space is split into a "user" address space and a

"system" address space. On a given site, each actor's "system"
address space is identical and its access is restricted to privileged

levels of execution (Figure 4).

A given site may support many simultaneous actors. Since

each has its own "user" address space, actors define protected
"virtual machines" to the user.

Any given actor is tied to one site and the threads supported
by any given actor are always executed on the site to which that
actor is tied. The physical memory used by the code and data of
a thread is always that of the actor's site. Actors (and threads)

cannot migrate from one site to another.

RATI)NALE Because each actor is tied to one site, the
state ofthe actor (i.e., its contexts) is precisely defined - there is
no uncertainty due to distribution since it depends only on the

status of its supporting site. The state of an actor can then be

known rapidly and decisions can be taken easily. The crash of
a site leads to the complete crash of its actors - there is no

actor partially crashed.

Cnonus Distributed Operøting Systems 319

User
address spaces

p

p+l

System

address space

Figure 4: Actor Address Spaces

Actors are designated by capabilities built from a UI, i.e. the
UI of the actor's default port and a manipulation key. The
knowledge of the capability of an actor yields all of the rights on
that actor (creating ports, threads and regions in the actor, des-
troying it, etc.). By default, only the creator of an actor knows the
capability of the created actor, however the creator can transmit it
to others.

The resources held by an actor (the ports that are attached to
the actor, the threads, the memory regions) are designated within
the actor's context with Contextual Identifiers (i.e., Local Descrip-
tors). The scope of such identifiers is limited to the specifrc actor
which uses the resource.

3.2.3 Processes: Threads

The thread is the "unit of execution" in the CgonuS system. A
thread is a sequential flow ofcontrol and is characterized by a
thread context corresponding to the state ofthe processor (regis-
ters, program counter, stack pointer, privilege level, etc.).

320 M. Rozier et al.

A thread is always tied to one and only one actor, which
defrnes the address space in which the thread can operate. The
actor thus constitutes the execution environment of the thread.
V/ithin the actor, many threads can be created and can run in
parallel. These threads share the resources (memory, ports, etc.)

of that actor and of that actor only. When a site supports multi-
ple processors, the threads of an actor can be made to run in
parallel on those different processors.

Threads are scheduled as independent entities. The basic

scheme is a preemptive priority based scheduling, but the Nucleus

implements also time slicing and priority degradation oî a per

thread basis. This allows for example real-time applications and

multi-user interactive environments to be supported by the same

Nucleus according to their respective needs and constraints.
Threads communicate and synchronize by exchanging mes-

sages using the CHoRUS IPC (see $3.3), even if they are located on
the same site. However, as threads of an actor share the same

address space, communication and synchronization mechanisms

based on shared memory can also be used inside one actor. In
most cases, when the machine instruction set allows it, the imple-
mentation of such synchronization tools avoids invoking the
nucleus.

RATIONALE Why threads?

. Because one actor corresponds to one virtual address

space and is tied to one site, threads allow multiple
processes on a site corresponding to a machine with no

virtual memory (i.e., which provides only one addressing
space, such as a Transputer).

. Threads provide a powerful tool for programming I/O

drivers. Those are bound to interrupts and associating
one thread to each I/O stream simplifies driver program-

ming.

. Threads allow multi-programming servers, providing a

good match to "client-server" style of programming.

. Threads allow using multiple processors within one actor,

e.g., on a shared memory symmetric multi-processor site.

Cnonus Distributed Operating Systems 321

. Threads are light-weight processes, whose context switch-
ing is far less expensive than an actor context switch.

3.2.4 Actors and Threads Nucleus Interface

The Nucleus interface for actor and thread management is sum-
marized in Table l:

actorCreate Create an actor
actorDe I et e Delete an actor
actorStop Stop the actor's threads
actorStart Restart the actor's threads
actorsetPar Set actor parameters

threadCreate Create a thread
threadDeIete Delete a thread
threadStop Stop a thread
threadStart Resta.rt a thread
threadSetPar Set thread parameters

Table l: Actors and Threads Services

3.3 Communication Entities

3.3.1 Overview

Threads synchronize and communicate using a single basic
mechanism: exchange of messages via message queues called
Ports.

Inside an actor, ports are localry used as message semaphores.
More generally, unique and global names (ul's) miy be given to
ports, allowing message communications to cross the actor,s boun-
daries. This facility, known as Ipc (Inter-process communication
facility), allows any thread to communicate and to synchronize
with any other thread on any site.

The main characteristic of the cHoRUS Ipc is its transparency
vis-tÌ-vis the localization of threads: communication is expressed
through a uniform interface (ports), regardless of whetheithe
communication is between two threads in a single actor, between
two threads in two different actors on the same site, or between
two threads in two different actors on two different sites. Mes-
sages are transferred from a sending port to a receiving port.

322 M. Rozier er al.

3.3.2 Messages

A message is basically a contiguous byte string, logically copied
from the sender address space to the receiver(s) address space(s).
Using a coupling between virtual memory management and IPC,
large messages may be transferred efficiently by deferred copying
(copy on write), or even by simply moving page descriptors (on a
given site).

RATIONALE Why messages rather than shared memory?

. Messages make the exchange of information explicit, thus
clarifying all actions.

. Messages make debugging of a distributed application
easier, especially when using RPC which involves sequen-
tial processing steps in different actors.

. Messages are easier to manage than shared memory in a
heterogeneous environment.

. The state of an actor can be known more precisely (before
a message transmission, after receiving a message, etc.).

. The cost of information exchange is better isolated and
evaluated when it is done through messages - since there
are explicit calls to the nucleus - than the cost of memory
accesses - which depend on traffic on the bus, memory
contention, memory locking, etc. The grain of informa-
tion exchange is bigger, better deflned, and its cost better
known.

. Performance of local communications are still preserved
by implementation hints and local optimizations (see g5).

3.3.3 Ports

Messages are not addressed directly to threads (nor actors), but to
intermediate entities called ports. The notion of a port provides
the necessary decoupling between the interface of a service and its
implementation. In particular, it provides the basis for dynamic
reconfrguration (see $3.4.4).

Cnonus Distributed Operating Systems 323

A port represents both:

. a resource (essentially a message queue holding the messages

received by the port but not yet consumed by the receiving
threads),

. an address to which messages can be sent.

When created, a port is attached to one actor. The threads of
this actor (and only them) may receive messages on the port. A
port can only be attached to a single actor at a time, but it can be

"used" by different threads within that actor.
A port can be successively attached to different actors: i.e. a

port can migrate from one actor to another. This migration can

be applied also to the messages already received by the port.

RATIONALE Why Ports?

Decoupling communication from execution, a Port is a func-
tional name for receiving messages:

o oll€ actor may have several ports and therefore communi-
cation can be multiplexed,

. a port can be used successively by several actors (actors
grouped, and functionally equivalent),

r multiple threads may share a single port, providing cheap

expansion of server performance on multiprocessor
machines,

. the notion of "port" provides the basis for dynamic
reconfiguration: the extra level of indirection (the ports)

between any two communicating threads means that the
threads supplying a given service can be changed from a

thread of one actor to a thread of another actor. This is
done by changing the attachment of the appropriate port
from the first thread's actor to the new thread's actor (see

ç3.4.4).

When a port is considered as a resource - for receiving mes-

sages - threads access it by means of a local contextual identifrer -
i.e., a port descriptor - identifying the port within the actor which
the port is attached to.

When a port is considered as a destination address for the IPC,

it is designated by a UI. A port UI is generated on port creation.

324 M. Rozier et al.

When the.port is destroyed, its UI will no longer be used. The
knowledge of a port UI gives the right to send messages on that
port. Port UI's can be freely transmitted between threads (e.g. in
messages).

Messages carry the UI of the port - or port group - they are
sent to.

RATIONALE In the successive versions of CnOnUS, nam-
ing of ports has changed a number of times:

. In CHORUS-VI, small UIs were adopted as the sole nam-
ing space; this proved simple and easy to use, but the lack
of protection was an issue for a multi-user environment.

. In CgoRUS-V2, UIs were used only by the nucleus and
system actors; UNIX processes used contextual identifiers,
modeled on frle descriptors; protection was insured and
port inheritance on fork and exec was implemented. On
the other hand, two main drawbacks were revealed: port
inheritance was hard to understand and, more important,
port name transmission required specific mechanisms.

. The new scheme adopted in CnonuS-V3 combines advan-
tages ofboth previous versions. In brief:

l. Ports are named by global names at user level:
name transmission in messages is obvious.

2. Within an actor, ports attached to the actor are
named (in system calls) by local contextual
identifiers: this simplifles the user interface, allows
controlling the usage of these ports (actually the
resources attached to them), and provides perfor-
mance advantages.

3. Finally, UIs are protected due to their random and
sparse generation in a very large space (128 bits).

3.3.4 Port Groups

Ports can be assembled into Port Groups (see Figure 5). The
notion of group extends port-to-port message passing between
threads:

. Asking for a service may not only be done directly from one
thread to another thread - via a port. It may also be done

Cnonus Distributed Operating Systems 325

by "multicast": from one thread to an entire group of
threads - via a group of ports.

. Functional access to a service can be selected from among a

group of - equivalent - services.

A group of ports is essentially a UI (usable for posting mes-

sages). A group exists as long as it has a U[, i.e., groups may be

empty. Therefore group UIs may be allocated statically and kept
over a "long" period of time. A group is made by creating an

empty group and by dynamically inserting ports into the group. A
port can be removed from a group. A port can be a member of
several groups.

The port group notion provides the basis for stable service
naming and reconfrgurations - a port of a site that failed, or is
overloaded, or is being repaired, may be replaced by another one

of the same group, used as a back-up (see $3.4.4).

RAI:I)NALE This functionality can be used to provide
dynamic linking: a subsystem defines names of port groups,

declared at system generation time. Port names, which are

created dynamically at boot time of every site, are dynamically
inserted into the port groups, linking new port names with fixed
port groups names. Programs can be written assuming fixed
port group names and need not be modified when the site

configurations change.

Site Site

Figure 5: Port Groups

326 M. Rozier et al.

3.3.5 Communication Semantics

The Csonus Inter-Process Communication (IPC) permits threads
to exchange messages in either asynchronous mode or in
demand/response (i.e. Remote Procedure Call or RPC) mode.

. Asynchronous mode: The emitter of an asynchronous mes-
sage is blocked only during the time of local processing of
the message by the system. The system does not guarantee
that the message has been actually received by the destina-
tion port or site. When the destination port is not present,
the sender is not notifred, and the message is destroyed.

. RPC mode: The RPC protocol permits the construction of
services with a client-server model: a demand/response pro-
tocol with management of transactions. RPC guarantees that
the response received by a client is definitely that of the
server and corresponds effectively to the request (and not to
a former request to which the response would have been
lost); RPC also permits a client to know if his request has
been received by the server, if the server has crashed before
emitting a response, or if the communication path broke.

RATIONALE Asynchronous IPC and RPC are the only
communication services provided by the CHonus nucleus. The
nucleus does not provide "flow control" protocols. RPC is a
simple concept, easy to understand, present in language con-
structs, easy to handle in case of errors or crashes. Flow control
would be costly if provided by the nucleus, there are no real
standards and needs vary among applications. The asynchro-
nous IPC service is basic enough to allow building more sophis-
ticated protocols within subsystems, and reduces network traffic
in the successful cases yielding higher performance and better
scaling to large or busy networks.

When messages are sent to port groups, several addressing
modes are provided:

. broadcast to all ports in the group,2

2. Broadcast mode is not currently applicable to RPC.

Cuonus Distributed Operating Systems 327

. send to any one port ofthe group,

¡ send to one port of the group, located on a given site,

. send to one port of the group, located on the same site as a

given UI.

3.3.6 Communication Nucleus Interface

The Nucleus interface for communications is summarized in
Table 2:

portCreate Create a Port
portDeIete Delete a Port
portMigrate Migrate a Port

grpAl. Iocate Allocate q Sroup name
grpPortlnsert Insert a port in a group

grpPortRemove Remove a port from a group

ipcSend Send an asynchronous message

i pcCa L l. Send a RPC request and wait for a reply

i pcRece i ve Receive a message

ipcRepl.y Reply a message to its original sender

ipcForward Forward a message

ipcSyslnfo Get sender identifiers

Table 2: Port, Group and Message Services

3.4 lr/aming and Addressing

3.4.1 Unique ldentifiers (UI)

Actors, segments, and tpc addresses (ports and groups) are desig-

nated in a global fashion with Unique Identifiers: the scope of
their names is universal and the names are unique in a CHoRus

distributed system.

RATI)NALE Global names can be easily transmitted (in
particular within messages). They also make the construction
of symbolic name servers easier.

Naming Domains: interconnecting CHonus distributed sys-

tems leads to defrning naming domains - one domain per

CUOpUS system. Domains characterize distinct administration
prerogatives. A standard structure for UIs - with a part

328 M. Rozier et al.

devoted to a domain name - and inter-domain gateways -
name servers - allow domain interconnection.

The CuonuS Nucleus implements a localization service, allow-
ing "users" (actors) to use these names without knowledge of the
locality of the actual entities.

The global names are constructed from Unique ldentifiers. A
UI is unique in space - a sole entity of a Cuonus distributed sys-
tem can possess this UI at a given instant - and in time - during
the lifetime of the system, a given UI will never be used to desig-
nate two different entities. A UI is a 128-bit structure. Its unique-
ness is assured by classical construction methods of concatenation
of a unique - creation - site number and a local (random) stamp.

The localization of a UI is done in a usual way [Legatheaux-
Martins & Berbers 1988] using several hints for finding the current
residence site when the creation site only is directly given in the
UI (see $3.6.1.2).

RATIONALE Port, group and actor system names (UIs) are
directly used by the Nucleus 'ousers" (the actors), and the
Nucleus does not control their transmission. It is the responsi-
bility of the subsystems to hide these names or to make them
visible.

However, the way these names are built offers a cheap level
of protection that is suitable for most circumstances. In fact,
these names are taken, randomly, from a large sparse space (tZï
bit strings). A user attempting to randomly generate such a
name has virtually no chance of finding a valid name during the
lifetime of the system.

3.4.2 Capabilities

Some objects are not directly implemented by the Nucleus, but by
external services (e.g., segments). These objects are named via
global names which hold some protection information, called
capabilities . A capability is made of a UI (the UI of a port of the
server managing the object) and a local identifrer of the object
within the server, called a key (Figure 6). This key identifres the
object and holds the corresponding access control information.
The structure and semantics of the keys are defined by their
servers.

Cnonus Distributed Operating Systems 329

UI of the Server's Port (128 bits)

Reference of the Resource (Key), within the Server (6a bits)

Figure 6: Structure of a Capability

3.4.3 Port and Port Groups names

Group names play an important role in naming services. Group
names are stable names for non-stable entities (ports): the name of
a group can be rebound to different entities. This allows, for
example, the binding of names to system services, rather than the
binding of names directly to servers providing the services - as a

basis for allowing dynamic reconfrguration of services.

For this facility to be secure, the Nucleus must control the
operations which associate the port names with group names (i.e.,

the insertion/removal of ports into/from groups). For that pur-
pose, the Nucleus associates to each group name a group manipu-
lation key,3 required for port insertion and removal. The creator
of a group receives the key to the group and may freely transmit
the key.

The name and the key are related as follows:

ltarn€ = f(key)

where f is a non-invertible function known by every Nucleus.
In brief:

l. For a port:

. knowledge of the name is equivalent to the emission
right (protected by the port name generation);

. possession ofthe port is equivalent to the reception
right (protected by the impossibility to share ports).

2. For groups:

. knowledge of the name is equivalent to the emission
right (protected by the group name generation);

. knowledge of the key is equivalent to the update right
(protected by the impossibility to discover the key
from the name).

3. In fact, the group UI and the group key form a capability.

330 M. Rozier et al.

3.4.4 Reconfiguring a Service

The notion of 'oport" as an indirection between communicating
threads allows one to dynamically modify the implementation of a
service within an actor (e.g. add new server threads during "rush
hours").

Moreover, the Nucleus allows the dynamic reconfiguration of
services between actors by permitting the migration of ports. This
reconfiguration mechanism requires that the two servers involved
in the reconfiguration be active at the same time (Figure 7).

Finally, it also offers some mechanisms permitting one to
manage the stability of the system, even in the presence of transi-
tory failures of servers. The notion of port groups is used to
establish the stability of server addresses.

Recall that:

. A group collects several ports together.

. A server that possesses the name of a group and its manipu-
lation key can insert new ports into the group, replacing the
ports that were attached to servers that have terminated.

A client that references a, group UI (rather than directly
referencing the port attached to a server) can continue to obtain

ToP

Port P migrates from Server I to Server 2

Figure 7: Reconfiguration
Using Port Migration

Ports can migrate from one
actor to another. While
Client continues commun-
icating with port P, the port
can be moved from Server I

to Server 2.
This allows, for example,

the updating of a server with
a new version or the replace-
ment of one server with a fas-
ter one located on another
site.

Cnonus Distributed Operøting Systems 331

the needed services once the terminated port has been replaced in
the group (Figure 8).

In other words, the lifetime of a group of ports is unlimited
because groups continue to exist even when ports within the group
have terminated.

Thus clients can have stable service as long as their requests
for services are made by emission of a message towards a group.

RATIONALE The coherence of UI space implies that the
migration of a port both removes the port from its old site and
installs it on its new site: the two actors must be present simul-
taneously; port migration permits cold reconfiguration.

On the other hand, failures imply hot reconrtguration: port
migration is impossible if one site is not accessible. Group
addressing provides the indirection allowing such
reconfigurations: a group lifetime is logically inûnite as the
validity of its update (its coherence) may be checked on any
site, even if the group is not yet known by the Nucleus.

,OG

Figure 8: Reconfiguration
Using Groups

Using groups allows a
more general reconfiguration
facility than is available with
port migration.

Client addresses its com-
munications to group G

13::;(D

P2 has replaced PI in group G

instead of directly to port P1.
The extra level of indirection
allows the replacement of
Server l, that may have
ceased to function, with
Server 2 even though the two
servers have their own ports.

332 M. Rozier et al.

3.4.5 Authentication

The CuonuS Nucleus provides the ability to protect objects
managed by the subsystem servers (e.g., files). As these servers are

always invoked via IPC, the IPC provides the support for authenti-
cation policies. For that purpose, the Nucleus offers the notion of
Protection Identifier (PI) and a mechanism for message-stamping.

The Nucleus provides a Protection Identifier to each actor and
to each port. The structure of these identifrers is frxed but the
Nucleus does not associate any semantics to their values, except
that it recognizes a special value corresponding to the super-user

which is allowed to modify the Protection ldentiflers.
Upon creation, an actor (a port) receives the same Protection

Identifier as the actor which created it. Protection relies on the
fact that only the super-user actor can change the Protection
Identifier of any actor or port.

Each message sent is stamped by the Nucleus with the Protec-
tion Identifiers of its source actor and port. These values can be

read but not modifled by the receiver of the message, which can

apply its own authentication policies.

3.5 Virtual Memory Management

3.5.1 Segments

The unit of representation of information in the system is the seg-

ment. Segments are generally located in secondary storage (e.g.

files or "swap areas"). Segments are managed by system actors
called segment servers or Mappers. The representation of u \.g-
ment, its capabilities, access policies, protection, and consistency
are defrned and maintained by these servers.

RATIONALE Segments names are global - UI of segment

server + local reference - which provides a unique designation
mechanism for segments.

Grouping management of segment naming with the manage-
ment of segments on secondary storage within unique "segment
servers" is an implementation choice, not inherent to the
CHonus architecture. Name resolution could be provided by
independent name servers.

Cnonus Distributed Operating Systems 333

Cgonus provides a distributed virtual memory management
service allowing threads to access segments concurrently.

3.5.2 Mapped segments: Regions

The actor address space is divided into regions. A region of an
actor maps a portion of a segment at a given virtual address with
associated given access rights (read, write, execute per privilege
level) (Figure 9). Every reference to an address within a region
behaves as a reference to the mapped segment, controlled by the
associated access rights.

Threads can create, destroy, and change access rights ofthe
regions of its own actor oouser" address space as well as of other
actors' "user" address spaces. Note that a thread cannot manipu-
late the "user" address space of another actor without knowing
the UI of the actor.

The "system" address space can be manipulated only by
super-user threads.

RATI2NALE Allowing actors to create regions in the "sys-
tem" address space, shared by all address spaces on a site, is a
way to avoid the overhead of an address space context switch.

Region

Actor Address Space

Figure 9: Regions and Segments

Segment Server (Mapper)

334 M. Rozier et al.

In particular the Cuonus system uses this functionality in the
following cases:

. IPC between subsystem actors, to avoid re-copying mes-
sages between actors of the same site (they are just
remapped),

. Interrupt handlers.

3.5.3 Segment Representation ín the Nucleus:
Local Cache

For each accessed segment on its site, the nucleus encapsulates in
a per segment local cache the physical memory pages holding por-
tions of segment data. Page faults generated during access to por-
tions of a segment which are not accessible are handled by the
Nucleus. In order to resolve these exceptions, the Nucleus may
invoke the segment's mapper and fills the local cache with the data
received from that mapper (Figure t0).

RATI)NALE "On-demand page loading" techniques have
been chosen in order to make it possible to access very large
segments. Another approach, based on "whole segment

l--l'...ll'..
IL.t-t
ll /:-:
regiòn 2 ,' L-J.>a::
,---"

-tt.
ft

I I ')i ,-
ll.,'I I , localcache

I I ," (phvsicat pases)

regionl
srte

Figure l0: Local Cache

mapper

I

Cnonus Distributed Operating Systems 335

loading" can be found in [Tanenbaum et al. 1986], but this
assumes that segments are relatively small and requires big
amounts of physical memory.

The consistency of a segment shared among regions belonging
to actors of the same site is guaranteed by the unicity of the seg-

ment local cache in physical memory.
When a segment is shared among actors of dffirent siles, there

is one segment representation (local cache) per site and Mappers
are then in charge of maintaining the consistency of these distri-
buted caches (Figure l1). Algorithms for dealing with problems of
coherency of shared memory are proposed in [Li 1986].

A standard Nucleus to Mapper protocol, based on the CHonus
IPC, has been defined for managing local caches:

. on demand paging,

. to flush pages - invalidate them - for swap out and cache
consistency,

. to destroy a local cache.

3.5.4 Explicit Access to a Segment

The CsonuS virtual memory management allows also explicit
access to (i.e., copy of) segments without mapping them into an
address space. This kind of access to a segment uses the same
local cache mechanism as described above. Segment consistency
is thus guaranteed during concurrent accesses on a given site,
whether they are explicit or mapped. Note that mappers do not
distinguish between these two kinds of access modes.

The same cache management mechanism is used for segments
representing program text and data, mapped frles and files
accessed by conventional read/write instructions.

RATI)NALE A unique cache management optimizes phy-
sical memory allocation and avoids consistency problems
between virtual memory and flle system caches [Cheriton
l e88(2)1.

An approach using two different caches is described in [Nel-
son et al. 19881.

336 M. Rozier et al.

site 2

local cache

1...*:
E:
tr..:
I t.ttl

region 2

Mapper

Figure 11: Distributed Local Caehos

3.5.5 Deferred, Copy Techntq'tes

There are two main circumstances where deferred copy techniques

are useful:

1. creation of a new segment as a copy of another one (e.9.,

UNI)i* forK), objeet version managernent),

2. copy of a poriion of data between two existing segments

þ.9., IPC, I/O operations).

CHoRUs uses two different techniques in such circumstances:

l. history object techniques, similar to shadow object tech-

niques of Mach lRashid et al. 19s7] for initializing large

objects,

2. per-virtual-page based techniques lGineell et al. 1987;

Moran 19881 to copy small amounts of data.

Cnonr¡s Dßtributed OperøtÍng systems 337

3.5.6 Virtual Memory Management Nucleus
Interfoce

The Nucleus interface for memory management is summarized in
Table 3:

Regions

vmMap Map a segmenl into a region
vmA[[ocate Initialize a new segment and map it into a region
vmFree Delete a region
vmReMap Change a region's paramelers
vmstatus Get status information

Segments and Local Caches

vmOpen Get access to a segmenl
vmCtose Release segment access
vmlnvaI Invalidate a segment's local cache
vmFtush Force updating a segment
vmCopy Data transfer between two segments

Table 3: Virtual Memory Services

3.6 Communications Support

The Nucleus handles message passing between actors executing on
the local site. Fully distributed facilities are achieved in coopera-
tion between the Nucleus and the Network Manager. Usually
actors don't have to know the site location of ports they want to
send messages to.

The first role of the Network Manager is to hide the scattering
of ports, and communicating actors, across the network: it helps
the Nucleus in conveying transparently messages between actors
running on different sites.

Its second function is to act as a "communication channel"
server to Actors which do know about network organization and
communications facilities. In this case it offers to these kind of
actors an access method to network services.

The following sections describe the Network Manager func-
tions.

338 M. Rozier et al.

3.6.1 Remote IPC and nPC Support

During their lifetime, ports can be attached to different Actors,
one after another. The Network Manager, cooperating with the
Nucleus, is in charge of fully hiding the location of a RPC or IPC

remote destination port from the point of view of the sending

side.
For doing so, the Network Manager implements a set of proto-

cols, with different functionalities.
Two kinds of protocols are needed: the first one deals with

CHORUS specific features, such as port localizatíon, remote host

failure handling, etc. The second one is responsible for data

transmission between sites; this last family is independent of any

system specificity.
To enforce portability of the actor code, the Network Manager

is designed as three distinct modules each of which makes very
few assumptions about the other two:

l. the High Interface implements system specifrc protocols,

2. the Communication Core gathers various sets of standard
protocols and services,

3. the Low Interface deals with network drivers and low level
functions.

The following subsection summarizes the transmission proto-
cols. Cuonus specific protocols are then outlined.

3.6.1.1 DATA TRANSMISSION PROT)COLS Concerning data
transmission, the Network Manager currently sticks to current
international standards; two protocol families are implemented:
the OSI protocols and the Internet family. As the Network
Manager needs only one means to carry data from one place on
the network to another, it uses only protocols up to Transport
level for this particular function.

The current version uses OSI protocols to support network-
wide IPCs and RPCs.

RAT:I)NALE The OSI choice results from the Cuonus phi-
losophy to follow existing standards whenever they can be

applied. However, such a choice can be complemented or
changed according to the characteristics ofthe supporting net-
work, application needs, etc., and IPC and RPC can use any

Cnonus Distributed Operating Systems 339

protocol implemented in the Network Manager Communication
Core, as long as it provides reliability and data ordering.

ISO Transport Protocol has been complemented by TCP and
even UDP.4

3.6.1.2 SYSTEM SPECIFIC PROTOCOL These protocols are:
the localization protocol, the connection management protocol if
required, the RPC protocol and the interface with the Nucleus.

The localization protocol is in charge of finding the network
host on which the destination port of a message lies, when the
Nucleus passes a message it cannot deliver itself to the Network
Manager. To do so, the Network Manager manages a cache of
known ports and groups. When a site (i.e., a remote Network
Manager) sends back a negative acknowledgement on reception of
a message caused by the destination port migration, crash, or
movement off network domain, the local Network Manager enters
a search phase: it consists of a simple query protocol which uses
the network broadcast facilities if they are supported by the
underlying medium.s The idea of Network Manager operations is
based on the assumption that, while a port or group is not in the
localization cache, it is supposed to be still on the site where it
was created.

The High Interface also implements an error handling proto-
col. For example, this is used to notify the RPC thread when a
host is unreachable for some reason (network congestion, remote
site failure, etc.) and the request cannot be satisfied.

3.6.2 The Network Manager as a Communication
Channel Server

Some actors may know of the network organization and thus,
want to use directly communication services provided by the pro-
tocols implemented in the Communication Core, knowing the
semantics of this particular service. This is the case of the
4.3BSD-like Socket Server. The Network Manager also provides
access to this kind of actors, through a Generic Connection Access

4. In the latter case, the service offered needs to be upgraded to provide reliability and
data sequencing.

5. If "hardware" broadcast is not supported (e.g on top of connection-oriented com-
munication services), broadcast can be simulated on top of the current service, at the
price of more overhead.

340 M. Rozier et al.

Interface. In this case, the Network Manager will manage a com-

munication channel to the actor's peer using the specified service.

This is a lightweight interface, as the Network Manager assumes

that the local actor knows perfectly well the semantics of the ser-

vice it uses: its role is limited to network resources management

and protocol-specific packet formatting.

3.7 Hardware Events and ExcePtion
Handling: the Suqervisor

The CgonuS Nucleus is intended to support various subsystems

(with various device handling strategies) and real-time applica-

tions. Giving system programmers direct access to exception han-

dling and low-level I/O provides the required flexibility in han-

dling hardware events.
A dedicated Nucleus component, the supervisor, provides an

interface allowing "user" handler routines to be connected to
interrupt levels.

When an interrupt occurs, the supervisor:

. saves the context interrupted,

. sequentially calls the (priority-ordered) routines attached to
the the corresponding level (the handlers being able to force

breaking the sequence),

. initiates rescheduling if necessary.

Similarly, events such as software traps or exceptions may also

be directly processed by actor handlers. This allows subsystem

managers to provide efficient and protected subsystem interfaces.

This facility is used in particular by the UNIX process manager

described in $4.2.2.
Note that this connection is dynamic, therefore I/O driver

actors or subsystem managers may be inserted or removed.dynam-
ically, while the system is running.

3.8 Subsystems

A subsystem is an operating system built on top of a Cuonus
Nucleus. The user of a subsystem has generally no direct access to
the Nucleus interface. Using the abstractions offered by the

Caonus Distributed Operating Systems 341

Nucleus, subsystems implement their own process semantics, their
own protection mechanisms, etc.

A subsystem is made of:

o â s€t of subsystem actors (e.g., file managers, name
managers, etc.),

. an integrated subsystem interface (the subsystem system
calls).

The CHonUS Nucleus offers system programmers the means to
construct protected subsystem interfaces. A protected subsystem
interface is built by connecting its interface routines behind "sys-
tem traps." The corresponding code and data structures are
loaded into system space and, because they are hidden behind
traps, they are accessible only via the subsystem interface (Fig-
ure l2).

RATIONALE The level of protection that an operating sys-
tem must offer depends highly on the class of applications it is
intended to support. High levels of protection are often desir-
able, but they may be considered too expensive for certain
classes of applications - e.g., real-time systems.

The CsonuS Nucleus itself does not provide a high level of
protection. However it offers a basic level of protection and
tools for subsystems to enforce higher levels of protection.

4. UNIX as a CnoauS Subsystem

4.1 Overview

The first Subsystem implemented within the framework of the
CHonus Architecture has been a UNIX Subsystem. The facilities
provided by the CsoRus Nucleus have allowed designing
coherent extensions of UNtx for distributed computing.

The implementation of the abstractions of this UNIX extended
interface are described in the following sections. Some of the
abstractions are already implemented by the CuonuS Nucleus and
are provided by CuoRus Nucleus calls. Others are implemented
in terms of Cnonus actors. The main design decisions are given
and the general architecture is presented.

342 M. Rozier et al.

î@e
systà
't¡ent /

/subsysten

\"")
Subsysten

Client

ñI Server I\-4
^,\I Tranl

--{--L{-üt

Nucleus

Figure 12: Structure ofa
Subsystem

Several user actors (subsys-
tem clients) are shown using a
protected subsystem. The
subsystem interface is "pro-
tected" from its users by
being placed in the 'osystem"
address space.

The bulk of the subsystem

Some implementation choices are explained in more detail, the
emphasis being on solving problems which arise when introducing
distributed processing into a UNIX system.

- - !Úcrfuse- -
Subsvstem

Seiver

is located in separate user
spaces, as system actors: no
subsystem code or data can
be manipulated directly by
the "users." Communication
between the subsystem inter-
face routines and the subsys-
tem actors is via the IPC.
The subsystem actors directly
call the protected Nucleus.

Cnonus Distributed Operating Systems 343

4.1.1 Objectives

The CHonuS technology applied to UNIX covers a number of well
recognized limitations of current "traditional" UNIX implemen-
tations. It has been applied with the following general objectives.

Modularity To implement UNIX services as a collection of
servers, so that some may be present only on some sites (such as

File Managers, Device Managers), and when possible build them
in such a way that they can be dynamically (without stopping the
system) plugged into/out of the system when needed. This true
modularity will allow simpler modifications and maintenance
because the system is built of small pieces with well-known
interactions.

Openness and Expandability To permit application develop-
ers to ignÞlement their own servers (e.g., Time Manager, Window
Manager, fault-tolerant File Manager) and to integrate them
dynamically into the UNIX Subsystem.

Extending UNIX Functionalities Towards

. Real-Time:
To extend UNIX with the real-time facilities provided by the
low-level CHoRus Real-Time Executive.

. Distribution:
To operate UNIX in a distributed environment with no limi-
tations on the types of resources shared.

. Multiplexed Processes:

To extend UNIX services with services provided by the
underlying CnoRus Nucleus, e.g., multi-threaded UNIX
processes.

Orthogonality To keep UNIX specific concepts out of the
Cuonus Nucleus. But in turn, to use CgonuS concepts (Actors,
Threads, Ports, etc.) to implement UNIX ones outside of the
Cuonus Nucleus. This allows other subsystems (OS/2, Object
Oriented Systems, etc.) to be implemented also on top of the
CHoRus Nucleus without interfering with the particular UNIX
philosophy.

Compatibility
. for application programs:

On a given machine, to be compatible at the executable

344 M. Rozier et al.

code level with a given standard UNIX system (e.g., System

V Release 3.2 on a PCAT-386), to ensure complete user

software portability.

. for device drivers:
To be able to adapt a UNIX driver into a UNIX Server on

CsoRus with a minimum effort.

o regârding performance:
To provide the same services about as fast as a given UNIX
system on the same machine architecture (i.e., the one

chosen for binary compatibility).

4.1.2 Exrensions to UNIX Services

Distribution management with bøsic Cnonus concepts

. The file system is fully distributed and frle access is location
independent. File trees can be automatically interconnected
to provide a name space where all files, whether remote or
local, are designated with homogeneous and uniform sym-

bolic names, and in fact with no syntactic change from
current UNIX.

. Operations on processes (at the forklexec level as well as at

the shell level) can be executed regardless ofthe execution

site of these processes; on the other hand, the creation of a
child process can be forced to occur on any given compati-
ble site.

. The network transparent CHORUS IPC is accessible at the

UNIX interface level, thus allowing the easy development of
distributed applications within the UNIX environment. Dis-
tribution extensions to standard UNIX services are provided
in a natural way (in the UNIX sense) so that existing appli-
cations may benefrt from those extensions even when

directly ported onto CHoRvs, without modification or
recompilation. This applies not only to file management but
also to process and signal management.

Multiprogramming a (INIX process Multiprogramming within
a UNIX process is possible with the concept of U-thread. A
U-thread can be considered as a lightweight process within a stan-

dard UNIX process. It shares all the process' resources and in

Cnonus Distributed Operating Systems 345

particular its virtual address space and open flles. Each U_thread
represents a different locus of control. Thus when a process is
created by a fork, it starts running with a unique U_thread; the
same situation occurs after aî execi when a process terminates by
exit, all U_threads of that process terminate with it.

With each U_thread is associated a list of signal handlers.
Depending on their nature, signals are delivered to one of the pro-
cess U_threads (alarm, exceptions,...) or broadcast to all process
U_threads (DEL, user signals,...). The U_thread concept, derived
from the CuoRus thread concept, is defined by five system calls
(Table 4): create, delete, start, stop and prio and it has some infor-
mation attached to it, comprising:

. an identification of the CnoRus thread implementing the
U-thread,

. the identifrcation of the owner process,

. a list of associated signal handlers.

u-threadCreate create a U_thread
u-threadDetete delete a U_thread
u-threadStop stop a U_thread
u-threadStart reslart a U_thread
u-threadPr io modify U_thread priority

Table 4: UNIX Threads System Calls

Interprocess communication and LI_thread synchronization
Interprocess communication and U_thread synchronization rely
on the CHoRus IPC functionalities (ports, port groups, messages).

Real-time facilities with priority based scheduling and interrupf,
handling These facilities result directly from the services pro-
vided by the CnoRus Nucleus for real-time handling.

4.2 The UNIX Subsysfem Architecture

UNIX functionalities may logically be partitioned into several
classes of services according to the different types of resources
managed: processes, files, devices, pipes. The design of the struc-
ture of the UNIX Subsystem gives emphasis on a clean definition
of the interactions between these different classes of services in
order to get a true modular structure.

346 M. Rozier et al.

The UNIX Subsystem has been implemented as a set of System
Servers, running on top of the Cuonus Nucleus. Each system
resource (process, file, etc.) is isolated and managed by a dedicated
system server. lnteractions between these servers are based on the
CHoRus IPC which enforces clean interface deflnitions.

Several types of servers may be distinguished within a typical
UNIX subsystem: Process Managers (PM), File Managers (FM),
Pipe Managers (PIM), Device Managers (DM) and User Defined
Servers (UDS) (Figure l3).

The following sections describe the general structure of UNIX
servers. The role of each server and its relationships with other
servers are summarized.

UNIX Inter'lace

Nucleus Interlace
j Nucleus

o
Network (or Communication Bus)

Figure l3: UNIX with the CHoRus Technology

,""'X'
/';ì

¡<lIY""æ.d

Cnonus Distributed Operating Systems 347

4.2.1 Structure of a UNIX Server

Server : Actor UNIX Servers are implemented as Cgonus
Actors. They have their own context (virtual memory regions,

ports, etc.) and thus may be debugged as "standard" actors.

Mono or Multi-Threaded Most servers - File Manager, Dev-

ice Manager, Process Manager - are multi-threaded. Their
threads may be executed either in "user mode" or in - protected -
"system mode." Each request to a server is processed by one

thread of this server which manages the context of the request

until the response is complete.
Simpler servers may be mono-threaded (e.g., the Pipe

Manager). When a request cannot be served immediately, it is
queued by the server, in a private queue. Thus the server is not
blocked waiting for an event in order to complete a request.

When the server detects that an expected event has occurred, it
processes the requests in the queue.

Accessible via Ports or Traps Each server creates one or more
ports which clients send requests to. Some of these ports may be

inserted into port groups with well-known names. Such port
groups can be used to access a service independently ofthe server

which will actually provide it.
In order to provide compatibility with existing UNIX system

interfaces, servers may also attach some of their own routines to
system traps.

Implementation of a Service A service (e.9., open(2)) is real-

ized partly by a "stub" which executes, in "system mode" (behind

a trap), in the context of the calling client process. This routine
manages the context of the process and when needed, invokes the

appropriate Subsystem server via the CHoRUS IPC.

Drivers In order to facilitate porting drivers from a UNIX ker-

nel into a CHonus server, a UNIX kernel emulation library, to be

linked with UNIX driver code, has been developed with such func-

tions as sleep, wakeup, splx, copyin, copyout, etç.
Interrupt handlers are about the only parts which have to be

adapted to the Cuonus environment.

348 M. Rozier et al.

4.2.2 Process Manager

The Process Manager maps UNIX process abstractions onto
Cuonus concepts (actor, thread, regions, etc.). It implements all
of the UNIX process semantics including process creation, context
consistency and inheritance, and process signaling.

On each "UNIX site," a Process Manager implements the
entry points used by user processes to access UNIX services (other
UNIX servers are not accessed directly by user processes). To
maintain binary compatibility, these services are accessed through
traps. The Process Manager uses the CnonuS Nucleus facility to
attach routines to these traps (see $3.7).

Those routines connected to traps either call other Process
Manager routines to satisfy requests related to process and signal
management (fork, exec, kill, etc.) or invoke via RPC File
Managers, Pipe Managers or Device Managers to handle other
requests (e.g., readlwrite on frles).

Process Managers interact with their environment through
clearly defined interfaces:

. Nucleus services are accessed through system calls,

. File Manager, Pipe Manager, and Device Manager services
used for process creation and context inheritance are
accessed by means of the CHoRUS IPC.

Process Managers cooperate to implement remote execution
and remote signaling:

. Each Process Manager dedicates a port (the requesr port) to
receive remote requests. Those requests are processed by
Process Manager threads.

. The request port of each Process Manager (of a given
CgoRus domain) is inserted into one port group. Any Pro-
cess Manager of any given site may thus be reached through
one unique functional address: the port group name.

4.2.3 File Manager

There is one File Manager on each site supporting a disk. Disk-
less stations don't need a local File Manager. File Managers have
two main functions:

Cnonus Distributed Operating Systems 349

. to provide UNIX File System management (compatible at
disk level),

. to act as a Segment Server (called Mapper) to the CHoRus
Nucleus, managing segments (i.e., files) mapped into Actors
contexts (executable binary files, swap files, etc.).

As UNIX file servers, they process UNIX requests transmitted
via IPC (open(2), stat(2), efc.). In addition, File Managers provide
some new services needed for process management:

. sharing (on fork(2)) and releasing (oî exit(2)) directories and
frles between processes,

. associating capabilities to text and data segments of execut-
able files, used to create regions in process contexts.

These two services represent the only interactions between process

and frle management.
As external Mappers, File Managers implement services

required by the CHonus virtual memory management: swapping
pages in/out, creating swap files, etc. They use the standard
Mappers Interface services provided by the CuoRus Nucleus to
control and to keep consistent the data transferred between
CHoRus sites when local virtual memory caches are involved:
flush, invalidate pages, etc.

To avoid maintaining unnecessary copies of pages of a given
file in physical memory, and to optimize physical memory alloca-
tion, CuoRus virtual memory mechanisms are used to implement
file system caches and some of the UNIX calls such as read(2),
write(2), etc.

Naming Extension The naming facilities provided by the
UNIX frle system have been extended, to permit the designation of
services accessed via Ports.

Symbolic Port Names (new UNIX file type) can be created in
the UNIX file tree (Figure 1a). They associate a file name to a
port Unique Identifler (this is very similar to UNIX device desig-
nation). When such a name is found during the analysis of a
pathname, the corresponding request is forwarded to the port to
which the Unique Identifier is associated - marked with the
current status of the analysis (see $4.4.1).

Servers can be designated by such symbolic port names. In
particular, this functionality is used to interconnect flle systems

350 M. Rozier et al.

lpianol

I

Figure 14: File Trees Interconnection

and provide a global name space. For example, in Figure 14, pipo
and piano are symbolic port names.

Transparent access to remote files is provided through sym-
bolic links (à la BSD). When such a symbolic name is found dur-
ing the analysis of a pathname, the pathname is transformed into
a new one and the analysis is restarted. The File System generates

the new pathname by prefrxing the not-yet analyzed part of the
pathname with the value of the symbolic name - this value is also
a pathname.

4.2.4 Pipe Manager

A Pipe Manager implements UNIX pipe management and syn-
chronization. It cooperates with the File Managers to manage
named pipes. Pipe management is no longer done by File
Managers as in "usual" UNIX kernels. Pipe Managers may be
active on every site, thus reducing network traffic when pipes are
invoked on diskless stations.

pia

/t\
bin usr

\\
piano fred

Cnonus Distributed Operating Systems 351

4.2.5 Device Manager

Devices such as ttys and pseudo-ttys, bitmaps, tapes, network
interfaces are managed by Device Managers. Needed (respectively

not used) drivers can thus be loaded (respectively unloaded)
dynamically (i.e., while the system is running). Softùare
configurations can be adjusted to accommodate the use of the sys-

tem or the local hardware configuration. For example, a bitmap
driver might be present on a diskless station; a File Manager
might not be.

A CHoRUS lPC-based facility is used by these drivers to
cooperate with the UNIX servers instead of the original UNIX
cdevsw mechanism. When starting up, these drivers tell the File
Manager which type of devices (i.e., which maior number) they

manage and the name of the port on which they want to receive

open(2) requests.

4.2.6 User Defined Servers

The homogeneity of server interfaces provided by the Cnonus
IPC allows "system users" to develop new servers and to integrate

them into the system as user actors. One of the main benefits of
this architecture is to provide a powerful and convenient platform
for the experimentation of system servers: new ûle management

strategies, fault-tolerant servers, etc., can be developed and tested
just like user level utilities, without disturbing a running system.

4.3 Structure of a UNIX Process

CHonus abstractions are simple and general. They have been

designed to fit the needs of various systems which can be built
using them. This section describes how the UNIX process concept

has been implemented using Cgonus abstractions.
A UNIX process can be viewed as one thread of control exe-

cuting within one address space. Each uNIx process is therefore
implemented as one CgoRus actor. Its UNIX system context is

managed by a Process Manager. The actor address space is struc-

tured into memory regions for text, data and execution stacks.

In addition, the Process Manager attaches one control port and
one control thread to each actor implementing a UNIX process.

352 M. Rozier et al.

The control port and the control thread are not visible to the user
of that process. Control threads executing within process contexts
have two main properties:

. they share the process address space and can easily access

and modify the core image of the process (stack manipula-
tions on signal reception, text and data access during debug-
ging, etc.).

. they are ready to handle asynchronous events received by
the process (mainly signals). These events are implemented
as CHoRus messages received on the control port (Fig-
ure 15).

Even if standard UNIX processes are mono-thread, the UNIX
subsystem on CttoRus has been extended to allow multiprogram-
ming within a process. This facility translates at the UNIX level
the Cuonus multi-thread facilities useful for implementing

User Mode .,

Figure 15: UNIX Process as a CHoRus Actor

Signals...

l.[l\
"'.,, l"-"1@@

U-threadâ.

(', Control
) '. thread
('..
\..
/ UNIX TRAP_---_____-_-_--_ \

"',,)

Cnonus Distributed Operating Systems 353

multiplexed servers. The semantics of such UNIX threads (called
U_threads) ditrer slightly from "pure" CHoRUS threads, in particu-
lar regarding signal handling, time accounting, system call multi-
plexing, thus their slightly different name.

Providing multi-threaded processes has impacted the process

implementation in three ways:

. signal processing is done on a per thread basis,

. blocking system calls Qtause(2), wait(2), read(2), etc.) may be
multiplexed within a given process,

. the UNIX system context attached to one process has been
split into two system contexts: one process context (Proc)
(Table 5) and one U-thread context (U-thread) (Table 6).

Actor implementing
the Process actor namq actor priority, etc.

Unique Identifiers (UI) PID, PGRP, PPID, etc.

Protection Identifiers real pln, efective PID, etc.

Ports control port, parent control port, etc.

Memory Context text, data, stack, etc.

Child Context SIGCLD handler, creation site, etc.

File Context root and currenl directory, open files, etc.

Time Context user time, child time, etc.

Control Context debugger port, control thread descriptor, etc.

U-threads list of process U-threads,
Semaphore for concurrent access lo Proc Context.

Table 5: Process Context

Thread implementing the U-thread thread descriptor, priority, etc.

Owner Process

Signal Context
System Call Context
Machine execution Context

signal handlers, etc.

system call arguments, etc.

Table 6: U-Thread Context

The two system contexts Proc and U-thread are maintained by
the Process Manager present on the current process execution site.
These contexts are accessed neither by the Cuonus Nucleus nor
by other system servers. On the other hand the UNIX subsystem
has no visibility of the internal Nucleus structures associated with
actors and threads; the only way to access them is through

354 M. Rozier et al.

Nucleus system calls (this is essential for allowing different subsys-
tems to co-reside on top of the same CgoRus Nucleus).

4.3. I Process ldentifiers

Each process is uniquely designated by a Unique Identifier (UI).
This enables Process Managers to take advantage of Nucleus local-
ization facilities when they look for one particular process (signal-
ing, debugging, etc.).

For compatibility reasons, this process UI is not directly used
as a process PID - which has a different size - but it is used to
generate 32 bits global PIDs. The result is a concatenation of two
l6 bit integers:

. the site where the process has been created.

. the value of a per site counter incremented at each process

creation.

Process Managers convert PIDs into process UIs (and con-
versely). They use one or the other depending of the needs
(CHonus IPCs or system call interface).

4.3.2 Process Execution Site

Part of each process context is the child creation site information.
Inherited on process creation (fork), this information extends stan-
dard UNIX fork and exec operations with distribution facilities. If
the child creation site of a process is set to another site than the
current execution site,later þrk and exec calls will be applied on
this remote site.

4.3.3 Process Environment Known
by its Set of Ports

The semantics associated by the CHonus Nucleus to the port con-
cept - unique and global naming, addressing by IPC with location
transparency - make ports extremely useful for system entities
designation. The main advantages of using ports are the indirec-
tion they provide between the process and its environment, and
the robustness against the evolutions of configuration. Port names
stored in the process context are always valid either if the process

itself migrates to another site (i.e., exec on a remote site) or if
some of the entities which it is related to migrate.

Cuonus Distributed Operøting Systems 355

Used directly or embedded within capabilities, ports constitute
the main part of a process environment. Embedded in capabili-
ties, ports are used to designate process resources: open files, seg-

ments mapped into process address space (text, data), etc. But
ports are also used directly to address processes.

Resources and capabilities Every resource (managed by a
Server) used by a Process is designated internally by a capability:
open file, open pipe, open device, current and root directories,
text and data segments, etc. Such capabilities may be used to
create regions in virtual memory; thus their structure is the one
exported by the CnoRus Nucleus.

For example, opening a file associates the capability sent back
by the appropriate server to the correct frle descriptor. The capa-
bility will be built with:

. the port of the server that manages that file,

. the reference of this open file within the server.

Thus, all requests on that open frles - seek(2), close(2), etc. -
are translated directly into a message and sent directly to the
appropriate server. There is no need to locate the server again.

In particular, as the server of a resource is designated by a
port, and as the localization of a port is part of the CttoRus IPC,
the UNIX subsystem does not have to localize UNIX servers.

Processes and system ports Process Managers attach some
"system" ports (to distinguish from the ports created by the pro-
cess) to each process in order to implement some UNIX services
regardless of the process' location:

. Each process is created with a Control Port on which the
control thread receives messages. The parent process con-
trol port UI is also stored in the process context. When a
process exits, a message frlled with all needed information
(exit status, elapsed time, etc.) is sent to the parent's eontrol
port. When received by the parent control thread, this
information is stored in the parent Proc context until the
parent process attempts to obtain them - using the wait(2)
UNIX system call.

. Signals are implemented as messages. Process Managers,
acting as intermediaries for process localization, forward
these messages to the control port of the target process(es)

356 M. Rozier et al.

(these messages will be processed by the process control
thread).

. When a debugging session starts, the debugged process

creates a debug port and sends this port name to the
debugger. All interactions between the debugger and
debugged processes rely on Cnonus IPC between the debug
port ofthe debugged process and the control port ofthe
debugger. Because it is based on the CHoRus IPC, UNIX
debugging functionality is distributed - debugged and
debugger processes can be on different sites.

4.4 Two Examples

4.4.1 File Access

Current and root directories are represented by capabilities in the

UNIX context of a process. When an open(2)request is issued, the

open routine of the Process Manager looks for a free file descrip-

tor, builds a message containing the pathname of the file to be

opened, and sends this message to the port of the server managing

the current or the root directory depending on whether the path-

name is absolute or relative [l].
Suppose that the pathname of the file is (Figure 14):

"fs/piano/usr/fred/myfile" and "piano" is the symbolic port of a
File Manager. This pathname will be sent to the File Manager on

which the root directory of the process is located (let's call it
"pipo"). That File Manager will start the analysis of the path-

name, find that o'piano" is a symbolic port, and forward the mes-

sage with the rest of the pathname ("usr/fred/myrtle"), not yet

analyzed, to the port whose UI is in the "piano" ïnode l2l.
The "piano" File Manager will receive the message, complete

the analysis of the pathname, open the file, build the associated

capability and send it back directly to the client process that
issued the open(2) request [3].

Afterwards, any subsequent request on that open file (seek(2),

close(2), etc.) will be sent directly to the File Manager on oopiano"

thus avoiding any indirection through the pipo File Manager
responsible for the root directory of the process (Figure 16).

Cnonus Distributed Operating Systems 357

open

tIl

Figure 16: File Access

4.4.2 Remote Exec

This description of the remote exec algorithm will illustrate all the
interactions between the UNIX subsystem servers and the process
control threads. To simplify the description, error cases are not
handled in this algorithm (Figure l7).

1. The calling U_thread performs a "TÍap" handled by the
local Process Manager. The PM will:

. invoke by RPC tll e. [2J the File Manager to translate
the binary frle pathname into two capabilities, used
later on to map text and to map data into the process
address space. Depending on the pathname, the File
Manager of the root directory or of the current direc-
tory is invoked.

. test child execution site (in this example, child execu-
tion site is different from current execution site),

o p en (/ usr / fred/myfrle)

358 M. Rozier et al.

File Manager

Calling Process

Process Manage

New Process

¡a71 (Proc, U-thread, Argv
3l l,"< Envp, capabilities)

7 X (Argv, Envp)

Figure 17: Remote Exec

r prepâro a request rwith:

- Proc and U-thread context of calling U-thread,

- arguments and environments given as exec
parameters, and

- all information returned by the File Manager
which characterizes the binary file.

. perform an RPC [3] to the Process Manager of the tar-
get creation site determined above - actually
addressed via a Port group.

2. The Process Manager of the remote creation site receives

the request and one of its threads processes it. This Process

Manager thread initializes a new Proc context for the
migrating process (much information, such as PIDs, elapsed

CHIRUS Distributed Operating Systems 359

time, etc. are just copied from the request message) and
creates new CgoRus entities which implement the process:
actor, control thread, control port, memory regions, etc.

The rest of the initialization is then done by the control
thread of the process which executes in the newly created
process context. Also, the request message is forwarded to
the control port ofthe process 14/.

3. The process control thread receives the forwarded message
and follows the normal UNIX process initialization:

. arguments and environment are installed in the pro-
cess address space.

. close messages are sent to appropriate File Managers,
Pipe Managers and Device Managers to close any
close-on-exec open files.

. one U_thread is created which will start executing the
new program (even if before exec the process was
multi-threaded, the new process is always mono-
threaded after). The signal context ofthe created
U_thread is set up with signal context of calling
U_thread present in the request message.

o a reply message is sent back to the U_thread which
had invoked the exec(2) system call and has blocked in
the RPC [5J awaiting the reply message.

4. The calling thread receives the reply message, frees the proc
and U_thread contexts of its process and removes the actor
implementing the process (on actor destruction, the CHoRUS
Nucleus removes all Cuonus entities attached to this actor:
ports, threads, regions, etc.).

4.5 Other UNIX Extensions

The CuonuS implementation of the UNIX subsystem, has led to
several signifrcant extensions which offer, at the UNIX subsystem
level, basic Cnonus functionalities.

360 M. Rozier et al.

4.5.1 rPC

UNIX processes running on CHORUS can communicate with other
processes - and bare CnoRus actors or entities from other Sub-

systems - using the Cnonus IPC mechanisms. In particular,
processes are able to:

. create and manipulate CnoRUS ports,

. send and receive messages,

. issue remote procedure calls.

4.5.2 Real-Time

CHoRus real-time facilities provided by the Nucleus are available
at the UNIX subsystem level to privileged applications:

. The ability to dynamically connect handlers to hardware

interrupts. This facility is already used by UNIX Device
Managers.

. The benefit of the priority based preemptive scheduling pro-

vided by the CHonus Nucleus.

Moreover, two policies for interrupt processing may be used

by UNIX servers:

o procoss entirely the interrupt in its handler or,

. just signal the event to a dedicated thread which will process

it, allowing the code to be executed in interrupt handlers to
be as short as possible.

This allows UNIX device drivers to have interrupt masked sec-

tions that are shorter than in many standard UNIX implemen-
tations. Thus, with a little tuning, real-time applications run on
UNIX with better response time to external events.

4.5.3 UNIX Commands

Several UNIX commands (such as ls(1), rtnd(1), ln(1), rm(1), etc.)

have been extended also to cope with the new "Port" frle type. A
shell has been extended to give access to some CHoRus func-
tionalities:

. remote execution using a"@ site" syntax, where site may be
given as a symbolic or "functional" name (e.9., lisp,

Cnonus Distributed operating Systems 361

Iaser-printer), a given machine (or processor) being able to
be associated to several of these "names."

. creating symbolic port names,

. sending, receiving messages between shells.

For example, one can synchronize two shells which may be
running on different machines as shown in Figure 18.

create a Port on the current
shel.l.. give it the symboIic
name "shporltt in the
H | | /usr/fred" directory:
bind /usr/fred/shport
wait for message on that port:
receive lusr/fred/shport) msg-in
repl.y to the sender:
repty < msg-out

Figure l8: Synchronizing såel/ Scripts by Means of Messages

5. Implementation

CHonus has been designed to be highly portable on a wide range
of modern hardware architectures. It is mostly written in C++
(and in C). The assembler code is less than 5o/o, in the hardware
dependent parts.

CHoRus-v3 has been implemented on several different com-
puter architectures, using different microprocessor families
(MC680x0 and Intel 386 in particular), different bus architectures
and different memory management units.

The initial UNIX implementation is X/OPEN compatible
(System V).

The size of the Nucleus on a MC68020 varies from 29 Kb of
code for a reduced version handling linear memory and local IpC
only, to 55 Kb of code for a full Nucleus handling distributed vir-
tual memory (for the MC6885I/PMMU) and complete IpC.

Code sizes of the UNIX servers are given in Table 7.

send a message
to the other shel [:
send ttmessagert \

/usr / fred/ shport

362 M. Rozier et al.

Server Size (Kb)

Network Manager 70

Process Manager 45

File Manager 55

Device Manager 30

Socket Manager 40

Table 7: Size of UNIX servers

Initial performance measurements on a Bull SPS 7/300 com-
puter, based on a MC68020 (with MC6885l) processor running at
16MrIFrz (with 2 wait-states) are given on Tables 8 and 9. Perfor-
mance measurements of the Cuonus UNIX subsystem are related
to SPIX, the Bull System V implementation.

Primitive Time (ps)

IT processing latency 22

Thread scheduling (in system mode) 45

Thread scheduling (in user mode) 130

Synchronization (V + P) 56

send + receive (32b in system mode) 314
send + receive (32b in user mode) 526
RPC (32b in system mode) 857

RPC (32b in user mode) 1375

Table 8: Initial performance figures of the Cuonus Nucleus

Primitive CHORUS SPIX

getpid 77 ps 77 ps

write (l Kb) 64 Kb/s 55 Kb/s
exec 27 ms 27 ms

fork (8 Kb) 22.2 ms 14.3 ms

forkØMb) 100 ms 143 ms

Table 9: Initial performance figures of the CHoRus UNIX subsystem

Although made on a CHoRUS system which is far from being
optimized, these flgures show a similar level of performance with
a traditional UNIX implemented on a standalone machine.
CnoRus real-time performance is also quite in line with that of
other real-time executives. Complete performance measurements

and analysis will be the subject of following papers. Those given

Cnonus Distributed Operating Systems 363

here simply show that a true modular system can also exhibit a

fairty good level of performance.

6. Conclusion

CgoRus was designed with the intention of being used in "real"
life. Thus, the inherent trade-off between performance and rich-
ness of the design tended to get resolved in favor of performance.

Making the CHonuS Nucleus generic prevented the introduc-
tion of "features" with "heavy" semantics and prevented the use
of research implementations that were not considered proven.

Features such as highly secure protection against intrusions,
application-oriented protocols, and fault tolerant strategies, do not
appear in the Cnonus Nucleus. However, Cuonus provides the
building blocks to construct these features inside subsystems.

On the other hand, CHoRUS provides effective, high perfor-
mance solutions to some of the issues known to cause difficult
problems to system designers:

. Errors and exceptions are posted by the Nu,cleus to a port
chosen by the actor program. This very flexible mechanism
allows the "user" actor to apply its own strategy to handling
errors and exceptions, and, because ofthe nature ofports, it
applies transparently to distributed systems.

. An actor failure has two kinds of consequences:

l. at the communication level, attached ports are no
longer valid. The Nucleus handles that "normally"
when it needs to locate a port which may be present,
or absent,

2. at the service level, the service is no longer available
and the subsystem will handle the failure at its own
level.

Similarly, introducing a new site is implicit at the Nucleus
level and explicit at the service level. The service level can
use the port group facility for managing services dynami-
cally.

364 M. Rozier et al.

. Debugging CuonuS distributed systems is eased by isolating
resources within actors and by communicating by means of
messages which provide explicit and clear interactions.

. Different types of applications can be supported whether
they make high or low demands on the communication
bandwidth.

. The Cuonus modular structure was successful in all ver-

sions, allowing binary compatibility with UNIX in CHoRus-
V3, while keeping the implementation well structured, port-

able, and efficient.

The experience of four CUoRUS versions has clearly

strengthened the role of the Cnonus concepts:

. Two concepts provide stability in the evolving state of a dis-

tributed system and are static, fixed references in a distri
buted application design:

l. the actor is a local grouping of local entities, behaving
as a whole and providing a local and precise state, as

long as the actor exists,

2. the port group is a global grouping of distributed enti-
ties behaving as a whole, statically defined while its
members can evolve on their own.

. Two concepts provide dynamism and allow migration and

evolution of information as well as computation - i.e., mes-

sages and ports.

The Cnonus technology has been designed for building "new
generations" of open, distributed, and scalable Operating Systems.

It has the following main characteristics:

. a communication-based technology, relying on a minimum
Nucleus integrating distributed processing and communica-
tion at the lowest level, and providing generic services used

by a set of subsystem servers to provide extended standard

operating system interfaces - Ê.9., UNIX,

o r€Írl time services provided by the real-time Nucleus, and

accessible by "system programmers" at the different system

levels,

Cnonus Distributed Operating Systems 365

. a modular architecture providing scalability, and allowing in
particular dynamic configuration of the system and its appli-
cations over a wide range of hardware and network
configurations, including parallel and multiprocessor
systems.

While transparently extending existing applications to run in
distributed environments, such operating systems provide new ser-
vices adapted to develop new applications, that can map better
the distributed nature of organizations and therefore meet users'
needs in a much better way.

7. Acknowledgments

Jean-Pierre Ansart, Philippe Brun, Hugo Coyote, Corinne
Delorme, Jean-Jacques Germond, Steve Goldberg, pierre Lebee,
Frédéric Lung, Marc Maathuis, Denis Metral-Charvet, Bruno pil-
lard, Didier Poirot, Eric Pouyoul, François Saint-Lu and Eric
Valette contributed, each with a particular skill, to the CHoRus-
V3 implementation on various machine architectures.

Hubert Zimmermann by initiating the Chorus research project
at INRIA, encouraging its development, and leading its transfor-
mation into an industrial venture made all this possible.

8. Cnoaus Bibliography

8.1 cuonus-v}

Jean-Serge Banino, Alain Caristan, Marc Guillemont, Gérard Morisset,
and Hubert Zimmermann, CHoRUs: an Architecture for Distri-
buted Systems, Research Report, INRIA, Rocquencourt, France
(November 1980).

Jean-serge Banino and Jean-charles Fabre, Distributed coupled Actors:
a cuoRus Proposal for Reliability, page 7 in IEEE 3rd. International
Conference on Distributed Computing Systems proc.,Fort Lauder-
dale, FL (t8-22 October 1982).

366 M. Rozier et al.

Marc Guillemont, Integration du Système Réparti Cuonus dans le Lan-
gage de Haut Niveau Pascal, Thèse de Docteur Ingénieur, Univer-
sité Scientifique et Médicale, Grenoble, France (Mars 1982).

Marc Guillemont, The CHonus Distributed Operating System: Design

and Implementation, pages 207-223 in ACM International Sympo-
sium on Local Computer Networks Proc.,Flotence, Italy (April
1982).

Hubert Zimmermann, Jean-Serge Banino, Alain Caristan, Marc Guil-
lemont, and Gérard Morisset, Basic Concepts for the Support of
Distributed Systems: the Cnonus Approach, pages 60-66 in IEEE
2nd. International Conference on Distributed Computing Systems

Proc., Yersailles, France (April l98l).

8.2 CHORUS-VL

Jean-Serge Banino, Jean-Charles Fabre, Marc Guillemont, Gérard Mor-
isset, and Marc Rozier, Some Fault-Tolerant Aspects of the CnoRus
Distributed System, pages 430-437 in IEEE Sth. International Confer-
ence on Distributed Computing Systems Proc.,Denver, CO (13-17

May 1985).

Jean-Serge Banino, Gérard Morisset, and Marc Rozier, Controlling Dis-
tributed Processing with Csonus Activity Messages in 18th. Hawaii
International Conference on System Science, Hawaii (January 1985).

Jean-Charles Fabre, Un Mécanisme de Tolérance aux Pannes dans

l'Architecture Répartie CHoRUS, Thèse de Doctorat, Université Paul

Sabatier, Toulouse, France (Octobre 1982).

Marc Guillemont, Hubert Zimmermann, Gérard Morisset, and Jean-

Serge Banino, CHoRUS: une Architecture pour les Systèmes

Repartis, Rapport de Recherche, INRIA, Rocquencourt, France
(Mars 1984).

Frédéric Herrmann, Décentralisation de Fonctions Système: Application
à la Gestion de Fichiers, Thèse de Docteur Ingénieur, Université
Paul Sabatier, Toulouse, France (Septembre 1985).

Ahmad Rozz,La Gestion des Fichiers dans le Système Réparti CHoRUS,

Thèse de Docteur Ingénieur, Université Paul Sabatier, Toulouse,
France (Octobre 1985).

Christine Senay, Un Système de Désignation et de Gestion de Portes
pour I'Architecture Répartie CHoRUs, Thèse de Docteur Ingénieur,
C.N.A.M., Paris, France (Décembre 1983).

Cnonus Distributed Operating Systems 367

Hubert Zimmermann, Marc Guillemont, Gérard Morisset, and Jean-
serge Banino, cHoRUS: a communication and processing Architec-
ture for Distributed Systems, Research Report, INRIA, Rocquen-
court, France (September 1984).

8.3 CHORUS-V2

François Armand, Michel Gien, Marc Guillemont, and pierre Léonard,
Towards a Distributed UNIX System - the CnonuS Approach,
pages 413-431 in EUUG Autumn '86 Conference proc., Manchester,
UK (22-24 September 1986).

Frédéric Herrmann, CHoRus: un Environnement pour le Developpe-
ment et l'Exécution d'Applications Réparties, Technique et science
Informatique 6(2) pages 162-165 (Mars 1987).

José Legatheaux-Martins, La Désignation et I'Edition de Liens dans les
Systèmes d'Exploitation Répartis, Thèse de Doctorat, université de
Rennes-1, Rennes, France (Novembre l9g6).

José Legatheaux-Martins and Yolande Berbers, La Désignation dans les
Système d'Exploitation Répartis, Technique et Science Informatique
7(4) pages 3s9-372 (Juillet 1988).

Azzeddine Mzouri, Les Protocoles de communication dans un système
Réparti, Thèse de Doctorat, Université paris-Sud, Orsay, France
(Janvier 1988).

Mario Papageorgiou, Les Systêmes de Gestion de Fichiers Répartis,
Thèse de Doctorat, université Paris-6, paris, France (Janvier rggg).

Mario Papageorgiou, Le Système de Gestion de Fichiers Répartis dans
CHoRUS, Technique et Science InformatiqueT(4) pages 373-38a (Juil-
let 1988).

Marc Rozier, Expression et Réalisation du controle d'Execution dans un
Système Réparti, Thèse de Doctorat, Institut National polytech-
nique,, Grenoble, France (Octobre 1986).

Marc Rozier and José Legatheaux-Martins, The cHonus Distributed
operating system: Some Design Issues, pages 26r-2g7 in Distributed
Operating Systems, Theory and practice, ed. yakup paker, Jean-
Pierre Banâtre and Muslim Bozyigit, Springer verlag, Berlin (19g7).

368 M. Rozier er al.

8.4 CHORUS-V3

Frédéric Herrmann, François Armand, Marc Rozier, Michel Gien,
Vadim Abrossimov, Ivan Boule Marc Guillemont, Pierre Léonard,

Sylvain Langlois, and Will Neuhauser, CHonus, a New Technology
for Building UNIX Systems in EUUG Autumn'88 Conference Proc',

Cascais, Portugal (3-7 October 1988).

Marc Rozier, and Michel Gien, Resource-level Autonomy in CHORUS in

tg88 ACM SIGOPS European Worl<shop on "Autonomy and Inter-
dependance in Distributed Systems?", Cambridge, UK (18-21 Sep-

tember 1988).

References

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young, Mach: A New Ker-
nel Foundation for UNIX Development, pages 93-ll2 in USENIX

Summer '86 Conference Proc', Atlanta, GA (9-13 June 1986).

Claude Bétourné, Jacques Boulenger, Jacques Ferrié, Claude Kaiser,

Sacha Krakowiak, and Jacques Mossière, Process Management and

Resource Sharing in the Multiaccess System ESOPE, Communica-
tions of the ACM t3(t2) (December 1970).

David cheriton, The unified Management of Memory in the v Distri-
buted System, Technical Report, Computer Science, Stanford
University, Stanford, CA (1988).

David Cheriton, The V Distributed System, Communications of the ACM

31(3) pages 314-333 (March 1988).

Michel Gien, The SOL Operating System, pages 75-78 in USENIX Sum-

mer '83 Conference, Toronto, ON (July 1983).

Robert A. Gingell, Joseph P. Moran, and William A. Shannon, Virtual
Memory Architecture in SunOS, pages 8l-94 in USENIX Summer '87

Conference, Phoenix, AR (8-12 June 1987)'

José Legatheaux-Martins and Yolande Berbers, La Désignation dans les

Systèmes d'Exploitation Répartis, Technique et science Informatique
7(4) pages 359-372 (Juillet 1988).

Kai Li, Shared Virtual Memory on Loosely Coupled Multiprocessors,
Ph.D. Thesis, Yale University, New Haven, CT (September 1986).

CHzRUS Distibuted Operøting Systems 369

Joseph P. Moran, SUnOS Virtual Memory Implementation, pages 285-300
in EUUG Spring '88 Conference, London, UK (l l-15 April lgSS).

Sape J. Mullender et al., The Amoeba Distributed Operating System:
Selected Papers 1984 - 1987, CWI Tract No. 41, Amsterdam, Nether-
lands (1987).

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout, Caching in
the Sprite Network File System, ACM Transactions on Computer
Systems 6(l) pages 134-154 (February 1988).

Louis Pouzin et al., The CYCLADES Computer Nelwork - Towards Lay-
ered Network Architectures, Elsevier Publishing Company, Inc, New
York, NY (1982). ISBN 0-444-86482-2

David L. Presotto, The Eighth Edition UNIX Connection Service, page
l0 in EUUG Spring'86 Conference Proc., Florence, Ifaly (21-24 Aprll
I e86).

Richard Rashid, Avadis Tevanian, Michael Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew,
Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures, pages 3l-39 in ACM
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 11) (October t9S7).

Andrew S. Tanenbaum, Sape J. Mullender, and Robert van Renesse,
Using Sparse Capabilities in a Distributed Operating System, pages
558-563 in IEEE 6th. International Conference on Distribufed Com-
puting Systems, CWI Tract No.4l, Cambridge, MA (19-23 May
I e86).

Peter J. Weinberger, The Eighth Edition Remote Filesystem, page I in
EUUG Spring'86 Conference, Florence, Italy (2t-24 April 1986).

[submitted Sept 20, 1988; revised Dec.], 1988; accepted Dec. 6, I9B8l

370 M. Rozier et al.

