
 ;login: AUGUST 2011    37

PROGRAMMING

Clusters of commodity servers have become a major computing platform, powering 
both large Internet services and a growing number of data-intensive enterprise 
and scientific applications . To reduce the challenges of building distributed 
applications, researchers and practitioners have developed a diverse array of new 
software frameworks for clusters . For example, frameworks such as memcached 
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[4] make accessing large datasets more efficient, while frameworks such as 
Hadoop [1] and MPI [6] simplify distributed computation . 

Unfortunately, sharing a cluster efficiently between two or more of these frame-
works is difficult . Many operators statically partition their clusters at physical 
machine granularities, yielding poor overall resource utilization . Furthermore, 
static partitioning makes it expensive to share big datasets between two comput-
ing frameworks (e .g ., Hadoop and MPI): one must either copy the data into a sepa-
rate cluster for each framework, consuming extra storage, or have the frameworks 
read it across the network, reducing performance . 

This article introduces Mesos, a platform that enables fine-grained, dynamic 
resource sharing across multiple frameworks in the same cluster . For example, 
using Mesos, an organization can simultaneously run Hadoop and MPI jobs on the 
same datasets, and have Hadoop use more resources when MPI is not using them 
and vice versa . Mesos gives these and other frameworks a common interface for 
accessing cluster resources to efficiently share both resources and data . 

In designing Mesos, we sought to make the system both flexible enough to support 
a wide range of frameworks (and maximize utilization by pooling resources across 
all these frameworks), and highly scalable and reliable (to be able to manage large 
production clusters) . Specifically, we had four goals: 

 High utilization: share resources dynamically as the demand of each applica-
tion changes 

 Scalability: support tens of thousands of machines and hundreds of concurrent 
jobs 

 Reliability: recover from machine failures within seconds 
 Flexibility: support a wide array of frameworks with diverse scheduling needs 

Mesos achieves these goals by adopting an application-controlled scheduling 
model . The Mesos core is only responsible for deciding how many resources each 
framework should receive (based on an operator-selected policy such as priority or 
fair sharing), while frameworks decide which resources to use and which compu-
tations to run on them, using a mechanism called resource offers . This design has 
the dual benefit of giving frameworks the flexibility to schedule work based on 
their needs and letting the Mesos core be simple, scalable, and robust . Indeed, we 
show that Mesos scales to 50,000 nodes, recovers from master failures in less than 
10 seconds, and lets applications achieve nearly perfect data locality in scheduling 
their computations . 

Finally, Mesos provides important benefits even to organizations that only use 
one cluster computing framework . First, an organization can use Mesos to run 
multiple, isolated instances of the framework on the same cluster (e .g ., to isolate 
production and experimental Hadoop workloads), as well as multiple versions 
of the framework (e .g ., to test a new version) . Second, Mesos allows developers 
to build specialized frameworks for applications where general abstractions like 
MapReduce are inefficient, and have them coexist with current systems . Later in 
this article we describe a specialized framework we developed for iterative applica-
tions and interactive data mining called Spark, which can outperform Hadoop by 
a factor of 30 for these workloads . We hope that other organizations also leverage 
Mesos to experiment with new cluster programming models . 

Mesos began as a research project at UC Berkeley and is now open source under the 
Apache Incubator . It is actively being used at Twitter, Conviva, UC Berkeley, and 
UC San Francisco . 
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Mesos Architecture

Mesos enables efficient resource sharing across frameworks by giving them a com-
mon API to launch units of work, called tasks, on the cluster . A task typically runs 
on a slice of a machine, within a resource allocation chosen by the framework (e .g ., 
1 CPU core and 2 GB RAM) . Mesos isolates tasks from each other using OS facili-
ties like Linux Containers [2] to ensure that a runaway task will not affect other 
applications . 

To support a wide range of frameworks while remaining scalable and robust, 
Mesos employs an application-controlled scheduling model . Mesos decides how 
many resources each framework should receive according to an organization-
defined policy such as fair sharing . However, each framework is responsible for 
dividing its work into tasks, deciding which tasks to run on each machine, and, 
as we shall explain, selecting which machines to use . This lets the frameworks 
perform application-specific placement optimizations: for example, a MapReduce 
framework can place its map tasks on nodes that contain their input data . 

Figure 1 shows the architecture of Mesos . The system has a fault-tolerant mas-
ter process that controls slave daemons on each node . Each framework that uses 
Mesos has a scheduler process that registers with the master . Schedulers launch 
tasks on their allocated resources by providing task descriptions . Mesos passes 
these descriptions to a framework-specific executor process that it launches on 
slave nodes . Executors are also reused for subsequent tasks that run on the same 
node, to amortize initialization costs . Finally, Mesos passes status updates about 
tasks to schedulers, including notification if a task fails or a node is lost . 

Figure 1: Mesos architecture, showing two running frameworks (Hadoop and MPI)

Mesos uses a mechanism called resource offers to let frameworks choose which 
resources to use . When resources on a machine become free, Mesos offers them to 
each framework scheduler in turn, in an order defined by the cluster’s allocation 
policy (e .g ., starting with the framework furthest below its fair share) . Each frame-
work may accept the resources and launch a task using some of them, or reject the 
resources if, for example, it has no data on that machine . Refusing resources keeps 
the framework at the front of the allocation queue, ensuring that it is offered future 
resources before other frameworks . While it may seem counterintuitive that refus-
ing resources can help frameworks, we found that a simple policy where frame-
works wait a short time for local resources achieves near-perfect data locality in 
typical cluster workloads . 
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One natural concern with resource offers is whether a framework will need to 
wait for a large number of offers to find a resource that it wants . To prevent this 
scenario, Mesos also provides an API for requests that lets frameworks specify 
which resources they wish to be offered . For example, a framework might provide a 
minimum amount of memory it needs, or a whitelist of nodes to run on . One impor-
tant benefit of the resource offer model, however, is that frameworks whose needs 
cannot be expressed using requests can still achieve good task placement . That 
is, requests are an optimization, while resource offers guarantee correctness and 
allow the system to support arbitrary framework placement preferences . 

More importantly, Mesos’s application-controlled scheduling model also helps 
make the system extremely simple, scalable, and robust . Here is how Mesos 
achieves each of the four goals outlined in the introduction: 

 High utilization: Each framework is only allocated the resources to run its cur-
rent tasks, as opposed to a static partition of the cluster . 

 Scalability: The Mesos master only makes inter-framework scheduling deci-
sions (to pick which framework has priority for new offers), which are much 
simpler than the intra-framework decisions required for many applications 
(e .g ., to achieve data locality) . Our optimized C++ implementation can make 
thousands of decisions per second with sub-second latency and manage tens of 
thousands of nodes . 

 Reliability: The Mesos master only needs to store soft state: the list of currently 
active frameworks and tasks . Therefore, if the master crashes, a standby master 
can take over and repopulate its state within seconds when the frameworks and 
slaves connect to it . 

 Flexibility: Resource offers allow each framework to control its scheduling, 
while requests represent an extensible and efficient mechanism for frameworks 
to indicate their placement needs to the master . 

Example Framework: Computing Pi

The Mesos team has already ported several popular frameworks, like Hadoop and 
MPI, to run on Mesos, but one of our main goals with Mesos was to let users easily 
develop other cluster applications that can run alongside existing frameworks . To 
show you how a Mesos framework looks from a programmer’s perspective, Figure 
2 illustrates a simple Python framework that computes p . Mesos also has APIs in 
C++ and Java . 

The framework is composed of a scheduler, which launches tasks, and an executor, 
which runs them . The scheduler launches NUM_TASKS independent tasks, each 
of which computes an estimate of p and then averages the results . Each task uses 
an inefficient, but easy to explain method to estimate p: it picks random points in 
the unit square (from (0,0) to (1,1)) and counts what fraction of them fall in the unit 
circle . This fraction should be p/4, because one quarter of the unit circle is inside 
this square, so we multiply the result by 4 . The tasks return their results in the data 
field of a Mesos status update . Note that the executor runs each task in a separate 
thread, in case a single machine is given multiple tasks . 

Thanks to building on top of Mesos, this application does not need to implement 
infrastructure for launching work on the cluster or for communicating between 
tasks and the main program . It can just implement a few callbacks, such as 
resourceOffer and statusUpdate, to run on the Mesos-managed cluster . 
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Use Cases

Mesos Usage at Twitter

Twitter has been using Mesos internally as an end-to-end framework for deploying 
some of their application services . Using Mesos for some of their services appealed 
to Twitter for many reasons, including: 

 Flexible deployment: Statically configuring where services should run makes it 
difficult for different teams within Twitter to operate autonomously . By leverag-
ing Mesos, engineering teams can focus on doing code deploys against a generic 
pool of resources, while the operations team can focus on the operating system 
and hardware (e .g ., rebooting machines with new kernels, replacing disks, etc) . 

 Increased utilization: Many services within the cluster are sharded for better 
fault-tolerance and do not (or cannot) fully utilize a modern server with up to 16 
CPU cores and 64+ GB of memory . Mesos enables Twitter to treat machines as a 
pool of resources and run multiple services on the same machine, yielding better 
overall cluster utilization . 

 Elasticity: Certain services might want to “scale up” during peak or unexpected 
events when traffic and load has increased . Using Mesos, it’s easy for different 
services to consume more or less resources as they are needed . 

Using Mesos to facilitate normal datacenter maintenance and upgrades has 
been especially compelling at Twitter . Because Mesos notifies frameworks when 
machines fail, operators can easily remove machines from the cluster (provided 
there is enough general capacity) . Frameworks simply react to these “failures” and 
reschedule their computations as needed . 

Because of Mesos’s two-level scheduling design, Twitter can provide its own 
organizational policies for how resources should be allocated to frameworks . For 
example, some machines can have most of their resources dedicated to applica-
tions serving user requests (e .g ., Web servers and databases), allowing unused 
“slack” resources to be used for lower-priority applications . Twitter uses Linux 
Containers [2] to isolate services running on the same machine from one another . 

class MyExecutor(mesos.Executor):!
  def launchTask(self, driver, task):!
    # Create a thread to run the task!
    thread = Thread(target = self.runTask,!
                    args = (driver, task))!
    thread.start()!
!
  def runTask(self, driver, task):!
    NUM_SAMPLES = 1000000!
    count = 0.0!
    for i in range(1, NUM_SAMPLES):!
      x = random()!
      y = random()!
      if x*x + y*y < 1:!
        count += 1!
    result = 4 * count / NUM_SAMPLES!
    driver.sendStatusUpdate(!
      task.task_id, TASK_FINISHED, str(result))!

class MyScheduler(mesos.Scheduler):!
  def resourceOffer(self, driver, id, offers):!
    tasks = []!
    for offer in offers:!
      if self.tasksStarted < NUM_TASKS:!
        self.tasksStarted += 1!
        task = createTask(offer.slave_id,!
                          {"cpus": 1, "mem": 32})!
        tasks.append(task)!
    driver.replyToOffer(id, tasks, {})!
!
  def statusUpdate(self, driver, update):!
    if update.state == TASK_FINISHED:!
      self.resultSum += float(update.data)!
      self.tasksDone += 1!
      if self.tasksDone == NUM_TASKS:!
        driver.stop()!
        result = self.resultSum / NUM_TASKS!
        print "Pi is roughly %f" % result!

Figure 2: A sample Mesos framework, in Python, for computing p. The scheduler (left) launches NUM TASKS tasks and averages their 
results, while the executor (right) runs a separate estimation of p in a thread for each task. We omit some boilerplate initialization code.
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Using Mesos, engineers at Twitter have been able to easily experiment with 
building new services, including spam detectors, load testers, distributed tracing 
frameworks, and service quality monitors, among others . Twitter continues to 
experiment with using Mesos for deploying more services in their clusters . 

Managing Hadoop Clusters

Running the popular Hadoop framework on Mesos has many advantages . In 
current versions of Hadoop, a single master process (the job tracker) manages an 
entire cluster, which creates a single point of failure and leads to poor isolation 
between workloads (for example, a single user submitting too large a job may crash 
the job tracker) . Mesos has been designed to support many concurrent frameworks, 
so it can run each Hadoop job separately, with its own job tracker, isolating MapRe-
duce applications from each other . Mesos also provides stronger isolation of the 
resources on each machine through Linux Containers . Finally, from an operations 
viewpoint, an important advantage of running Hadoop on Mesos is that it enables 
organizations to experiment with different versions of Hadoop in one cluster, or to 
gradually upgrade from an older version to a newer one . 

More recently, the next-generation Hadoop design was announced, which refac-
tors the current Hadoop job tracker into a simpler resource manager and a separate 
application master for each job to achieve similar isolation benefits [7] . These new, 
lightweight application masters fit cleanly as framework schedulers in the Mesos 
model, and we are working to port them to run on top of Mesos to let Hadoop share 
resources with the other frameworks supported by Mesos . 

Spark: A Framework for Low-Latency In-Memory Cluster 
 Computing

One of our main goals with Mesos was to enable the development of new analytics 
frameworks that complement the popular MapReduce programming model . As an 
example, we developed Spark, a framework for iterative applications and interac-
tive data mining that provides primitives for in-memory cluster computing . Unlike 
frameworks based on acyclic data flow, such as MapReduce and Dryad, Spark 
allows programmers to create in-memory distributed datasets and reuse them 
efficiently in multiple parallel operations . This makes Spark especially suitable for 
iterative algorithms that reuse the same data repeatedly, such as machine learning 
and graph applications, and for interactive data mining, where a user can load a 
dataset into memory and query it repeatedly . As previously mentioned, Spark can 
outperform Hadoop by a factor of 30 in these tasks . 

Spark provides a language-integrated programming interface, similar to Micro-
soft’s DryadLINQ [9], in Scala [5], a high-level language for the Java VM . This 
means that users can write functions in a single program that automatically get 
sent to a cluster for execution . For example, the following code snippet implements 
the p estimation algorithm from earlier in this article: 

val count = spark.parallelize(1 to NUM_SAMPLES).map(i =>

  val x = Math.random

  val y = Math.random

  if (x*x + y*y < 1) 1.0 else 0.0

).reduce(_ + _)

println(“Pi is roughly “ + 4 * count / NUM_SAMPLES)
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Here, the arguments to map and reduce are Scala function literals (closures) that 
are automatically shipped to the Mesos cluster for parallel execution . The _ + _ 

syntax means a function to add two numbers . 

As a more interesting example, the code below implements logistic regression [3], 
an iterative machine learning algorithm for classification (e .g ., identifying spam) . 
We build an in-memory distributed dataset called points by loading the data in a 
text file, then run map and reduce operations on it repeatedly to perform a gradi-
ent descent . Loading points into memory allows subsequent iterations to be much 
faster than the first and lets Spark outperform Hadoop for this application . 

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {

  val gradient = points.map(p =>

    (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

  ).reduce(_ + _)

  w -= gradient

}

println(“Final separating parameter: “ + w)

Spark can also be used interactively from a modified Scala interpreter to build and 
query distributed datasets . We have used Spark to analyze several large traces in 
the course of our research . 

Spark is being used by several groups of machine learning researchers at Berkeley, 
for projects including traffic estimation and spam detection on social networks . 
It is also being used at Conviva, an online video distribution company, to run ana-
lytics on large Hadoop and Hive datasets . The system has grown into a research 
project of its own, and is open source at http://www .spark-project .org . 

Experimental Results

We evaluated Mesos through a series of experiments included in our NSDI ’11 
paper [8] . We sketch three of them here . 

Job performance in a shared cluster: In the first experiment, we wanted to com-
pare Mesos’s performance with a static partitioning of a cluster, where each parti-
tion ran a separate framework . For this, we ran a 100-node cluster on Amazon EC2 
and concurrently ran four frameworks: (1) a mixed Hadoop workload based on the 
workload at Facebook, (2) a Hadoop batch workload, (3) a Spark instance running 
machine learning jobs, and (4) the popular Torque scheduler running MPI jobs . 
Table 1 compares job completion times for Mesos and static partitioning . As seen, 
most jobs speed up when using Mesos . Note that the Torque framework was con-
figured to never use more than a fourth of the cluster . It is therefore expected not 
to see any speedup . The slight slowdown for Torque was due to a slow machine on 
EC2 . The speedups are due to frameworks scaling up and down dynamically to use 
other resources when another framework’s demand is low . In contrast, with static 
partitioning, frameworks are confined to a fixed fraction of the cluster machines . 

Scalability: The second experiment investigated how the Mesos master scales 
with the cluster size . We ran 200 frameworks filling the whole cluster with tasks 
that on average took 30 seconds to finish . Thus, the Mesos master was busy 
making scheduling decisions as the tasks were continuously finishing and being 
launched by the frameworks . We then launched one additional framework that 
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ran one task and measured the overhead of scheduling this task . The result was 
that the scheduling overhead remained on average under one second for up to 
50,000 slave daemons (which we ran as separate processes on up to 200 physical 
machines), showing that the master can manage large clusters with heavy work-
loads . Much of the system’s scalability stems from our use of C++ and efficient I/O 
mechanisms in the master . 

Reliability: In the final experiment, we wanted to measure how fast Mesos recov-
ered from master failures . As in the scalability experiment, we filled the cluster 
with tasks . We then killed the master node and measured how long it took for the 
system to elect a new master node and repopulate its state . For a 4000-node clus-
ter, the whole system recovered within 10 seconds . 

Table 1: Aggregate performance of each framework in the macro-benchmark (sum of running 
times of all the jobs in the framework). The speedup column shows the relative gain on Mesos.

Conclusion

As the number of software frameworks for clusters grows, it is becoming increas-
ingly important to dynamically share resources between these frameworks . We 
have presented Mesos, a scalable and reliable platform that enables efficient, 
fine-grained sharing of clusters among diverse frameworks by giving frameworks 
control over their scheduling . Mesos can currently run Hadoop, MPI, the Torque 
resource manager, and a new framework, called Spark, for fast in-memory paral-
lel computing . We hope that Mesos also encourages the development of other 
 frameworks that can coexist with these . Mesos is open source at http://www 
 .mesosproject .org . 
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