
 2 ;login: VOL. 36, NO. 1

Rik is the editor of ;login:.

rik@usenix.org

Walking near where I live on a warm winter afternoon, it hit me . Layers . Every-
where I looked there were layers of rocks, leftovers from millions of years ago, now
exposed by weathering . How apropos to many of the topics covered in this issue .
There are layers in virtualization, layers in file systems, layers in networking, as
well as pluses and minuses with having so many layers .

Layers are not necessarily a bad thing . I was once asked to create drop-down, cas-
cading menus using a primitive drawing library . Popping open a menu of choices
was fairly easy, as was drawing a second-level menu . I just created a bunch of text
rectangles of the correct size, making certain they stacked perfectly . But I also
needed to deal with saving the pixels that were present before I drew the menu and
with replacing those pixels once a selection was made . Today, you would just use
a library, a list of menu items, a corresponding list of functions to call, and every-
thing would get taken care of . In other words, you would take advantage of higher
layers of software that made a task that was once difficult easy to do .

Layers

Layers occur everywhere in computers . As I type this sentence, each keypress gets
converted into a set of bits, sent over a serial link, received by a character device
driver, passed through the line handling code, placed in a queue associated with a
particular virtual TTY and copied to the program I am using, which then inter-
prets the character and writes it to an X Window library routine, which eventually
calls a kernel routine so that it can display some bits on my screen . And, of course, I
am simplifying things quite a lot . But it is the many layers that make what appears
to be, and really needs to be, a simple action appear to work in a trivial fashion .

Simple devices have fewer layers . Your microwave may have a menu of items it
“knows” how to cook, displayed in funky letters on its display . On such simple
systems there are few layers, and a lot of programming effort is required just to
spell out BEEF . Move up to a smartphone, and even though the device is smaller,
the computing power is immensely bigger, and the layers have grown as well . Then
move onto a modern PC running Linux or Windows 7, and the number of layers
grows even faster . You might think that a smartphone running Linux or Windows
would have just as many layers as a desktop running the same OS, but you’d be
wrong . The smartphone is more limited, with a simplified API that programmers
are required to use .

OPINIONMusings
R I K F A R R O W

 ;login: FEBRUARY 2011 Musings 3

Semantic File Systems

Instead of thinking about characters on a screen, let’s consider file systems . At
the hardware interface, the OS presents sector-sized blocks to devices along with
directions about where to write the sector . Modern disk drives may ignore the
location directions and just write the sector in the first free block available, keep-
ing track of where the OS thinks the block resides . So even disks have their own
layers—internal, hidden levels of indirection .

Now let’s get really squirrelly and pop way up the stack to an operating system
running within a VM . This virtualized OS “thinks” it is writing to a disk, but really
it is sitting atop a hypervisor which may take the block write and convert it into a
network write to some remote storage device . From the perspective of the virtu-
alized OS, it is convenient not to have to consider what really happens when the
OS writes a sector . But from other perspectives, blindly treating blocks as blocks
wastes lots of information .

Including semantics in file systems is not a new idea . File metadata has provided
some level of semantics in just about every file system, with the exception of main-
frame OSes . But virtualization rips away the assumption that a block written on a
disk includes some semantic information, because VMMs today are, for the most
part, blind to this information .

Storage companies just love this . I really wondered why EMC bought VMware,
until I realized just how much virtualization features, like migration, rely on SANs .
And with the semantic information about what is being written lost, the opportu-
nity to do clever things is greatly reduced . Sure, a smart filer can handle deduplica-
tion, as data is just data . But from a system administrator’s perspective, the blocks
on those filers are just blocks . They no longer represent anything meaningful .
Instead, the amount of storage required increases .

The Lineup

During the enormous poster session at OSDI (75 posters!), Dutch Meyer managed
to catch my eye . Perhaps it was because I knew Meyer from his work as a summa-
rizer, but I think it was really because he and his co-authors are looking at the issue
of layers in virtualization in their research . In their article they point out just how
much is lost, and how much there is to gain, by preserving file semantics below the
level of a VM .

I also met Rob Sherwood during OSDI . Sherwood presented a paper on FlowVisor,
a prototype implementation of network slicing that relies on OpenFlow . Flow-
Visor allows new services to be tested on live networks by partitioning the network
based on how traffic is switched . OpenFlow by itself stands to be a game-breaking
technology for the operators of large clusters of systems .

During USENIX Security ’10, David Barrera proposed sharing work he had done
with Glenn Wurster and Paul Van Oorschot on improving a part of IPv6 that has
security implications . In IPv6, the lower 48 bits of an address are, by default, the
MAC address of the network interface . But that address is supposed to be unique .
And that implies that an adversary could track the mobile devices as they move
from one IPv6 network to another . Barrera shares their approach to fixing this
issue, along with a very nice explanation of IPv6 host addresses .

 4 ;login: VOL. 36, NO. 1

Mona Attariyan and Jason Flynn (also met during OSDI) share their work on
providing an automated way of solving configuration error problems . Their project
involves statically tracing execution flow, then monitoring execution until an
error occurs . They can revisit the execution, trying out different paths, until they
determine which variables, identified with taint, were most likely to have caused
the error . Very cool and useful work .

Josh Fiske shares his experience using Linux virtualization from his work at
Clarkson University . Fiske takes advantage of layers, by automating the process of
spinning up new VMs and configuring them, as well as installing and configuring
a set of application packages .

Ole Tange shows off his own software project, GNU Parallel . GNU Parallel is a
replacement for xargs with a focus on forking as many processes in parallel as
desired, allowing you to take better advantage of multicore or multi-threaded
systems . Tange has also designed GNU Parallel to avoid some weaknesses in how
xargs processes its arguments, making it an excellent replacement .

David Blank-Edelman gets right into the theme of file systems by exploring some
of the included Perl libraries for copying and renaming files . He also takes a look at
CPAN modules that go well beyond the basics, such as using FTP, SFTP, SCP, and
the wrappers for rsync .

Peter Galvin compares virtualization options in Solaris, AIX, and RHEL . Expand-
ing on the comparison in his December 2010 column, Galvin explores the pluses
and minuses of these three enterprise-ready operating systems . Not surprisingly,
hardware support does make a difference here .

Dave Josephsen continues his exploration of Ganglia . In this column, Josephsen
demonstrates how to write plug-ins in C for the data-collecting daemon, gmond .
While writing C programs may not be something everyone feels comfortable with,
for often repeated tasks on critical servers their performance cannot be beat . And,
as Josephsen points out, using C means that other packages do not need to be
installed for this trick to work .

Robert Ferrell explains how the threat of worms like Stuxnet requires us to think
outside the box, or at least the comic book, to find new solutions .

Elizabeth Zwicky explains how she can review so many books each issue, tells us
about her experience reading eBooks, then presents us with her views of three new
books . I take a quick look at a book about building your own PCs, and I like what I
see enough to order the recommended list of parts for my new desktop . Sam Stover
waxes enthusiastic over a book about lock picking, a great hobby for any geek, as
well as a useful skill for physical penetration testers .

This issue includes summaries from OSDI ’10 . LISA summaries were not complete
when I turned this issue in for printing (really!), so they will be out in April 2011 .
We also have summaries from four workshops, including some excellent advice
from the Diversity Workshop to anyone either in grad school or planning to work
toward an advanced degree .

I can look out my office window and see the layers in the rock, similar to the
Coconino Sandstone and Hermit Shale layers seen in the Grand Canyon [1] . If I
move my chair a little, I can see basalt that capped the Mogollon Rim with hard
rock from volcanic eruptions millions of years ago . These layers make for spectac-
ular views, as well as supporting the local economy by attracting hordes of tourists .

 ;login: FEBRUARY 2011 Musings 5

Our computer systems are composed of many more layers, rapidly deposited over
a period of just decades . If our computers performed as slowly as they did in 1969,
where a dual-CPU MULTICS system peaked out at six million instructions per
second, we wouldn’t have so many layers—they would be too performance-inten-
sive .

Layers make programming and, to some extent, using computers much simpler .
They also have other implications . More lines of code means more bugs . And deep
software stacks also allow operating system vendors to lock in customers, as the
only way to bypass these layers is to port software to other operating systems’ lay-
ers . I’ve been thinking and writing about the implications of these layers for many
years, and you can take a look at where I hope we are going both in security and in
dealing with these layers [2] .

References

[1] Grand Canyon Layers: http://www .bobspixels .com/kaibab .org/geology/gc_layer
 .htm and http://education .usgs .gov/schoolyard/IMAGES/GrandCanyon .jpg .

[2] Rik Farrow, “Software Insecurity,” IQT Quarterly, vol . 2, no . 2: http://
www .rikfarrow .com/IQT_Quarterly_2010 .pdf .

