
 72   ;login: VOL.  36,  NO.  1   

CONFERENCES
9th USENIX Symposium on Operating Systems 
Design and Implementation (OSDI ’10)

Vancouver, BC, Canada 
October 4–6, 2010

Kernels: Past, Present, and Future

Summarized by Brendan Cully (brendan@cs.ubc.ca)

An Analysis of Linux Scalability to Many Cores
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, 

M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich, MIT CSAIL

At the previous OSDI, Silas Boyd-Wickizer presented Corey, 
a new many-core operating system motivated by the premise 
that traditional OS design, as represented by Linux, faced 
fundamental limitations to scalability. This talk, also given 
by Boyd-Wickizer, refutes that premise. It does so by select-
ing several real applications with good parallel implementa-
tions that demonstrate kernel-based scalability problems and 
exploring the root causes of the bottlenecks.

Boyd-Wickizer et al. did their examination on an off-the-
shelf 48-core Linux x86 server, running the applications on 
a RAM disk to avoid disk bottlenecks and stress the kernel. 
They found the bottlenecks, fixed them, and kept repeating 
this until either scalability was linear or the bottleneck was 
not in the kernel (i.e., it was in hardware or the application 
itself). They were able to fix most of the kernel bottlenecks 
with 16 patches and 3000 lines of code, demonstrating 
that Linux can scale well up to at least 48 cores. Most of 
the remainder of the talk consisted of walkthroughs of the 
specific bottlenecks found and the fixes applied. All of the 
fixes were straightforward applications of classic parallel 
techniques, typically to reduce cache coherence and memory 
bus contention by manually maintaining cache-local copies 
of shared data structures.

Eric Van Hensbergen from IBM Research asked whether 
the authors were attempting to integrate their changes into 
upstream Linux. Boyd-Wickizer responded that they hadn’t 
even attempted it, because the engineering effort required 

In this issue:

9th USENIX Symposium on Operating Systems  
Design and Implementation  72 
Summarized by Katelin Bailey, Peter Bailis, Brendan Cully, Alan 
Dunn, William Enck, Rik Farrow, John McCullough, Dutch Meyer, 
Don Porter, Michael Roitzsch, Justin Seyster, Robert Soule, Nathan 
Taylor, Kaushik Veeraraghavan, Shivaram Venkataraman, and 
Edmund L. Wong

Workshop on Supporting Diversity in Systems 
Research  101 
Summarized by James Mickens 

Workshop on Managing Systems via Log Analysis  
and Machine Learning Techniques  104 
Summarized by Ivan Beschastnikh, Peter Hornyack, and Raja 
Sambasivan

Sixth Workshop on Hot Topics in System  
Dependability  110 
Summarized by Hussam Abu-Libdeh, Brendan Cully, and Mark 
Spear

2010 Workshop on Power Aware Computing  
and Systems  116 
Summarized by Etienne Le Sueur, John McCullough, and Lucas 
Wanner

Conference Reports



 ;login: FEBRUARY 2011  Conference Reports   73

question was from James Mickens (MSR), who noted that 
more and more Web browser research seemed to be retask-
ing older core OS mechanisms, and wondered whether Tang 
believed that there was anything fundamentally different 
about Web browsers that made this reuse interesting. Tang 
simply replied that since Web browsers were running more 
general-purpose applications, we should be borrowing more 
operating system techniques.

FlexSC: Flexible System Call Scheduling with Exception-
Less System Calls
Livio Soares and Michael Stumm, University of Toronto

System calls are expensive, both because of the time required 
to switch into kernel mode and because of cache contention 
while bouncing back and forth between user and kernel code. 
The traditional interface to the kernel is synchronous system 
calls, which make it impossible to amortize these costs. Livio 
Soares proposed an alternative kernel interface, FlexSC, 
which makes system calls asynchronous. This allows calls to 
be batched and, as a side effect, makes it possible to run ker-
nel code on different cores from the user code it services. He 
also proposed a wrapper for FlexSC, called FlexSC-Threads, 
that hides the new system call style behind a traditional syn-
chronous, thread-based API to support legacy code without 
major changes.

Soares demonstrated the degree to which system calls can 
reduce application performance, by modifying an application 
that makes very few system calls (Xalan from the SpecCPU 
benchmark) so that it made a large number of null system 
calls. In theory, the time excluding kernel processing to 
complete the benchmark should be about the same, but in fact 
the null system calls could halve performance, due to cache 
and TLB evictions. His solution was to use shared memory 
to queue system call requests. This not only allows batch-
ing of system calls, but can avoid context switches entirely 
if a separate core is dedicated to kernel request processing. 
Comparisons between MySQL and Apache using FlexSC 
showed up to 115% improvement in the Apache benchmark 
on four cores.

Van Hensbergen again asked whether Soares would attempt 
to integrate his interface into Linux. He received the same 
response given by Boyd-Wickizer at the first talk: it would 
be a lot of work and Soares would prefer to spend the energy 
on other things. Many others asked detailed questions about 
overhead measurement. For example, Michael Vrable won-
dered if the authors had measured cache contention due to 
userspace rescheduling when threads blocked. Soares had 
not, and he believes that this could indeed be another source 
of lost performance. Sasha Federova (SFU) noted that for 
FlexSC-Threads to show benefits, you would require more 

was better spent on other research. Most other questions 
concerned the tension between this paper and the one on 
Corey from the previous year. Margo Seltzer (Harvard) and 
Eddie Kohler (UCLA) both asked variants of the question, 
“If shared state is bad for scalability, is it better to remove it 
at the points where it causes problems, or to avoid it gener-
ally, using it only at points where it is known not to cause 
problems?” Hank Levy (UW) put it most succinctly, getting 
a big laugh, when he asked, “Should we be designing new OS 
architectures or not? In other words, could you have written 
these papers in the opposite order?” Boyd-Wickizer carefully 
replied that Linux did not appear to have scalability problems 
up to 48 cores, but the possibility existed that it might after 
that.

Trust and Protection in the Illinois Browser OS
Shuo Tang, Haohui Mai, and Samuel T. King, University of Illinois at 

Urbana-Champaign

Shuo Tang presented the Illinois Browser OS (IBOS), an OS 
built from scratch to run Web browsers. It was motivated by 
two ideas: first, that vulnerabilities become more serious as 
they get deeper into the application stack, from individual 
Web application into the browser and finally the OS; and 
second, that it is easier to secure a system if the security layer 
has more semantic knowledge of what it is protecting.

Previous efforts like Google Chrome have used OS process 
isolation to provide some protection between compromised 
Web applications and the rest of the system, but IBOS takes 
the next logical step: it runs each browser in its own virtual 
machine with hardware-enforced isolation from the rest of 
a user’s system. Its system call interfaces map to browser 
semantics much better than an ordinary operating system’s 
would. For instance, instead of providing disk and network 
interfaces, it offers system calls for fetching URLs and 
storing cookies. This allows security policy to specify more 
precise invariants. By customizing the set of OS services to 
a Web browser, IBOS is also able to dramatically reduce the 
total TCB compared to an ordinary browser running on top 
of Linux. Tang concluded the presentation by revealing that 
his slides were served by a Web browser running on top of 
IBOS.

Shriram Rajagopalan of UBC asked if IBOS allowed the full 
set of services provided by modern browsers. Tang stated 
that IBOS used WebKit and supported most current browser 
features, including HTML 5. Etienne Le Sueur (NICTA) 
asked whether IBOS prevented cross-site scripting attacks 
and, if so, whether that broke beneficial uses such as Google 
Web Toolkit applications. Tang maintained that IBOS pro-
vided an enforcement mechanism, but using it was depen-
dent on the user’s security policy. The most fundamental 



 74   ;login: VOL.  36,  NO.  1

best done at the application level, well above Haystack. Vipul 
Mathur from Network Appliance asked if migrating between 
Haystacks would be useful for load balancing, but Vajgel 
thought that RAID6’s poor support for mixed workloads 
would limit such an approach, and he noted that the existing 
load balancer seemed sufficient.

Availability in Globally Distributed Storage Systems
Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, 

Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan, Google, 

Inc.

Murray Stokely began by posing questions of data availabil-
ity, the causes of unavailability, and methods for tuning to the 
observed environment. To find answers, the authors gathered 
a year’s data from tens of Google’s clusters. They found that 
most unavailability periods are transient with a median 
length of 15 minutes. However, unavailability durations 
differ significantly by cause. The median time to restart a 
node’s storage software is 1 minute, but it is 10 minutes for a 
planned reboot, and a few minutes longer for an unplanned 
reboot. Interestingly, 37% of failures observed were corre-
lated in time to other failures. Larger-scale outages of this 
type regularly share common causes: for example, software 
bugs, shared hardware components, or supply chain issues.

Florentina Popovici then explained how these results 
informed the development of analytical models to study 
the availability of large distributed storage systems. This 
approach led to several insights. For small to medium bursts 
of failures and large encodings, when data is striped across 
many nodes, rack-aware placement can increase the MTTF 
by a factor of 3. Using a Markov model for analysis, another 
insight was that improving data availability below the node 
layer did little to help, although reducing node failure rates 
has a significant effect on availability. She concluded by 
stressing that a highly available distributed storage system 
requires exploring beyond disk failure rates, and that cor-
related failures are important in understanding large-scale 
storage availability.

Garth Gibson from CMU commented on graphs that 
appeared to capture unavailability due to rolling updates. He 
saw potential in making active decisions about how these 
events occur. Stokely agreed, pointing to the possibility of 
making additional replicas before a planned reboot. Mehul 
Shah from HP Labs asked if Reed-Solomon encoding doesn’t 
also offer cost savings and asked why that wasn’t used 
initially. Popovici explained that there may be performance 
impacts, such as parallelism in batch-oriented processing, 
recovery bandwidth concerns, and the need for more servers 
and CPUs. Philip Howard from PSU asked how expected 
increases in CPU core density would affect correlated failure 

threads than cores; she wondered whether this mode might 
cause degradation for some workloads. Soares agreed that 
the benefits would mostly be for server workloads and that 
scientific applications that were 100% CPU-bound wouldn’t 
need this.

Inside the Data Center, 1

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

Finding a Needle in Haystack: Facebook’s Photo Storage
Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel, 

Facebook Inc.

Peter Vajgel explained that Haystack is a photo storage sys-
tem that addresses Facebook’s significant scalability needs. 
Since April 2009, Facebook’s photo storage has grown from 
15 billion to 64 billion images. The update rate has increased 
similarly, from 220 million uploads per week to one billion 
currently. Prior to Haystack, pictures were served from a 
Content Distribution Network (CDN) that caches photos 
from an NFS server. Eventually, Facebook’s working set grew 
to become so large that the cache hit rate through the CDN’s 
had declined to 80% and the system bottlenecked on meta-
data access. At this larger scale, each photo access required 
10 IOPS, due to deep directory lookups and file fragmenta-
tion. Through caching and reducing the directory sizes, they 
reduced this overhead to 2.5 IOPS. Haystack was developed 
to further lower the overheads of accessing a file to a single 
I/O operation, while maintaining a simple system based on 
commodity hardware.

Logically, the system is built from Haystacks, which are 
append-only object stores, and Needles, which are the photos 
and their associated metadata. Haystacks are generally 
100GB in size and are stored on 10TB XFS volumes in a 
RAID6 configuration. The Haystack photo server builds 
a compact index of these images. The indexes for 10TB of 
images can be stored in 5GB, making the index less than 2% 
of the size of inodes. The system also supports load balanc-
ing and caching, and it operates over HTTP. In closing, Vajgel 
reiterated the goal of serving each request in a single opera-
tion and provided some hints at future work. The team plans 
to consider other RAID configurations and to investigate the 
use of flash-based storage.

Jason Flinn from the University of Michigan asked if 
prefetching was possible. Vajgel replied that users often 
select individual pictures from a page of thumbnails orga-
nized by some tag. This looks entirely random to Haystack. 
Christopher Colohan from Google asked if social networking 
could provide some clues to what photos would be accessed. 
Vajgel said that this might be possible, but that it would be 



 ;login: FEBRUARY 2011  Conference Reports   75

Security Technologies

Summarized by Nathan Taylor (tnathan@cs.ubc.ca)

Intrusion Recovery Using Selective Re-execution
Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek, MIT 

CSAIL

Software bugs, misconfigured security policies, and weak 
passwords all routinely lead to compromised systems. When 
a break-in is discovered, system administrators are caught 
between simply rolling back to the latest backup and losing 
users’ recent work, and spending an inordinate amount of 
time on a manual recovery, with the chance of missing a 
change caused by the adversary perpetually looming. To this 
end, the authors present a tool for system recovery, dubbed 
Retro, that can tease apart exploit-related changes from 
benign changes made by legitimate users.

Zeldovich began by contrasting their work to two straw-men 
arguments: the first involved a naive taint tracking scheme, 
where all tainted files are restored from an earlier backup. 
This exhibits the usual explosion problem common to taint 
tracking. The second, in-VM replay, is too slow, and external 
state changes, such as crypto keys, mean that benign replay 
may go off the rails. Retro’s approach involves selective 
execution, wherein execution data such as function calls and 
syscall arguments are logged in a so-called action history 
graph. This graph is used to roll time back to the compromise 
of the system and replay all non-attack activity, while skip-
ping replay of operations the system has concluded were not 
affected by the attacker. If the attack involved communica-
tion with the outside world, this activity cannot be resolved 
by the system; the recovery will pause and prompt the sysad-
min for guidance.

Ten real-world and synthetic challenge attacks were used 
to evaluate the tool; six were able to roll back automatically, 
while the remaining four needed some form of user input to 
handle legitimate network traffic or skip over the attacker’s 
SSH login attempts. The amount of time needed to restore a 
system was found to be a function of the number of objects 
to track, and not the length of the log. The runtime overhead 
varied depending on workload: a HotCRP server averaged 
4GB/day with a 35% slowdown, while a continuous kernel 
compilation averaged 150GB/day with a 127% slowdown. 
However, pushing the logging to a spare core significantly 
improved performance.

The presentation drew a lively Q&A session. Josh Triplett 
of Portland State asked about recording fewer user actions 
to pay a lower CPU/storage overhead. Zeldovich replied that 
this is possible, at the expense of reconstructing more of the 
dependency graph at repair time. Margo Seltzer of Harvard 

rates. Stokely confirmed that this is a motivating question 
for the work and that the cost per core per watt per year is the 
determining factor. He also noted that the same questions 
can be analyzed about the number of disks per server and 
other parameters with this model.

Nectar: Automatic Management of Data and 
Computation in Datacenters
Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, 

Yuan Yu, and Li Zhuang, Microsoft Research Silicon Valley

Li Zhuang observed that a large fraction (20–40%) of com-
putation in their datacenters is redundant and that most 
storage is occupied by datasets that are never accessed. The 
two inefficiencies share a common problem—intermediate 
data created as part of larger processing operations. Nectar 
attempts to increase datacenter efficiency by tracking and 
reusing these intermediate results, while also allowing them 
to be deleted safely when the need arises.

Nectar is designed for datacenter applications written in the 
dataflow language LINQ, which may involve multiple stages 
of computation being stored persistently. As these interme-
diate files are created, Nectar records the task that created 
them and its associated parameters. Since the environment 
is deterministic, future attempts to run the same task are 
replaced with much more efficient accesses of the cached 
data. Under storage pressure, a mark and sweep garbage 
collector identifies intermediate files that can be deleted and 
regenerated on demand. Since usage information is tracked, 
datasets that are old and infrequently accessed can be priori-
tized for deletion. Zhuang concluded by describing Nectar as 
a promising approach that automates and unifies the man-
agement of data and computation in the datacenter.

Zhuang fielded several questions about Nectar’s design and 
the DryadLINQ environment. In addition, David Schultz of 
MIT observed that storage capacity sizes relative to through-
put seem to suggest that memory and I/O bandwidth are 
more important than capacity. Zhuang stressed that over 
time, it’s important that capacity and computation aren’t 
wasted as well. Micah Brodsky of MIT asked if the higher-
level semantics and policies we have been adding to these 
dataflow environments are leading us towards reinvention 
of distributed databases, or if we are inventing something 
new. Zhuang replied that while they learned from distributed 
databases, there are significant differences that influence 
design. Cited examples included the scale of operation and 
the design of materialized views.



 76   ;login: VOL.  36,  NO.  1

Most of the Q&A session was concerned with writing policies 
in practice. James Pendergrass (APL) asked if there is a way 
to ensure that rules are consistent with each other; Chlipala 
admitted that this is a tricky problem. Along the same lines, 
Pendergrass asked whether UrFlow is amenable to growing 
policies over time. Chlipala replied that it would be, since you 
won’t be able to accidentally undo any previous policy. Joshua 
Triplett asked whether the theorem prover could be improved 
to provide hints about how the code could be changed to 
guarantee security. Chlipala admitted that it’s tough to deter-
mine which fact in the rule base caused the prover to error 
out, but that there might be ways to heuristically prune it.

Accountable Virtual Machines
Andreas Haeberlen, University of Pennsylvania; Paarijaat Aditya, Rodrigo 

Rodrigues, and Peter Druschel, Max Planck Institute for Software Systems 

(MPI-SWS)

Haeberlen presented a running scenario of a multiplayer 
game where players would like to guarantee that no player 
is using a cheat, and in this way they addressed the more 
serious problem of knowing whether programs on a third-
party machine are executing as intended. A user should be 
able to detect when a remote machine is “faulty” and provide 
evidence of the fault to a third party without knowing the 
internals of their software. The authors’ solution to this uses 
so-called accountable virtual machines. AVMs use a log of 
network traffic, signed with other players’ keys, as a secure 
certificate of correct execution. Players may replay each 
others’ logs in their own VM. If a player is running the game 
with a cheat, such as the “infinite ammo” hack, control flow 
will diverge from the log when the unhacked reference VM’s 
game runs out of bullets. In so doing, strong accountability 
for arbitrary binaries is offered, without needing to trust 
other players or the AVM itself.

MPI-SWS built a prototype AVM atop VMware Workstation 
and tested it on Counterstrike 1.6. Performance is reason-
able; on native hardware, the game averages 158FPS, and the 
authors observed a 13% slowdown with the AVM, mainly due 
to the overhead of the execution logging. The log size grows 
at 8MB/min, but because each action is replayed, replaying 
takes about as long as the game itself. A sample of 26 real-
world CS cheats were all detected. But Haeberlen wonders 
whether cheaters could adapt their cheats. Re-engineering 
hacks to evade AVM detection, cheaters would have to fill 
in missing interrupts with the right branch counter value, 
which, although very hard, is theoretically possible.

Neal Walfield (Johns Hopkins) wondered whether the AVM 
itself could be hacked to fake the log. Haeberlen responded 
that the authenticators sign the AVMs and invited Walfield 
to discuss this offline. The subsequent questions involved 

noted the similarities to providence and asked about what 
constitutes “acceptable” nondeterministic execution at 
repair time. Zeldovich argued that anything that the execu-
tion could have originally created was fair game. An audience 
member wondered about trying to explode the repair space by 
creating many false positives, to which Zeldovich pointed out 
that activity that taints everything could itself be a symptom 
of an attack. Lorenzo Cavallaro (Vrije Universiteit) asked 
about porting to Windows. Zeldovich replied that the ideas 
were applicable to Windows, but several more managers 
would have to be written. They use SELinux to protect Retro, 
and something would be needed to replace that as well.

Static Checking of Dynamically-Varying Security 
Policies in Database-Backed Applications
Adam Chlipala, Impredicative LLC

Enforcing sensible security policies is a challenge if a vul-
nerability relies on semantic knowledge of the application, 
such as a particularly crafted URL or a magic value within 
a cookie. Developers need to find attack vectors and audit 
them, but one can always be blindsided by a vector that one 
had not considered. Chlipala argued that it’s far better to 
isolate a resource and have a policy stating how said resource 
may be accessed. He went on to present UrFlow, a SQL-like 
policy language that exploits a common database query–like 
idiom to define what parts of a program have access to a 
sensitive resource. Chlipala argued that UrFlow has the best 
of both static and dynamic checking: no source-level annota-
tions are required, and all codepaths can be checked without 
incurring a runtime overhead.

UrFlow translates its policies into simple first-order logic 
for modeling what the system should know to be true when 
matching against policies; for instance, after reading a 
cookie, UrFlow knows that the system will know a password. 
Program paths are checked against its policies statically. 
Each execution path is executed symbolically, and as each 
progresses, the new logical clauses it has generated are sent 
to the theorem prover.

UrFlow was tested against applications ranging from ~100 
to ~500 lines of code with ~50 policies each. Static checks 
are usually performed in well under a second. There were 
some significant outliers in runtime, but Chlipala hoped that 
applying traditional optimization tricks would smooth that 
out. Chlipala finished his talk by highlighting a disconnect 
of PLT researchers and programming practitioners: it’s hard 
to sway developers away from imperative languages, but 
most Webapps use SQL, a perfectly reasonable declarative 
language anyway!



 ;login: FEBRUARY 2011  Conference Reports   77

adds less than 5% performance overhead. Wu also described 
an alternate implementation using the Pin dynamic instru-
mentation tool, which introduced a 10x overhead. Wu demon-
strated that LOOM is also scalable—MySQL running with 32 
threads experiences only a 12% performance overhead.

Richard Draves (Microsoft Research) was curious if the 
evacuation algorithm makes the application susceptible to 
deadlock. Wu responded that while an application could 
deadlock, they did not come across any in their evaluation 
of LOOM. Further, LOOM implements a mechanism to 
uninstall the fix if a deadlock manifests. The next questioner 
asked if Wu could use information collected at runtime to 
fix the bug in the source code. Wu responded that users can 
examine the application source code and can also write 
execution filters targeted at specific file names/line numbers 
to fix the bug.

Effective Data-Race Detection for the Kernel
John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk 

Olynyk, Microsoft Research

John Erickson, a test lead on Microsoft’s Windows 7 team, 
described the first data race in the Windows kernel he had 
discovered using DataCollider: a developer had assumed that 
certain bitwise operations were atomic without realizing 
that the operations were actually read/write byte instruc-
tions. A rare write-write interleaving would overwrite a call-
back flag resulting in a system hang. As this race was timing 
dependent, it was not caught prior to shipping Windows 7. 
This example illustrates that data races are hard to detect 
and debug.

The primary challenge in using existing happens-before  
and lockset algorithms to detect data races in the kernel is 
that both approaches need to be aware of all locking seman-
tics. To address this challenge, Erickson proposed DataCol-
lider, a data race detection tool for the kernel that is based 
on two insights: (1) instead of inferring a data race, cause a 
data race to actually manifest so there are no false positives; 
(2) the overhead of instrumenting all memory accesses can 
be significantly reduced by sampling a random subset of all 
memory accesses. DataCollider works as follows: a code or 
data breakpoint is set on a memory location being sampled. If 
a thread accesses the sampled memory location, it is blocked 
for a short time window. If a second thread tries to access the 
same memory location within that window without grabbing 
the appropriate lock, the breakpoint causes the second thread 
to block too. By pausing both threads at the instance the race 
occurs, DataCollider has access to both thread stacks, the 
full register and global state of which can be logged to report 
the race to the developer.

seeking clarification on what class of cheats the AVM can 
detect. Haeberlen reiterated that the AVM is guaranteed 
to find the attack unless the cheat is “plausible” input; for 
instance, a better-aim cheat might not be detected. On the 
other hand, because there’s no input that could drive the 
program into such a state, the “infinite ammo” cheat is 
detectable. Brad Chen was skeptical of the applicability of 
the AVM to domains outside gaming, since the act of replay-
ing requires sharing a great deal of information. Haeberlen 
admitted that the auditor has to be able to see everything, 
but he pointed out that in a cloud computing scenario a cloud 
owner ought to be able to audit his own VM.

Concurrency Bugs

Summarized by Kaushik Veeraraghavan (kaushikv@umich.edu)

Bypassing Races in Live Applications with Execution 
Filters
Jingyue Wu, Heming Cui, and Junfeng Yang, Columbia University

Jingyue Wu described a use-after-free data race in Mozilla’s 
JavaScript engine with a simple root cause that nonetheless 
took developers a month to fix. Wu pointed out that a data 
race bug in a critical Web service that remains unresolved 
for weeks or months could be exploited by an attacker. As a 
solution, Wu proposed LOOM, a tool that can work around 
known race conditions in live programs before the developer 
releases a fix. LOOM accomplishes this by using execution 
filters, which are simple declarative statements that explic-
itly synchronize regions of application code.

LOOM combines static preparation with live updates. Spe-
cifically, a LOOM compiler plugin bundles the LOOM update 
engine into an application binary. A user wishing to install 
an execution filter on a live application invokes the LOOM 
controller. The LOOM controller is responsible for translat-
ing the filter’s declarative statements into specific opera-
tions (e.g., mutual exclusion is translated into lock/unlock, 
ordering requirements are translated into semaphores, etc.). 
The controller passes the translated application code to 
the LOOM update engine responsible for patching the live 
application. To ensure that filters can be safely installed, Wu 
described an algorithm termed evacuation that uses static 
analysis to identify dangerous regions of code and ensures 
that (1) threads wishing to enter a dangerous region are 
paused at a safe location before the region, and (2) threads 
already executing in the dangerous region exit the region 
before the update is installed.

Wu described LOOM’s evaluation on nine data races in six 
applications—in all cases, LOOM applied the live update in 
a timely manner and bypassed the race. On average, LOOM 



 78   ;login: VOL.  36,  NO.  1

for multi-threaded programs that use ad hoc synchroniza-
tion, as these tools do not understand the custom-locking 
semantics employed in ad hoc synchronization.

The second contribution of Xiong’s work is SyncFinder, a tool 
that automatically detects and annotates ad hoc synchro-
nization. The insight in SyncFinder is that every ad hoc 
synchronization executes in a loop with an exit condition that 
is controlled by a dependent variable. After applying several 
pruning algorithms, SyncFinder identifies shared depen-
dent variables that control ad hoc sync loops and annotates 
all instances where the variables are read or written to. An 
evaluation of SyncFinder revealed that, on average, it detects 
96% of all ad hoc synchronizations with a 6% false-positive 
rate.

The first questioner wondered how many bugs normal syn-
chronization introduced in comparison to ad hoc synchro-
nization. Xiong responded that the percentage of bugs is 
much higher in ad hoc synchronization. Bryan Ford (Yale) 
wondered what the current synchronization primitives lack 
that caused developers to turn to ad hoc synchronization. 
Xiong responded that, from an analysis of program com-
ments, it appeared that developers just wanted a flexible and 
simple synchronization primitive. Ford wondered what such 
a synchronization primitive should offer, to which Xiong 
responded that such a primitive already existed: conditional 
waits. Dan Peek (Facebook) suspected that programmers 
implementing ad hoc synchronization wished to avoid a 
synchronous write on the system bus which hurts perfor-
mance, and wondered whether such synchronization was 
always harmful. Xiong responded that while not always 
harmful, ad hoc synchronization might not scale with the 
underlying architecture, and also degenerates code main-
tainability. Dan Peek followed up by asking if lock-free data 
structures should also be considered harmful. Rather than 
commenting on lock-free data structures, Xiong offered that 
developers should use well-known existing synchronization 
primitives. Chris Hawblitzel (Microsoft Research) wondered 
whether developers declaring synchronization variables as 
volatile would help SyncFinder. Xiong responded that if C/
C++ adopted volatile as a standard it would help SyncFinder. 
Josh Triplett (Portland State University) wondered how fast 
SyncFinder runs. Xiong responded that the largest codebase 
SyncFinder was executed on was MySQL, which has over 1 
million lines of code and took about 2.5 hours. On the other 
hand, OpenLDAP, much smaller but containing a lot of ad hoc 
synchronization with significant data and control depen-
dency, also took 2.5 hours.

DataCollider allows users to control execution overhead by 
explicitly selecting the sampling rate—a sampling rate of 0% 
allows the code to execute at native speed. An evaluation of 
DataCollider on Windows 7 revealed 113 races on booting to 
the desktop. While the majority are benign, 25 are confirmed 
bugs in Windows 7 that are fixed or will be fixed soon.

George Candea (EPFL) wondered about the difficulty in 
categorizing races in real products as benign or malign. 
Erickson responded that much of the bucketization was 
manual and required source code analysis. Rik Farrow ques-
tioned whether breakpoints were truly randomly selected 
or whether they were applied at carefully selected locations. 
Erickson responded that all the memory accesses were 
enumerated and breakpoints were set on a random sampling 
without any knowledge of the actual memory accesses. The 
only tuning factor is that users can specify how many break-
points they wish to execute per second. Michael Brodsky 
(MIT) asked how dependent DataCollider is on having debug 
symbols, since third-party driver manufacturers might not 
provide these with their binaries. Erickson responded that 
DataCollider requires debugging symbols, so breakpoints are 
applied to actual memory locations. Peter Druschel (MPI-
SWS) wondered how the sampling time and detection rate 
were related to the total number of races. Erickson answered 
that while they do want to ensure that DataCollider is detect-
ing a uniform sampling of races and not just the easiest 20, 
they cannot evaluate if this is the case, since no other data 
race detectors operate within the kernel.

Ad Hoc Synchronization Considered Harmful
Weiwei Xiong, University of Illinois at Urbana-Champaign; Soyeon Park, 

Jiaqi Zhang, and Yuanyuan Zhou, University of California, San Diego; 

Zhiqiang Ma, Intel

Concurrent programs increasingly rely on synchronization to 
guarantee correct execution. While many popular applica-
tions such as MySQL use standard synchronization libraries 
(e.g., pthreads), others such as LDAP rely on ad hoc synchro-
nization, which is often harder to understand and debug.

The primary contribution of Xiong’s work is quantitative 
evidence that ad hoc synchronization should be considered 
harmful. Xiong and his co-authors spent three months docu-
menting every instance of ad hoc synchronization in 12 con-
current programs, including MySQL, Apache, and Mozilla. 
While all of them implemented some form of ad hoc synchro-
nization, Xiong found that MySQL employed the most—83 
instances. Next, Xiong analyzed bug patches uploaded to the 
Bugzilla database and discovered that almost half of all ad 
hoc synchronizations resulted in a concurrency bug. Unfor-
tunately, existing static analysis tools that detect deadlocks, 
data races, and other concurrency bugs are rendered useless 



 ;login: FEBRUARY 2011  Conference Reports   79

Using Program Analysis to Diagnose Configuration 
Problems
Ariel Rabkin and Randy Katz, University of California, Berkeley

Java has a wide variety of configuration parameters. Deci-
phering which parameter might be responsible for a stack 
trace can be challenging. This work uses static analysis to tie 
error points in Java to the relevant configuration parameters. 
Contact: asrabkin@eecs.berkeley.edu.

DCR: Replay Debugging for the Data Center
Gautam Altekar and Ion Stoica, University of California, Berkeley

Deterministic replay is very helpful in debugging distributed 
systems but can have high overhead. Most distributed system 
bugs arise from control plane errors. By logging only the con-
trol traffic, the total volume can be reduced by 99%. Thus, the 
control traffic can be used to replay the overall behavior and 
semantically equivalent data can be constructed using STP 
techniques. Contact: galtekar@cs.berkeley.edu.

Reconfigurable Virtual Platform for Real Time Kernel
Dilip K. Prasad, Nanyang Technological University, Singapore; Krishna 

Prasath, Coventry University, UK

Evaluating real-time applications across multiple platforms 
can be very challenging. Prasad and Prasath have created a 
platform that is easily reconfigurable for different operating 
systems and that cleanly integrates into an IDE. Contact: 
dilipprasad@pmail.ntu.edu.sg.

ErdOS: An Energy-Aware Social Operating System for 
Mobile Handsets
Narseo Vallina-Rodriguez and Jon Crowcroft, University of Cambridge

ErdOS leverages social interactions to improve energy use 
in mobile devices. For instance, if a power-hungry applica-
tion is redundant to a localized area, a single device can take 
the measurement and gossip the results to those allowed by 
social graph access controls. Contact: nv240@cam.ac.uk; 
Web: http://www.cl.cam.ac.uk/~nv240/erdos.html.

Leviathan: Taming the #ifdef Beast in Linux et al.
Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schrîder-

Preikschat, and Daniel Lohmann, Friedrich-Alexander University 

Erlangen-Nuremberg

Understanding ifdef-laden code can be very challenging in 
many situations. The authors have created a pre-processing 
FUSE plug-in that allows developers to operate on the 
pre-processed code. Edits to either the view or the code are 
automatically transferred back to the appropriate part of the 
original. Contact: hofer@cs.fau.de.

Monster Poster Session

First set of posters summarized by John McCullough  
(jmccullo@cs.ucsd.edu)

VSSIM: Virtual SSD Simulator
Joohyun Kim, Haesung Kim, Seongjin Lee, and Youjip Won, Hanyang 

University, Seoul, Korea

VSSIM allows researchers to explore different configura-
tions of SSD hardware. The simulator emulates both page 
and hybrid translation layers. The researchers have validated 
the expected behavior of higher block usage overhead of 
the hybrid translation layer as well as the effects of TRIM. 
 Contact: james@ece.hanyang.ac.kr.

Energy Consumption Behavior of Modern SSD and Its 
Architectural Implication
Balgeun Yoo and Youjip Won, Hanyang University, Seoul, Korea

Yoo and Won evaluate the energy use of an X-25M SSD. Using 
writes of varying size, they find that energy use is propor-
tional to the number of channels that are activated as well 
as the number of ways—chips within a single package—that 
are active. Changes in power draw are bounded between 
consumption for 8kB writes and 512kB writes. Contact: 
 starthunter@ece.hanyang.ac.kr.

ABACUS: A Configurable Profiling Engine for Multicore 
Processors
Sergey Blagodurov, Eric Matthews, Sergey Zhuravlev, Lesley Shannon, 

and Alexandra Fedorova, Simon Fraser University

There are a number of hardware performance metrics that 
are useful for multicore scheduling that are not commonly 
available. ABACUS is a system that implements counters 
such as instruction mix and pipelines stalls with no pro-
cessor time overhead on an FPGA-based processor core. 
 Contact: sba70@cs.sfu.ca.

DoublePlay: Parallelizing Sequential Logging and Replay
Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Peter M. Chen, 

Jason Flinn, and Satish Narayanasamy, University of Michigan

DoublePlay employs multiple executions to detect data 
races. The system uses a novel technique of dividing a 
parallel  execution into epochs, recording the high-level 
thread  execution schedule along with memory checkpoints. 
By re-executing the parallel schedule in a serial manner, 
the memory states can be compared to detect data races. 
 Contact: kaushikv@umich.edu.



 80   ;login: VOL.  36,  NO.  1

Aggressive VM Consolidation with Post-Copy-based Live 
Migration
Takahiro Hirofuchi, Hidemoto Nakada, Satoshi Itoh, and Satoshi 

Sekiguchi, National Institute of Advanced Industrial Science and 

Technology

There are two techniques for migrating live virtual 
machines, pre-copy and post-copy. This work implements the 
post-copy live virtual machines migration of KVM, which 
performs significantly faster than previous pre-copy imple-
mentations.

Mnemosyne: Lightweight Persistent Memory
Haris Volos and Michael Swift, University of Wisconsin—Madison; 

Andres Jaan Tack, Skype Limited

Storage class memory provides low-latency, persistent stor-
age. This work seeks to provide programmers with direct 
access to storage class memory. Mnemosyne provides two 
abstractions: one for allocating memory, and a second, called 
durable memory transactions, for atomically modifying per-
sistently stored data structures.

Beacon: Guiding Data Placement with Application 
Knowledge in Multi-Tiered Enterprise Storage System
Hyojun Kim, Georgia Institute of Technology; Sangeetha Seshadri, IBM 

Almaden Research Center; Yi Xue, IBM Toronto; Lawrence Chiu, IBM 

Almaden Research Center; Umakishore Ramachandran, Georgia Institute 

of Technology

Enterprise storage systems contain both cheap but slow HDD 
and fast but expensive SSD. This work tackles the problem 
of deciding what data is stored in which storage system. 
Current approaches use a reactive approach, which places 
data after monitoring usage over time. In contrast, this work 
modifies applications to provide hints about their spatial 
(what files), temporal (duration), and priority requirements, 
allowing for predictive placement of data.

Guest Transparent Dynamic Memory Balancing in 
Virtual Machines
Changwoo Min, Inhyuk Kim, Taehyoung Kim, and Young Ik Eom, 

Sungkyunkwan University

Multiple guest operating systems on a single host machine 
compete for memory. This work seeks to solve those conflicts 
by estimating the memory requirements of each guest oper-
ating system and pre-allocating that memory.

Joan: Shepherd Application Privacy with Virtualized 
Special Purpose Memory
Mingyuan Xia, Miao Yu, Zhengwei Qi, and Haibing Guan, Shanghai Jiao 

Tong University

Multiple network applications executing on the same 
machine are not entirely safe from one another. The authors 
explore a technique of per-application hypervisor protected 
memory that can be selectively shared in either modifiable or 
read-only form.

Configuration Bugs in Linux: The 10000 Feature 
Challenge
Reinhard Tartler, Julio Sincero, Wolfgang Schrîder-Preikschat, and 

Daniel Lohmann, Friedrich-Alexander University Erlangen-Nuremberg

The configuration specified in the Linux config file may 
not be correctly embodied by the relevant ifdefs in the code. 
Misspellings and contradictions from the combination of 
ifdef conjunctions and feature dependencies can lead to dead 
or misbehaving code. The authors have used code analysis 
to identify many points of contradictory and dead code, 
culminating in 123 patches with 64 acknowledged by kernel 
authors. Contact: tartler@informatik.uni-erlangen.de.

Backup Metadata as Data: DPC-tolerance to Commodity 
File System
Young Jin Yu, Dong In Shin, Hyeong Seog Kim, Hyeonsang Eom, and Heon 

Young Yeom, Seoul National University

File system metadata is critical to the integrity of the actual 
data stored on the file system, but it is ignored by typical 
backup techniques. The authors extract the filesystem-level 
pointers for use in a filesystem recovery mechanism that is 
faster than traditional file system scans.

Second set of posters summarized by Robert Soule (soule@cs.nyu.edu)

Using Mobile Phones to Set Up Secure VNC Sessions on 
Kiosks
Wooram Park, Sejin Park, Baegjae Sung, and Chanik Park, Pohang 

University of Science and Technology

Many people use publicly available computers called kiosks 
to access remote desktops. In order to prevent the leakage 
of private data, this work proposes using a mobile phone to 
establish a VNC session with the remote desktop. The kiosk 
attests its identity to the remote desktop, using keys issued 
by a remote key server, which are stored on the mobile phone.



 ;login: FEBRUARY 2011  Conference Reports   81

Making Tracks with Malware: Control Flow 
Visualization and Analysis
Jennifer Baldwin, University of Victoria

This work presents a new tool for visualizing the control 
flow of assembly programs. The tool provides better 
visualizations than existing systems, and demonstrates the 
clarity of its presentation by showing the control flow of a 
malware application.

dBug: Systematic Evaluation of Distributed Systems
Randy Bryan, Garth Gibson, and Jiri Simsa, Carnegie Mellon University

dBug is a tool for finding bugs in distributed systems. It 
introduces a thin interposition layer between the applica-
tion and the operating system, which hijacks system calls for 
synchronization and shared memory. An arbiter scheduler 
then systematically explores different execution paths to 
discover bugs.

Dynamic Forwarding Table Management for High-speed 
GPU-based Software Routers
Joongi Kim, Keon Jang, Sangjin Han, KyoungSoo Park, and Sue Moon, 

KAIST

In prior work, the author implemented a software router in 
a GPU. After using the system in practice, it became clear 
that there was a need for dynamic updates to the forward-
ing tables. This work explores how to support these dynamic 
table updates in the presence of bursty network traffic.

Preventing Memory-Allocation Failures Through 
Anticipatory Memory Allocation
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian, 

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of 

Wisconsin—Madison

Recovery code for memory allocation failures in file systems 
is buggy. This work seeks to avoid executing that recovery 
code at all. A utility performs static analysis on the file 
system code to determine how much memory the software 
will request. The system then pre-allocates the memory and 
proxies all subsequent requests for memory, servicing the 
requests from the pre-allocated pool.

Parallel Operating System Services in fos
David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin 

Modzelewski, Adam Belay, Harshad Kasture, Lamia Youseff, Jason Miller, 

and Anant Agarwal, Massachusetts Institute of Technology

fos is an operating system for multicore systems that treats 
operating system services like distributed Internet servers. 
Each service is implemented as a set of spatially separated 
server processes called a fleet. The servers’ processes in a 
fleet collaborate to provide both high-level services and as 
low-level services such as page allocation, scheduling, and 
memory management.

S2E: A Platform for In-Vivo Multi-Path Analysis of 
Software Systems
Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea, École 

Polytechnique Fédérale de Lausanne (EPFL), Switzerland

S2E provides an automated path explorer and modular path 
analyzers and is used for various tasks, including perfor-
mance profiling, reverse engineering software, and bug find-
ing in both kernel-mode and user-mode binaries. S2E scales 
to larger real systems, such as a full Windows stack, better 
than prior work.

Consistent and Durable Data Structures for Non-
Volatile Byte-Addressable Memory
Shivaram Venkataraman, University of Illinois; Niraj Tolia, HP Labs; Roy 

H. Campbell, University of Illinois

Hardware manufacturers have developed new nonvolatile 
memory devices. This work explores what are the best data 
structures for storing data on these new devices. Rather than 
using the traditional write-ahead logging approach, this work 
keeps multiple copies of the data structures (for example, a 
B-tree) and atomically moves between subsequent versions.

Tracking and Exploiting Renewable Energy in Grid-Tied 
Datacenters
Nan Deng and Christopher Stewart, Ohio State University

Datacenters use a device called a grid-tie to combine energy 
from renewable sources and energy supplied by a grid. When 
placing these grid ties in the datacenter, engineers must 
make a choice between placing a small number of high-
capacity grid-ties (which themselves consume energy), or a 
large number of low-capacity grid-ties. This work seeks to 
find the optimal placement strategy through simulation.



 82   ;login: VOL.  36,  NO.  1

The CONSCIOUS Virtual Machine Model: Transparently 
Exploiting Probability Processors
Jonathan Appavoo, Dan Schatzberg, and Mark Reynolds, Boston 

University; Amos Waterland, Harvard University

When collecting instruction pointer traces of a virtual 
machine, the authors noticed recurring patterns in the trace. 
They proposed the idea of collecting a repository of those 
patterns and the results of the operations they represent. If 
such a known pattern is recognized in the trace of a running 
VM, the execution can fast-forward to the end of the pattern 
and apply the canned result. This can save time and energy 
by not repeating recurring operations. As a side effect, the 
VM traces can be converted to audio files so you can actually 
hear the patterns!

Tracking and Exploiting Renewable Energy in Grid-Tied 
Datacenters
Nan Deng and Christopher Stewart, Ohio State University

Datacenters can be equipped with on-site renewable energy 
generators such as wind turbines or solar collectors. How-
ever, the energy provided by those does not suffice to run the 
datacenter, so energy from the traditional power grid needs 
to be mixed in. This task is performed by a grid-tie compo-
nent which itself consumes energy and can fail, so the num-
ber and placement of these components poses an interesting 
research challenge.

Dynamic Runtime Optimizations inside BT-based VMMs
Mehul Chadha and Sorav Bansal, Indian Institute of Technology Delhi

Traditional runtime optimization of an application is done 
by tracing and just-in-time compilation of the application. 
The presenter, Sorav Bansal (sbansal@cse.iitd.ernet.in), 
proposes extending this idea to the entire system. Combining 
a virtual machine monitor with binary translation and a just-
in-time compiler, runtime optimizations can be performed 
throughout the system, even crossing protection boundaries. 
The system can be enhanced with peephole and trace-based 
optimizations in future work.

Can You Keep a Secret?
David Cock, NICTA and University of New South Wales

Covert timing channels are an increasingly relevant problem 
for crypto systems, as the recent padding oracle attack on 
ASP.NET-based Web sites has shown. The poster presenter, 

Third set of posters summarized by Michael Roitzsch  
(mroi@os.inf.tu-dresden.de)

Coerced Cache Eviction: Dealing with Misbehaving Disks 
through Discreet-Mode Journalling
Abhishek Rajimwale, Vijay Chidambaram, Deepak Ramamurthi, Andrea C. 

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—

Madison

What if the controller of a magnetic hard drive or an SSD 
does not fully honor cache flush requests for its internal 
cache? If you run a workload that tries to enforce consistency 
requirements by explicitly flushing the cache, a system crash 
may lead to unexpected inconsistencies. The poster authors 
suggest forcefully evicting everything from the cache by 
sending a cache flush workload to the disk. They address the 
problem of balancing the resulting overhead with the prob-
ability of achieving a full flush.

Testing Device Drivers without Hardware
Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift, University of 

Wisconsin—Madison

The authors want to simplify driver maintenance for kernel 
developers without access to the device in question. This sit-
uation occurs when making changes to kernel interfaces that 
lead to subsequent changes in other drivers. The proposed 
solution consists of a symbolic execution engine for the driver 
code, combined with a symbolic hardware representation. 
This symbolic hardware is generic per device-class. KLEE is 
used for the symbolic execution. To avoid symbolic execution 
of startup code like kernel boot and device initialization, the 
system uses device traces to fast-forward to the interesting 
parts of the execution.

Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury, Justin Ma, Michael J. Franklin, 

Scott Shenker, and Ion Stoica, University of California, Berkeley

A new programming model for applications processing large 
amounts of data in a distributed environment was presented. 
Whereas MapReduce and Dryad are well fitted for acyclic 
data-flow algorithms, this model focuses on algorithms that 
reuse a working set across operations. One target applica-
tion is interactive data mining. The programming paradigm 
is constructed around the concept of a Resilient Distributed 
Dataset (RDD). An RDD provides an abstraction for objects 
that handles distribution and persistence. To achieve the 
fault-tolerance of MapReduce, an RDD can be rebuilt if it is 
lost due to failure.



 ;login: FEBRUARY 2011  Conference Reports   83

Multi-pipes are a generalization and extension of tradi-
tional UNIX pipes. Multiple readers and writers are handled 
deterministically, including fan-in and fan-out scenarios. 
Operations like broadcasts or reductions on the data travel-
ing through the multi-pipe are supported. As a bonus, shell 
integration for multi-pipes is available.

Scaling Middleboxes through Network-Wide Flow 
Partitioning
Norbert Egi, Lancaster University; Lucian Popa, University of California, 

Berkeley; Laurent Mathy, Lancaster University; Sylvia Ratnasamy, Intel 

Labs, Berkeley

Large network installations contain many routers and each 
one contains a general-purpose processor. Turning those 
routers into middleboxes lets them perform duties like 
policing traffic, caching, or traffic encryption. However, 
this functionality is not now in one central location like a 
traditional firewall, but distributed throughout the network. 
Traffic must be suitably partitioned to scale this distributed 
middlebox system.

STEAMEngine: Driving the Provisioning of MapReduce 
in the Cloud
Michael Cardosa, Piyush Narang, and Abhishek Chandra, University 

of Minnesota; Himabindu Pucha and Aameek Singh, IBM Research—

Almaden

STEAMEngine is a runtime for assigning VMs to execute 
MapReduce workloads. Given a set of VMs distributed over 
multiple machines, pending MapReduce tasks are mapped to 
a subset of those VMs. Individual jobs are profiled at runtime 
to model their resource needs. The spatio-temporal assign-
ment of MapReduce jobs to VMs can then be tuned to meet 
timeliness or energy goals.

KÁRMA: A Distributed Operating System for MicroUAV 
Swarms
Peter Bailis, Karthik Dantu, Bryan Kate, Jason Waterman, and Matt 

Welsh, Harvard University

Studies show the US bee population decreased by 30%. But 
agriculture needs bees to pollinate the crops. The result-
ing gap is closed with the Robobees: minimal robotic bees 
that include sensors and compute resources. The particular 
aspect presented in this poster is the development of a dis-
tributed system that exhibits swarm intelligence. Combin-
ing a suitable swarm programming model, the necessary 
hardware and artificial intelligence, Robobees can one day 
actually fly and perform the pollination tasks of a real bee.

David Cock (david.cock@nicta.com.au) proposed using a 
real-time scheduler on the seL4 microkernel to control com-
ponent response times. The cryptographic code of an applica-
tion, like the OpenSSL library, would be separated into an 
isolated component with individual scheduling. Hooking into 
seL4’s communication endpoints, the scheduler can delay 
responses of a component and thus decouple the component’s 
actual response time and the behavior observable from out-
side. Reducing the variation on observed response time, the 
scheduler can reduce the bandwidth of the timing channel.

The Private Peer Sampling Service: The Ground for  
Your Secret Society
Valerio Schiavoni, Etienne Rivière, and Pascal Felber, University of 

Neuchâtel, Switzerland

The subject of this poster is group membership within a 
larger peer-to-peer overlay network. The network is cryp-
tographically protected by the exchange of public keys. If 
you want to form groups within this network, you want to 
keep the group membership information private. The work 
presented on the poster employs onion routing and attacks 
the problems of firewalls, NATs, and the resulting challenges 
regarding the visibility of nodes.

Gang scheduling isn’t worth it . . . yet.
Simon Peter, Andrew Baumann, and Timothy Roscoe, ETH Zurich 

Andrew Baumann from the Barrelfish group (http://
www.barrelfish.org/) presented this poster. Looking 
at opportunities for gang scheduling in the Barrelfish 
multikernel, the team studied the merits of gang scheduling 
for different workloads. Today’s commodity operating 
systems typically do not employ gang scheduling. But this 
usually does not hurt, because workloads on these systems 
are dynamic, bursty, and interactive. Multiple parallel 
applications with fine-grained synchronization would be 
needed for the lack of gang scheduling to become a problem. 
One situation where it would help are stop-the-world garbage 
collectors.

Multi-pipes
Eric Van Hensbergen, IBM Research; Noah Evans, Alcatel Lucent Bell 

Labs; Pravin Shinde, ETH Zurich

This poster presented one aspect of a larger project on oper-
ating systems and services for high performance computing 
that scale to millions of cores. Specifically, it presented a data 
flow abstraction developed for BlueGene supercomputers. 



 84   ;login: VOL.  36,  NO.  1

that we are used to. In the case of the cloud, loosely defined 
resource requirements map to “enough” CPU, memory, and 
bandwidth to achieve a set response time for requests under 
the current load.

In this kind of model, virtual machine resource limits vary 
dynamically, which means it is neither efficient nor realistic 
to statically allocate virtual machines to physical nodes. 
VMs must migrate between nodes when a node becomes 
over- or underutilized because VM resource constraints 
changed.

Centralized VM allocation algorithms can produce a near-
optimal configuration, but they require far too many migra-
tions to be practical. The Multiple Criteria Decision Analysis 
technique (or PROMETHEE method) presented in this 
poster deals individually with problem nodes in order to limit 
migrations.

The allocater migrates VMs whenever an anomaly—an 
over- or underutilized node—becomes apparent. To deal with 
overutilization, it migrates VMs away from the node until it 
is correctly provisioned, and to deal with underutilization, 
it evacuates the node so it can shut down. The resulting VM 
allocations do not distribute resources as effectively as cen-
tralized provisioning, but they allow resource constraints to 
vary without an impractical amount of VM migrations.

Remote Desktops Using Streaming VM Record/Replay
Nitesh Mor, Shikhar Agarwal, Sorav Bansal, and Huzur Saran, Indian 

Institute of Technology Delhi

In traditional remote desktop systems, a lot of bandwidth is 
dedicated to sending images of the remote system’s desktop 
back to the client.

The system presented in this poster instead transfers virtual 
machine replay information, which often requires substan-
tially less bandwidth than desktop graphics. The remote 
machine runs on virtual machine software that supports 
virtual record and replay. All the recorded replay informa-
tion (such as interrupt timings) is sent over the network to 
a virtual machine running on the client. The client virtual 
machine can replay the remote machine’s execution in real 
time, as it receives the replay data.

The most dramatic speed improvement comes from the 
bandwidth reduction when playing a DVD, which over a tra-
ditional remote desktop connection requires streaming the 
DVD video itself. Streaming video is not necessary with VM 
record/replay, but initial state of both VMs must be 

Fourth set of posters summarized by Justin Seyster  
(jseyster@cs.stonybrook.edu)

Diagnosing Performance Changes by Comparing System 
Behaviours
Raja R. Sambasivan, Carnegie Mellon University; Alice X. Zheng, 

Microsoft Research; Elie Krevat, Michael Stroucken, William Wang, 

Lianghong Xu, and Gregory R. Ganger, Carnegie Mellon University

Sambasivan presented Spectroscope, a project that uses end-
to-end traces to diagnose distributed system performance 
changes. Each trace represents the entire path of a request 
through the system. Comparing traces from before and after 
a performance change can help find the cause of the change. 
A comparison can find structural changes, such as a request 
being routed to a remote datacenter, and response-time 
changes in individual components. Both kinds of change 
are ranked by their contribution to the overall performance 
change so that the developer can localize the source of the 
problem. The authors used Spectroscope to diagnose several 
real-world performance bottlenecks in Ursa Minor, a proto-
type distributed storage system.

The Anzere Personal Storage System
Oriana Riva, Qin Yin, Dejan Juric, Ercan Ucan, Robert Grandl, and 

Timothy Roscoe, ETH Zurich

Oriana Riva described Anzere, which manages synchroniza-
tion of media, contacts, and other personal data across mul-
tiple personal devices and virtual cloud resources. Anzere 
emphasizes the expressiveness of replication policies, which 
are specified with a logic constraint language. For example, 
the user can require that one-day-old music is accessible 
to a cell phone with no more than 100ms delay. As another 
example, the user can also set a limit on cloud storage usage 
in terms of a maximum monthly fee. Although potentially 
complex, these policies remain tractable.

Dynamic Resource Allocation in Computing Clouds 
using Distributed Multiple Criteria Decision Analysis
Yagz Onat Yazr and Chris Matthews, University of Victoria; Roozbeh 

Farahbod, Defense R&D Canada Valcartier; Stephen Neville, University of 

Victoria; Adel Guitouni, Defense R&D Canada Valcartier; Sudhakar Ganti, 

Yvonne Coady, and Burak Martonalt, University of Victoria

Yagiz Onat Yazir presented this poster about moving to a 
model of provisioning virtual machines with loosely defined 
resources instead of asking customers to specify a priori 
CPU, memory, and bandwidth requirements. This would 
make cloud computing services more like the public utilities 



 ;login: FEBRUARY 2011  Conference Reports   85

Fifth set of posters summarized by Edmund L. Wong  
(elwong@cs.utexas.edu)

A Replay-based Approach to Performance Analysis
Anton Burtsev, Eric Eide, and John Regehr, University of Utah 

Anton Burtsev presented a novel way of approaching 
performance analysis of complex software systems with 
a full-system deterministic replay. Burtsev leveraged Xen 
VMM to record the entire execution history of a system with 
a constant overhead of several percent. An analysis algo-
rithm is invoked on a copy of the original execution, which is 
recreated by means of replay mechanisms offline. Burtsev 
argued that such an approach turns performance, a dynamic 
property of a particular execution, into a static property 
that can be analyzed separately from an actual instance of a 
running system. To provide general support for replay-based 
performance analyses, Burtsev suggested a general analysis 
framework which combines traditional replay mechanisms 
with a realistic performance model, and a semantic interface 
to the behavior and the runtime state of the system. 

Mitigating Risk in Green Cloud Computing
Sakshi Porwal, Muki Haklay, John Mitchell, Venus Shum, and Kyle 

Jamieson, University College London

Sakshi Porwal and co-authors studied how power con-
sumption, an important consideration for cloud computing 
providers, can be reduced. Porwal showed two models of 
computing: the waterfall model, in which tasks are assigned 
to an idle machine only after all other non-idle machines 
were fully utilized, and the distributed model, in which tasks 
are load-balanced across multiple machines. She showed 
that the waterfall model reduces power consumption and 
produces less CO2 as a result. Porwal also explored distribut-
ing tasks to sites which are located in geographically colder 
areas and thus require less power for cooling mechanisms, 
which represent approximately a third of power consumption 
at datacenters.

It Wasn’t My Fault: Understanding OS Fault 
Propagation Via Delta Execution
Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum, Vrije 

Universiteit, Amsterdam

Cristiano Giuffrida proposed characterizing faults in OSes 
by introducing faults into the system, isolating the faulty 
execution, and comparing it to a fault-free execution to see 
how the execution, state, and environment differed. By creat-
ing a catalog of faults and their effects, Giuffrida envisioned 
that an OS can be developed that can recover from failures 
and continue execution. This catalog could be used to remove 

synchronized, meaning that the DVD’s contents are already 
available at the client side. Because of the synchronization 
requirement, which involves an initial disk transfer of the 
VM, the technique is most suitable for a client making fre-
quent remote desktop sessions to the same remote VM, or to 
multiple VMs which share similar disk images.

Porting File System Structures to Nameless Writes
Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi 

H. Arpaci-Dusseau, University of Wisconsin—Madison

Commercial flash drives keep a mapping table from logical 
block addresses to physical block addresses, which the drive 
can use to dynamically remap blocks for the sake of wear 
leveling. Yiying Zhang explained that these tables become 
more wasteful as drives get bigger: a 2TB SSD would need 
30GB of mapping tables for a page-level mapping using a 
standard flash page size. Although mapping strategies exist 
that can keep smaller mapping tables, they have a higher I/O 
cost.

Zhang and co-authors show how device support for 
“nameless writes” makes it possible to modify file systems 
to operate efficiently without device remapping and without 
modifying on-disk structures. A nameless write gives the 
disk the task of choosing a free block to write to. Because 
the disk chooses which blocks to write, it no longer needs to 
remap blocks to effectively spread out writes. The nameless 
write operation returns the physical block index to the file 
system.

To handle blocks that must be relocated after wearing out, 
the disk will also need to support a device callback, notifying 
the file system that it has to update pointers to the relocated 
block.

DiCE: Predicting Faults in Heterogeneous, Federated 
Distributed Systems
Vojin Jovanović, Marco Canini, Gautam Kumar, Boris Spasojević, Olivier 

Crameri and Dejan Kostić, EPFL, Switzerland

Marco Canini and Dejan Kostić presented DiCE, designed to 
analyze heterogeneous, federated distributed systems such 
as BGP, the Internet’s routing protocol. DiCE can take a com-
plete snapshot of all the nodes in the analyzed system and 
then explore possible system behaviors from that snapshot 
using “concolic” execution, a hybrid of symbolic and concrete 
execution. In BGP, this approach can find configuration 
errors that might allow prefix hijacking or policy conflicts. 
Fuzz testing makes it practical to search for valid messages 
that have the potential to harm the system.



 86   ;login: VOL.  36,  NO.  1

the disk. This scheduler is scalable from commodity servers 
to enterprise cloud-based solutions.

SlapChop: Automatic Microkernels
Sara Dadizadeh, Jean-Sébastien Légaré, and Andrew Warfield, University 

of British Columbia

Modern software is complex and monolithic. Sara Dadiza-
deh presented SlapChop, a system for decomposing a large 
system into small, single-purpose source code libraries that 
perform specialized tasks. SlapChop dynamically analyzes 
a running system, collects traces, finds the parts that are 
relevant to the task that is to be isolated, maps those instruc-
tions back to the original source, and generates specialized 
libraries consisting of this source code. She showed an 
example of SlapChop being performed on an OS kernel.

Benchmarking Online Storage Providers—Does 
Bandwidth Matter?
Andi Bergen, University of Victoria; Rick McGeer, HP Labs; Justin 

Cappos, University of Washington; Yvonne Coady, University of Victoria

Andi Bergen argued for the importance of benchmarking 
online storage providers, which are becoming increasingly 
popular. Because users are often bandwidth-limited in their 
own connections, Bergen argued that such measurement 
should be done in a distributed fashion, by having multiple 
sites perform many operations on the storage providers. His 
hope is to develop a tool that allows for customizable bench-
marking depending on what metrics users are interested in. 

Measurements of Personally Identifiable Information 
Exposure on the Web
Xiao Sophia Wang, University of Washington; Sam Burnett, Georgia 

Tech; Ben Greenstein, Intel Labs Seattle; David Wetherall, University of 

Washington

Personally identifiable information (PII), such as names, 
addresses, and credit card numbers, are being used online as 
a part of the Web, yet very little is known about how prevalent 
PII exposures are in practice. Xiao (Sophia) Wang showed 
that, although users would expect that PII is only sent to the 
Web sites they are visiting, this information is often sent to 
third-parties or easily gleaned by eavesdropping or through 
cookies. Studying the top 100 Web sites in the US, Wang, 
surprisingly, found that 35% send passwords in the clear, 26% 
send some form of PII to third parties, and 54% store some 
form of PII in cookies.

traces of faulty behavior without affecting correct parts of 
the execution.

Fine-grained OS Behavior Characterization
Lorenzo Cavallaro, Cristiano Giuffrida, and Andrew S. Tanenbaum, Vrije 

Universiteit, Amsterdam

Lorenzo Cavallaro proposed building a microkernel-based 
OS with extremely focused and small components. The 
behavior of these components could be automatically pro-
filed and characterized by using an IPC-based monitoring 
scheme. These profiles could then be later used to detect 
anomalous behavior and bugs in OS components. Cavallaro 
argued that the overhead of such a system could be amelio-
rated by giving users the option to adjust the granularity and 
accuracy of the monitoring infrastructure.

Resurrecting Static Analysis: Exploiting Virtualization 
to Address Packing and Encrypted Malware
Christopher Benninger, Niko Rebenich, and Stephen W. Neville, 

University of Victoria; Rick McGeer, HP Labs; Yvonne Coady, University 

of Victoria

Christopher Benninger proposed a new technique for 
detecting malware that may be “packed” (encrypted or 
compressed). Instead of relying on static techniques alone, 
which are difficult and often fail when malware is packed, 
or dynamic techniques, which are not as successful as static 
techniques before the advent of packing, Benninger argued 
that malware can be more accurately detected by expos-
ing malware to static analysis after it has unpacked itself 
and right before it attempts to execute. Toward this goal, he 
developed an event-driven platform for identifying packed 
malware running on a VM, an introspection tool for access-
ing an offending process’s memory space from a separate 
VM, and an analysis tool for identifying and flagging mal-
ware variants. 

Block-IO Scheduling for Guaranteed Scalable Storage 
Performance
Bader Al Ahmad, Sriram Murali, and Sathish Gopalakrishnan, University 

of British Columbia

Sriram Murali observed that many applications require 
real-time interactivity, yet many of them run on cloud 
environments consisting of virtual machines handling 
multiple clients. Murali argued that disk I/O is the major 
barrier to achieving guaranteed QoS for virtual machines; 
thus, efficient disk utilization is critical to providing real-
time guarantees. Towards this goal, Murali implemented a 
scheduler based on weighted fair-queuing in the block device 
driver of the Xen hypervisor which offers hard and soft real-
time guarantees to the different virtual machines accessing 



 ;login: FEBRUARY 2011  Conference Reports   87

use an interface that is semantically identical to the underly-
ing network interface. Thus, shims are completely transpar-
ent to the application, require no modification of the original 
code, and may be composed together dynamically. Huang 
demonstrated his technique by constructing a NAT traversal 
shim that enables an unmodified server application to accept 
incoming connections from behind a NAT device.

Reducing System Call Latency via Dedicated User and 
Kernel CPUs
Josh Triplett, Philip W. Howard, Eric Wheeler, and Jonathan Walpole, 

Portland State University

Systems have an increasing number of cores, allowing 
tasks to often have their own CPUs. Josh Triplett observed, 
however, that tasks still time-slice between user and kernel 
modes. Triplett proposed leveraging the increasing num-
ber of cores by providing each application with a dedicated 
syscall thread, which stays in-kernel. This thread has its own 
CPU and performs the actual system calls, in order, on behalf 
of application threads. Triplett argued that his approach 
does not require modification of user code or existing kernel 
syscalls and does not require a new type of thread or sched-
uler, while improving the performance of common syscalls in 
Linux.

Sixth set of posters summarized by William Enck (enck@cse.psu.edu)

Deterministic Concurrency within the OpenMP 
Framework
Amittai Aviram and Bryan Ford, Yale University

Available techniques to prevent shared-memory concurrency 
bugs are insufficient; developers infrequently adopt new 
languages, and deterministic thread schedulers make race 
conditions repeatable without eliminating them. Amittai 
Aviram (amittai.aviram@yale.edu) presented Determin-
istic OpenMP (DOMP), which simplifies the prevention of 
race conditions by following a programming model resem-
bling document handling in version control systems. When 
concurrent threads start executing at a fork, DOMP makes 
a copy of the current shared program state for each thread. 
Once the threads finish and rejoin their parent, DOMP 
merges their writes into the parent’s state; if two threads 
have written to the same memory location, DOMP signals 
the race condition as an error. DOMP will implement most of 
the core features of standard OpenMP, including the paral-
lel, for, and sections directives, as well the reduction clause, 
thus making it easy to parallelize existing sequential code 
in conventional languages deterministically by adding just a 
few annotations.

Depot: Cloud Storage with Minimal Trust
Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo 

Alvisi, Mike Dahlin, and Michael Walfish, University of Texas at Austin

Sangmin Lee and Srinath Setty presented Depot, a cloud 
storage system that minimizes trust for safety and for live-
ness. Depot achieves this through a new consistency model, 
fork-join-causal consistency, which guarantees causal 
consistency in the absence of faults and handles forks by 
reducing equivocation to concurrency. Despite its minimal 
reliance on trust, Depot still provides useful properties: 
safety properties include eventual consistency, fork-join-
causal consistency, bounded staleness, integrity, recoverabil-
ity, and eviction of faulty nodes. Liveness properties include 
allowing nodes to always write, always exchange updates, 
and read when correct nodes have the required objects. Lee 
and Setty argued that Depot’s cost is low in terms of latency, 
and its weighted dollar cost is modest.

Iodine: Interactive Program Partitioning
Nathan Taylor and Andrew Warfield, University of British Columbia 

Clearly identifying important parts of modern software 
is complicated but imperative for understanding whether 
exploits or bugs may exist in the code. Nathan Taylor 
described his system, Iodine, as a way to discover these com-
ponents through techniques inspired by MRI. Iodine outputs 
a control-flow graph with edges representing control-flow 
connections and colors representing how frequently a par-
ticular component is visited. These colors eventually fade if a 
component is no longer visited, giving the user an interactive 
idea regarding what code is being executed over time. The 
system provides users with an interactive interface, allow-
ing users to poke into the code and explore the effects that 
unvisited branches have on the graph.

Masking Network Heterogeneity with Shims
Danny Yuxing Huang, Williams College; Eric Kimbrel and Justin Cappos, 

University of Washington; Jeannie Albrecht, Williams College

Danny Yuxing Huang tackled the problem of dealing with 
heterogeneous network environments—those which contain 
NATs, VPNs, firewalls, mobile devices, etc.—by developing a 
new technique for building applications. A common solution 
involves using libraries to virtualize network heterogeneity. 
Huang argued that porting programs with these libraries to 
deal with specific types of network heterogeneity is tedious 
and error-prone; due to semantic differences, the programs 
and/or the libraries must be modified to work together. 
Instead, Huang proposed the use of formally verified wrap-
pers, or shims, that abstract away the details of providing 
functionality such as NAT traversal or mobility support from 
applications. Unlike the above-mentioned libraries, shims 



 88   ;login: VOL.  36,  NO.  1

Compression of High Resolution Climate Data
Jian Yin and Karen Schuchardt, Pacific Northwest National Lab

Climate simulations consume and produce petabytes of data. 
Traditional compression algorithms perform poorly on this 
data and frequently require the entire archive to be decom-
pressed before being used by simulations and analysis tools. 
Jian Yin (jian.yin@pnl.gov) and his co-authors developed a 
compression algorithm based on properties of the climate 
data that allows block-based decompression for use of sub-
sets of the overall dataset. They use heuristics to determine 
where to break the compression blocks such that the decom-
pression and analysis can be pipelined. Additionally, the 
decompressed blocks are cached to avoid redundant decom-
pression and speed analysis. Finally, they include prediction 
algorithms to decompress data blocks so that new blocks are 
immediately available.

Informed System Design through Exact Measurement
Daniel A. Freedman, Tudor Marian, Jennifer Lee, Ken Birman, Hakim 

Weatherspoon, and Chris Xu, Cornell University

Daniel A. Freedman (dfreedman@cs.cornell.edu) considered 
the application of a class of exact network measurements to 
help inform system design, particularly for architectures that 
involve the intersection of endpoint systems and network 
links. He discussed the design of network instrumentation—
using physics test equipment, such as oscilloscopes, pattern 
generators, lasers, etc.—for the exact capture of packets in 
flight, and they demonstrate its application for a particular 
deployed 10 Gigabit Ethernet wide-area network (WAN). In 
fact, on such a WAN, they observe anomalous behavior that 
contests several common assumptions about the relationship 
between input and output traffic flows. Finally, the authors 
connect their observations of emergent packet chains in the 
network traffic with higher-level system effects—namely, 
to explain previously observed anomalous packet loss on 
receiver endpoints of such networks.

Accele Scheduler: Energy Efficient Virtual CPU 
Scheduling for Modern Multicore CPUs
Tetsuya Yoshida and Hiroshi Yamada, Keio University; Hiroshi Sasaki, 

University of Tokyo; Kenji Kono, Keio University; Hiroshi Nakamura, 

University of Tokyo

CPU chips now frequently include multiple processing cores, 
but not all of the cores always need to run at their highest 
frequency. Dynamic voltage and frequency scaling (DVFS) 
improves energy efficiency by scaling down voltage and fre-
quency when possible. On modern multicore chips, all cores 
must use the same voltage, due to architectural limitations, 
even if their frequencies are individually scaled. Tetsuya 
Yoshida (tetsuyay@sslab.ics.keio.ac.jp) and his co-authors 

Diagnosing Intermittent Faults Using Software 
Techniques
Layali Rashid, Karthik Pattabiraman, and Sathish Gopalakrishnan, 

University of British Columbia

Layali Rashid (lylrashid@gmail.com) explained that today’s 
complex hardware chips are prone to intermittent errors. 
When errors are detected, faulty components should be 
disabled. Given the existence of an error, this work tracks 
program dependencies to the instructions where the error 
originated. Using the properties of the offending instruction, 
the faulty logic unit is diagnosed and disabled to ensure that 
future intermittent errors cannot affect program correctness.

NanoXen: Better Systems Through Rigorous 
Containment and Active Modeling
Chris Matthews, University of Victoria; Justin Cappos, University of 

Washington; Yvonne Coady, University of Victoria; John H. Hartman, 

University of Arizona; Jonathan P Jacky, University of Washington; Rick 

McGeer, HP Labs

Current systems lack robustness and security. This work, 
presented by Chris Mathews (cmatthew@cs.uvic.ca), 
proposes a new computational model based on “virtual 
components.” In this model, applications execute as sets of 
components. Components are primitive computational units 
with well-defined semantics. The components execute inside 
of either “native client” (NaCl) containers or virtual machine 
(VM) containers, depending on isolation requirements. 
While this work is at a very preliminary state, Matthews and 
his co-authors aim to use these primitives to design a more 
robust and secure operating system environment.

Namespace Composition for Virtual Desktops
Dutch Meyer, Mohammad Shamma, Jake Wires, Maria Ivanova, Norman 

C. Hutchinson, and Andrew Warfield, University of British Columbia

Dutch Meyer (dmeyer@cs.ubc.ca) explained that many 
enterprises are beginning to deploy PCs as thin clients 
running virtual machines served from back-end servers. 
These systems generally operate at the block level, which is 
semantically poor and difficult to administer. Meyer and his 
co-authors proposed a model that serves file namespaces 
instead of raw block devices. The proposed system can 
create namespaces for new VMs on the fly and can merge 
namespaces from multiple clients to create new views of 
the system helpful for collaboration and administration. By 
focusing on file semantics, redundant storage and scanning 
can be eliminated, and overall management complexity can 
be reduced.



 ;login: FEBRUARY 2011  Conference Reports   89

the presentations offered interesting ideas, generated lively 
discussion, and were well attended.

Epoch Parallelism: One Execution Is Not Enough
Jessica Ouyang, Kaushik Veeraraghavan, Dongyoon Lee, Peter M. Chen, 

Jason Flinn, and Satish Narayanasamy, University of Michigan

Jessica Ouyang presented a new style of parallelism called 
“Epoch Parallelism,” a novel approach to writing multi-
threaded programs. Since it is hard to write multi-threaded 
programs that are fast and correct, Ouyang proposed that 
programmers could write two programs: one which was 
fast but buggy and another which was slower and correct. 
Programs are then split into multiple epochs and the output 
from the first epoch of the faster program can be used to 
accelerate the execution of the following epochs in parallel. 
If a checkpoint from the faster program does not match that 
from the slower execution, the speculatively executed parts 
of the program are rolled back.

Michael Vrable from UCSD asked how this execution pat-
tern could be used with I/O or network interactions. Ouyang 
agreed that output can be externalized to the user only when 
the slower process completed, but that different parts of 
the application could internally proceed using the specula-
tive results. Emin Gün Sirer from Cornell inquired about 
applications which could make use of the correctness-speed 
tradeoff. Ouyang clarified that the faster executions in this 
model were not entirely buggy and would mostly give the 
correct answer. Examples for this included avoiding addi-
tional runtime assertion checks and optimistic concurrency 
techniques such as lock elision.

Automated Software Reliability Services: Using 
Reliability Tools Should Be as Easy as Webmail
George Candea, Stefan Bucur, Vitaly Chipounov, Vova Kuznetsov, and 

Cristian Zamfir, École Polytechnique Fédérale de Lausanne (EPFL), 

Switzerland

The second research vision proposed the creation of a 
software certification service and was presented by George 
Candea (EPFL). Although many tools are being developed to 
help test, debug, and verify correctness of software, Candea 
observed that these were not having much of an impact in the 
real world. To make software reliability more effective, Can-
dea argued that reliable software should have an advantage 
over competitors in the market.

He then presented a case study of how Underwriter Labs had 
established a safety standard for electrical appliances early 
in the twentieth century and how a similar certification ser-
vice could promote software reliability. This service would 
use automated techniques to objectively measure the reliabil-

have developed a scheduling algorithm for virtual CPUs that 
distributes the processing load to optimize energy consump-
tion in such an environment. They have already achieved an 
energy delay product (EDP) of 23.6%, which is better than 
Xen’s existing credit scheduler.

Redflag: Detailed Runtime Analysis of Kernel-Level 
Concurrency
Justin Seyster, Abhinav Duggal, Prabakar Radhakrishnan, Scott D. Stoller, 

and Erez Zadok, Stony Brook University

Justin Seyster (jseyster@cs.stonybrook.edu) explained that 
large code bases, such as the Linux kernel, are difficult to 
analyze for concurrency bugs. Seyster and his co-authors 
have developed a runtime analysis system to focus on the 
locking of any specific data structure. The tool provides 
lockset and block-based analysis. When working with code as 
large and complex as the Linux kernel, subtle complications 
result. For example, occasionally variables contain bit-fields 
to store system state. Therefore the tool must treat individual 
bits in such variables as variables themselves. The tool is also 
sensitive to the order in which locked blocks execute. Using 
their tool, Redflag, they have identified one race condition in 
their own file system code and independently discovered two 
additional known-concurrency issues in Linux’s file system 
code. The authors hope to apply the analysis to other data 
structures within the Linux kernel.

Dynamic Voltage and Frequency Scaling: The Laws of 
Diminishing Returns
Etienne Le Sueur and Gernot Heiser, University of New South Wales

Etienne Le Sueur (etienne.lesueur@nicta.com.au) and Ger-
not Heiser observed the power consumption of three multi-
core AMD Opteron systems over a seven-year period to study 
the effectiveness of dynamic voltage and frequency scaling 
(DVFS). They found four factors that cause DVFS to become 
significantly less effective: (1) scaling in semiconductor 
technology, (2) increased memory performance, (3) improved 
sleep/idle modes, and (4) multicore processors. They believe 
that in the future, cache management techniques such as 
turning of parts of the L3 cache, which is as large as 8MB, 
will be much more effective than DVFS at conserving energy.

Research Vision Session 

Summarized by Shivaram Venkataraman (venkata4@illinois.edu)

The research vision session held at OSDI ’10 was similar in 
spirit to the Wild and Crazy Ideas sessions at ASPLOS. It 
consisted of four presentations on systems research ideas for 
the future. Ice cream was served before the session began and 



 90   ;login: VOL.  36,  NO.  1

inertia about changing instructions sets, especially x86 for 
desktops, affected some of the problems pointed out earlier. 
Mogul jokingly remarked that his terminal still runs on an 
Alpha computer and that he felt managing the memory sys-
tem was a greater challenge than the instruction set. Rik Far-
row argued that CPU architecture features, such as the trap 
into privileged mode, actually shape how operating systems 
work, noting that there was a paper in this conference about 
avoiding the penalties for making that context shift. Farrow 
applauded the idea that the systems and architectures groups 
would actually communicate, instead of systems researchers 
just working around problems caused by architecture. Emin 
Gün Sirer’s comment, that he could imagine a corresponding 
talk at WWW about how the OS community had not provided 
the database community with the right interface and had 
forced them to write to raw disk, drew laughter and applause 
from the audience.

Embrace Your Inner Virus
Michael F. Nowlan and Bryan Ford, Yale University

The final research vision presentation at OSDI ’10 was by 
Michael Nowlan from Yale University, who proposed a sys-
tem design in which the OS expects applications to behave 
like viruses. First, Nowlan noted that viruses were prevalent 
and transferred easily across machines through the Internet 
and other media like Bluetooth and USB. Instead of trying to 
fight viruses, he proposed that the OS should be designed to 
handle viral applications (vapps) using techniques like code 
sandboxing and information flow control.

Nowlan presented several case studies of how vapps could be 
useful. The first case study was about a contact application 
which spread to all the users in a particular room. This could 
be useful for users to get in touch with other attendees at a 
conference. The second case study analyzed a photo upload-
ing vapp that could be used to disseminate photographs to 
other machines as soon as they are taken. If the original 
machine is lost, users can recover their photos by being “re-
infected” from other machines.

Nowlan also discussed various business models that could be 
used to build such viral applications. Most interesting among 
these was the “Quid Pro Quo” model where the user could 
consume a service for free but had to submit a local resource 
in exchange. For example, a weather application on a phone 
could be used for free but the user would need to upload the 
local temperature from the phone’s thermometer. Following 
the presentation, Nowlan was asked if the bad vapps would 
not affect the system. He replied that they were propos-
ing greater transparency into applications and the use of 
techniques like information flow control in OS design which 
could overcome such problems.

ity of binaries and would provide ratings similar to crash-test 
ratings for cars. Candea listed the systems research problems 
related to building such a service. These included automated 
proof generation techniques and scalable testing of binaries 
on massive clusters.

Peter Chen, University of Michigan, pointed out that there 
were blogs which provided such ratings for antivirus soft-
ware today and that software was tuned to perform well 
on these benchmarks. Candea replied that the certification 
service would be based on concepts like model checking and 
symbolic execution, which would make tuning the soft-
ware more difficult when compared to benchmarks. Ivan 
Be schastnikh, University of Washington, asked if the certi-
fication service was applicable to all kinds of software. He 
noted that comprehensive testing was already used in critical 
software in embedded systems and that users might not care 
much about the reliability of services like Facebook. Candea 
replied that today, users chose software based on functional-
ity and that it could be possible that they would continue to 
do the same. However, he hoped that presenting data about 
reliability of software would help them make a better decision.

SIGOPS to SIGARCH: “Now it’s our turn to push you 
around”
Jeffrey C. Mogul, HP Labs

Jeff Mogul from HP Labs presented his thoughts on how 
operating systems were being ignored by the computer 
architecture community and what the SIGOPS community 
could do to change this. Mogul argued that OS designers used 
commodity hardware to build their systems and had stopped 
asking the architects for newer features like core-to-core 
message passing primitives or interfaces for managing ther-
mal issues.

Analyzing the problem in detail, Mogul pointed out that 
architects had no open-source simulator which could run 
real operating systems, and the OS community could help 
articulate and build such a simulator. Also, there was a need 
for operating system benchmarks which could be run by 
architects in simulators to evaluate how their changes affect 
the OS. Finally, Jeff also argued that SIGARCH should be 
encouraged to accept papers which focus on OS issues in 
conferences like ASPLOS.

This was followed by a lively question-answer session. Margo 
Seltzer from Harvard disagreed with the presentation and 
argued that the best compliment for an OS designer was 
for the user to not realize that the OS was running. Mogul 
replied that it would be some time before we had a zero-
overhead operating system and that we need better coopera-
tion between the hardware and the OS community for that 
to happen. David Lillethun from Georgia Tech asked how the 



 ;login: FEBRUARY 2011  Conference Reports   91

systems had used specialized hardware or compiler-inserted 
instrumentation to solve this problem, and that still other 
approaches might be possible. Madan Musuvathi of Micro-
soft Research wondered  whether nondeterminism was such 
a bad thing and whether there might be tradeoffs between 
degrees of nondeterminism and performance. This was a key 
theme for this session, as the three different systems pre-
sented managed this tradeoff in different ways. Bergan said 
that the notions of internal and external nondeterminism 
were dOS’s way of handling this: in dOS, one can select the 
processes that need to be deterministic, and thus influence 
what portions of nondeterminism are internal and external.

Efficient System-Enforced Deterministic Parallelism
Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford, Yale 

University

> Awarded Jay Lepreau Best Paper!

Bryan Ford presented Determinator, a microkernel designed 
to eliminate data races, which was awarded one of two Jay 
Lepreau Best Paper awards for OSDI ’10. There are currently 
many systems devoted to helping programmers manage 
existing data races that occur in conventional operating 
systems. Ford said that despite all of this, it would be nice if 
programmers didn’t have to worry about data races and were 
not forced into using specific programming languages to 
achieve this end. Determinator is an attempt to accomplish 
this: it is a microkernel with a small set of system calls to 
manage shared state. Facilities that would be present in mod-
ern monolithic UNIX systems, such as the C library, process 
management, and file system API, are instead implemented 
in user space and take advantage of these system calls to 
eliminate data races.

The microkernel system calls are built on the paradigm of 
“check-out/check-in” of state. When a kernel thread forks, it 
creates a local copy of its parent’s address space. Any reads 
and writes that this thread performs are then against its 
local copy. When the thread joins its parent, its differences 
from the parent are merged back to the parent’s state. Ford 
described how this solves data race issues: read-write races 
are eliminated, because writes will occur to a different local 
state than reads, while write-write races are detected upon 
join and can be trapped and then resolved.

Determinator was evaluated by comparing its speed on 
benchmark programs to that of Linux. The primary factor 
influencing benchmark speed was the granularity at which 
the changes children made to shared state were found and 
merged back into a parent, with finer granularity leading to 
worse performance.

Deterministic Parallelism

Summarized by Alan Dunn (adunn@cs.utexas.edu)

Deterministic Process Groups in dOS
Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble, University 

of Washington

Tom Bergan presented dOS, a set of modifications to the 
Linux kernel to allow groups of processes to run determinis-
tically. Nondeterminism in OS execution makes bugs harder 
to reproduce and causes replicas in state machine replica-
tion-based fault-tolerance protocols to become unsynchro-
nized. To avoid these problems, dOS introduces the ability to 
create a “deterministic box,” in which contained processes 
execute in a deterministic manner. Bergan noted that dOS 
guarantees a deterministic ordering of internal operations 
(including inter-thread communication), but does not guar-
antee deterministic performance.

Deterministic execution is not a new problem, but the dOS 
project improves over prior work both conceptually and in 
practice. Bergan explained that dOS incorporates a distinc-
tion between “internal” and “external” nondeterminism. The 
difference is that internal nondeterminism is controllable 
by the operating system, while external nondeterminism 
is caused by uncontrolled sources such as user input and 
network packets. Internal nondeterminism can then be 
controlled by use of algorithms that ensure deterministic 
outputs, such as deterministic ordering of IPC operations 
and process scheduling. Only external nondeterminism 
needs to be logged and replayed to processes. Bergan pointed 
to log sizes that were several orders of magnitude smaller 
than a prior full-system determinism system as evidence for 
the utility of the selective determinism approach.

The main pieces of dOS’s implementation are the DMP-O 
deterministic scheduler and a “shim” for monitoring external 
inputs and controlling their delivery. While DMP-O is from 
prior work, dOS still needed a way to detect communication 
between threads, which was accomplished by modifications 
to system calls and page protections for shared memory. 
Threads can then be run in parallel until communica-
tion occurs and communication events are serialized in a 
deterministic order. Discussion of the shim included two 
examples: deterministic record and replay, and replication of 
a multi-threaded server.

Questions for the presentation ranged over topics from 
technical comments on performance to high-level questions 
about design motivation. Amittai Aviram (Yale University) 
and Micah Brodsky (MIT) asked whether performance 
issues incurred by fine-grained shared memory between pro-
cesses could be resolved. Bergan commented that previous 



 92   ;login: VOL.  36,  NO.  1

Tern was evaluated based on its degree of schedule reuse, 
stability in bug reproduction, and overhead. For several 
real-world programs (Apache and MySQL), Tern was able to 
use 100 or fewer schedules to cover significant stretches of 
execution, corresponding to a 90% schedule reuse rate. Com-
putational overhead was often less than 10%.

Ding Yuan of the University of Illinois at Urbana-Champaign 
claimed that Tern would not eliminate data races. Cui 
pointed out that this is true, although this was a tradeoff 
made to allow schedule reuse, thus increasing performance 
and stability. An audience member asked about whether 
constraint size and number could affect performance, and 
Cui said that they have techniques for removing redun-
dant constraints and eliminating irrelevant constraints to 
mitigate this issue. Bryan Ford of Yale asked whether Tern 
memoizes schedules only at whole program granularity, and 
whether other granularities would be useful. Cui responded 
that currently only whole program granularity is supported, 
but that others could be useful.

Systems Management

Summarized by Don Porter (porterde@cs.utexas.edu)

Enabling Configuration-Independent Automation by 
Non-Expert Users
Nate Kushman and Dina Katabi, Massachusetts Institute of Technology

Nate Kushman presented KarDo, a tool for automating con-
figuration and other administrative tasks. The key problem 
addressed is that users generally know what they want, but 
do not know how to do it. There is no easy way to automate 
fairly common tasks that require GUI manipulation. The 
KarDo system improves on the state of the art by collecting a 
few traces (generally two) of experts performing a given task, 
and then distilling a generalized trace which can be replayed 
on an end user’s computer. KarDo requires no kernel or appli-
cation modifications. Kushman presented details of how they 
generalize their traces. KarDo uses a support vector machine 
to classify GUI actions into three categories: update, commit, 
and navigate. KarDo uniquely identifies GUI widgets by their 
text, which is extracted from the accessibility interface. In 
generalizing a trace, navigation is separated from the rest of 
the trace; using all traces, the needed navigation steps are 
generalized for a canonical trace. Kushman also presented 
algorithms for removing needless actions and handling dif-
ferences in the GUI.

KarDo was evaluated using 57 tasks taken from the Micro-
soft Help and eHow Web sites. The authors collected traces 
from a set of diversely configured virtual machines and then 
tested them on a different set of virtual machines. Existing 

There were a number of interesting questions after this 
presentation. An audience member from Microsoft Research 
asked about the relationship between Determinator’s 
approach to shared state and transactions. Ford responded 
that the two have similar isolation properties, but that trans-
actions generally do not provide determinism. Eric Eide of 
the University of Utah asked about whether it might be better 
to mandate use of a specific language for Determinator. 
Ford said that while a single language might help by allow-
ing easier introduction of primitives to manage granularity 
of shared state, it seemed advantageous to allow application 
programmers greater language freedom. Jason Flinn of the 
University of Michigan commented that experience with 
systems like CODA showed that resolving write-write con-
flicts can be challenging, and he wondered how difficult this 
was with Determinator. Ford said that his team did not have 
enough experience writing applications for Determinator 
to comment definitively, but that he believed there would be 
some issues to explore with respect to when changes to state 
are propagated.

Stable Deterministic Multithreading through Schedule 
Memoization
Heming Cui, Jingyue Wu, Chia-che Tsai, and Junfeng Yang, Columbia 

University

Heming Cui presented Tern, a system for improving system 
determinism via capturing and reusing thread schedules. 
Tern shares some of the motivation of other papers from 
the Deterministic Parallelism session in that it also aims 
to allow for easier testing and debugging through increased 
determinism. However, Tern also targets a difficulty found 
in other systems: often a small change in program inputs 
causes radical changes in the schedules produced, which 
eliminates some of the benefits of deterministic scheduling. 
Cui described how Tern avoids this by representing sched-
ules as sequences of synchronization operations, which can 
potentially be reused for multiple inputs. It calculates sets of 
constraints that must be satisfied by an input to use a certain 
schedule and caches schedules with their constraints.

Cui illustrated the use of Tern with example code from 
PBZip2. To use code with Tern, it is necessary to first 
annotate the variables that are important to scheduling. The 
code is then instrumented at compile time to allow Tern to 
record and control scheduling. For any given program run, 
constraints on the annotated variables are created based 
on the branches that the program takes. These constraints 
are stored with the resultant schedule in a memoizer. The 
constraints will be evaluated for subsequent program runs, 
and the stored schedules will be used if their constraints are 
satisfied.



 ;login: FEBRUARY 2011  Conference Reports   93

Someone asked whether ConfAid required an understand-
ing of configuration file syntax,  Attariyan responded no. 
Alice Zheng of Microsoft Research asked if all bugs the 
authors dealt with were single-mistake bugs, and whether 
they expected all bugs in the real world to be single-mistake. 
The authors only looked at single-mistake bugs. ConfAid 
would likely suggest both mistakes independently, but cannot 
output that both configuration variables must be changed in 
tandem. Regarding real-world configuration errors, it is hard 
to say, but the test errors they used seemed quite common on 
the forums.

Lunchtime Award Announcements

Summarized  by Rik Farrow (rik@usenix.org)

Two awards were announced during the symposium 
luncheon. Robert Morris of MIT received the Mark Weiser 
award for an individual who has demonstrated creativity and 
innovation in operating systems research. Roger Needham 
and Michael Schroeder received the SIGOPS Hall of Fame 
Award for their 1978 paper on authentication over a non-
trusted link (Needham-Schroeder protocol). Schroeder was 
present to accept the award.

Inside the Data Center, 2

Summarized by Don Porter (porterde@cs.utexas.edu)

Large-scale Incremental Processing Using Distributed 
Transactions and Notifications
Daniel Peng and Frank Dabek, Google, Inc.

Frank Dabek described the new Percolator indexing system 
used at Google to reduce the delay between Web crawling 
and re-indexing. Prior to Percolator, there was a delay of days 
between crawling a new document and its incorporation into 
the index, as the entire corpus of crawled documents was 
reindexed. The solution described is incremental reindex-
ing, which introduces a number of new challenges, described 
in the talk. In order to support incremental indexing, the 
authors added distributed transactions to BigTable, which 
provides snapshot isolation semantics, and added notifica-
tion support.

Among the challenges described was the problem of “Bus 
Clumping,” the problem that the randomized scans for new 
work tend to clump working on data that is time-consuming 
to process, reducing parallelism and overloading servers. 
The solution they adopt is trying to acquire a lightweight 
scanner lock per row of BigTable. If the lock acquire fails, 
the scanner jumps to a random point in the table to look for 
new work—the equivalent of a city bus teleporting ahead in 

automation techniques worked on only 18% of the test virtual 
machines, whereas KarDo had an 84% success rate. Of the 
16% of tests that failed, 4% were navigation errors, 5% had 
missing steps, and 7% were classifier errors. More traces 
should lower these error rates.

Adam Chlipala of Harvard asked why they didn’t just parse 
configuration files, and Kushman said that they could go 
quite a bit farther than just parsing files. Someone asked 
whether a collected trace could reveal private information. 
Kushman responded that the traces used for training can 
include private data, but if any two traces have different 
values, these are considered private and filtered out of the 
canonical trace. Josh Triplett from Portland State University 
asked whether the same tool could be applied to command-
line tasks. Kushman responded that a key challenge is text 
processing, which would require additional insights to pro-
duce canonical traces of the same quality.

Automating Configuration Troubleshooting with 
Dynamic Information Flow Analysis
Mona Attariyan and Jason Flinn, University of Michigan

Mona Attariyan presented ConfAid, a tool that automati-
cally identifies the root cause of a configuration error. The 
motivating problem is that configuring software is difficult 
and prone to user error. Currently, if a user can’t get a piece of 
software to work, s/he must ask colleagues, search a manual, 
or look at the code if it is available. Users need better tools to 
troubleshoot these errors. The usage model of ConfAid is that 
a user runs the misconfigured software under ConfAid and it 
outputs a list of likely root causes.

ConfAid works by tracking dynamic information flow 
through the application binaries. ConfAid does not require 
source code or debugging symbols. Attariyan described 
several technical details of how they use information flow 
analysis of control and data flows to assess which configura-
tion variables influenced the program control flow that led 
to the incorrect behavior. In this analysis, there is a funda-
mental tradeoff between the precision of the analysis and 
performance; ConfAid uses imprecise analysis and intro-
duces three heuristics to improve performance and lower the 
false-positive rate.

To evaluate ConfAid, the authors tested 18 real-world errors 
from OpenSSH, Apache, and PostFix (collected from manu-
als, support forums, etc.), and 60 randomly generated errors. 
For the real-world errors, ConfAid ranked the correct root 
cause first for 72% of the errors and second for the rest. 
Among the random errors, ConfAid ranked the correct root 
cause first or second for 55/60 errors. The average execution 
time of ConfAid was 1 minute, 32 seconds.



 94   ;login: VOL.  36,  NO.  1

Based on experience working with Mantri, Kandula recom-
mended three principles for managing MapReduce systems: 
(1) predict to act early, (2) be aware of resource and oppor-
tunity cost of an action, and (3) act based on the cause. The 
overall result of deployment in the Bing cluster is a median 
32% reduction in job completion time and lower utilization.

Someone asked what Kandula would do if they had a non-
uniform cluster, say, with some machines that were faster 
but handled fewer requests. Kandula answered that they 
have a scheduling system that normalizes machine capabili-
ties to a slot abstraction, which are scheduled rather than 
entire machines. Emin Gün Sirer from Cornell asked how the 
authors might change the MapReduce interface to address 
stragglers, given what they know from experience. Kandula 
responded that they would have an interface to yield more 
even partitions than simple hashing.

Transactional Consistency and Automatic Management 
in an Application Data Cache
Dan R.K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and 

Barbara Liskov, MIT CSAIL

Dan Ports presented a system called TxCache, which pro-
vides transactional consistency for an in-memory database 
cache such as memcached. The key problem this work 
addresses is that modern Web applications face immense 
scaling challenges, but existing caching techniques only offer 
limited help. For instance, personalization on sites like Face-
book foils whole-page caching. Similarly, database caches are 
of limited use, since Web applications require increased post-
processing of data in the application itself. Application layer 
caches, such as memcached, provide a useful alternative. By 
caching application objects, these caches can separate com-
mon and customized content and reduce overall server load. 
The key challenge to this approach is that current applica-
tion-level caches do not provide transactional consistency, 
leaving the application to address transient anomalies.

Ports then described the TxCache system, which provides a 
simple interface to delineate transactions on cacheable data. 
TxCache provides bounded staleness for transactions, allow-
ing read-only operations to improve performance by return-
ing slightly stale data where safe. Programmers can also 
specify cacheable, side effect–free functions, allowing the 
system to cache their results and avoid needless recomputa-
tion. Ports then described several key challenges, including 
selection of timestamp intervals and maintaining coherence 
through invalidations.

The system was evaluated using the RUBiS benchmark with 
a single database server and nine front-end/cache servers. 
The experiments showed that a larger cache yielded a higher 

the route. Percolator also stressed certain new errors in the 
Google cluster, including a set of failing CPUs that randomly 
failed to XOR bits correctly, and an incorrect resistor value 
that powered off a certain motherboard. Dabek concluded 
with advice based on this experience: (1) push performance 
debugging through all layers of the system and (2) expect 
weirdness proportional to machine count.

The talk concluded with the assertion that Percolator is 
an existence proof that distributed transactions can be 
implemented at Web scale. This was reflected in a ques-
tion from David Cock of the University of New South Wales 
regarding the novelty of the work; Dabek answered that the 
novelty is the scale of the system, which the field had given 
up on. Mehul Shah of HP Labs asked about the limits of the 
system and how it handled stale locks left by clients. Dabek 
responded that the largest problem with concurrency was 
heavy write conflicts, which were addressed with a backoff 
heuristic. The space required to store notifications in Big-
Table is not an issue, and stale locks were cleaned up lazily. 
Margo Seltzer of Harvard University asked his thoughts on 
the debate between MapReduce versus databases. Dabek 
said that if you pretend MapReduce is a database, it is a bad 
one, but that MapReduce is not dead and is still used heavily 
within Google.

Reining in the Outliers in Map-Reduce Clusters using 
Mantri
Ganesh Ananthanarayanan, Microsoft Research and UC Berkeley; 

Srikanth Kandula and Albert Greenberg, Microsoft Research; Ion Stoica, 

UC Berkeley; Yi Lu, Microsoft Research; Bikas Saha and Edward Harris, 

Microsoft Bing

Srikanth Kandula presented the Mantri system, used in 
production at Microsoft Bing. The goal of Mantri is reducing 
outliers, which slow down MapReduce jobs; reducing outliers 
improves productivity, gives cloud service providers more 
predictable completion times, and better utilizes datacenter 
resources, saving money. 

One key cause of outliers is unavailable inputs at a compu-
tation node. To address this, Mantri replicates intermedi-
ate data and introduces heuristics to predict what data to 
replicate where, weighted by the cost of recomputation. A 
second key cause of outliers is variable network congestion, 
which Mantri addresses by carefully placing reduce tasks 
such that traffic on a link out of a rack is proportional to the 
bandwidth. Although global coordination to load-balance 
the network links across all jobs is difficult, having each job 
balance its own traffic is a good approximation of the ideal. 
A final cause of outliers is workload imbalance, often due to 
contention at a given machine. There is a long tail (25%) of 
miscellaneous causes for this.



 ;login: FEBRUARY 2011  Conference Reports   95

Josh Triplett asked what fall-back strategy they used for 
non-commutative aggregate functions. Power answered that 
these were relatively rare in their experience and that they 
could use pairwise locking, but that locking was slow enough 
to avoid at all costs. Daniel Greenway asked about check-
pointing and what they did if nodes fail. Power replied that 
they roll all nodes back to the last checkpoint. 

Cloud Storage

Summarized by Katelin Bailey (katelin@cs.washington.edu)

Depot: Cloud Storage with Minimal Trust
Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo 

Alvisi, Mike Dahlin, and Michael Walfish, The University of Texas at 

Austin

Prince Mahajan presented Depot, an attempt to remove trust 
from cloud storage. This system was unable to completely 
remove trust from the equation, but Mahajan argued that it 
comes very close: for put availability, consistency and stale-
ness detection, the system requires no trust, while it mini-
mizes the trust necessary for get availability and durability 
(reliant on one node). 

Depot has multiple failover servers and can default to client-
to-client communication in the case of errors. As with other 
work in the area, Depot uses both local state and metadata 
added to commits to allow clients to check the history and 
detect forks in the state. The system uses Fork-Join-Causal 
consistency in the case of unreliable nodes, which allows 
for taking a forked subset and reconciling it as if it were two 
concurrent commits from “virtual nodes.” It also allows for 
the eviction of a node that is consistently faulty or mali-
cious. Mahajan then covered implementation details and 
performance evaluation for the Depot project and the related 
“teapot” project implemented on Amazon’s S3, demonstrat-
ing almost unmodified server-side code. He claimed that the 
performance overhead was modest and the implementation 
practical for use. 

There were a large number of questions following the talk. 
Dave Koch of NICTA pointed out that CPU overheads on 
clients were high. Mahajan conceded that one of the graphs 
showed a 400% CPU overhead for one test, but argued that 
CPU cycles are cheap enough to allow this overhead to 
be modest nonetheless: throughput is the concern. David 
Schultz pondered the correctness of clients during reads: for 
example, a Byzantine client who had the only copy of some 
data. Mahajan clarified that individual clients can have repli-
cation specifications or filters, such as only reading data that 
is resident on four nodes. This would, however, reduce avail-
ability when only one node is online, as Schultz pointed out. 

hit rate and better performance. Allowing stale results also 
improves performance by as much as 3–5x, but the knee 
of the performance curve was around 20–30 seconds. The 
authors also measured the overhead of consistent caching 
by allowing inconsistent reads; performance improved only 
marginally, indicating that the costs are negligible.

Marcos Aguilera of Microsoft Research asked whether 
TxCache provided serializability or snapshot isolation. Ports 
answered that the system provides either, dictated by the 
guarantees of the underlying database. Ports was also asked 
whether they got performance wins on a single system, or 
only across several nodes. He answered that the number of 
nodes determines the size of the cache and the hit frequency.

Piccolo: Building Fast, Distributed Programs with 
Partitioned Tables
Russell Power and Jinyang Li, New York University

Russell Power presented Piccolo, a framework for develop-
ing high-performance distributed applications. Problems 
that can fit into memory in a cluster are a key motivation for 
this work. Power structured the talk around page rank as a 
representative example. Existing data flow models, such as 
MapReduce, don’t expose global state, and models such as 
MPI and RPC require explicit communication, making them 
harder to write. The goal of Piccolo is to provide distributed, 
in-memory state. The runtime system transparently handles 
communication when the programmer requests reads and 
writes.

Power described several technical challenges in developing 
a page rank example application on Piccolo and challenges 
in implementing Piccolo on a cluster. Throughout the talk, 
he refined a pseudocode example that was both reasonably 
detailed and simple enough to fit onto one slide. For instance, 
Piccolo must add synchronization primitives for concur-
rent writes to a variable. Because many writes are actu-
ally accumulator functions, these can be used with release 
consistency to improve concurrency. Power also explained 
that storing state at nodes increases the complexity of load 
balancing, as it is harder to start new jobs. Starting jobs at 
remote nodes gives up locality and harms performance; mov-
ing is hard because the old site must still forward updates to 
the new site. 

The system was evaluated on a cluster of 12 nodes totaling 64 
cores. Compared to Hadoop, calculating page rank on a 100M 
page baseline, Piccolo was substantially faster. The iteration 
time remained nearly flat as more workers were added to 
match a larger input graph, indicating near-perfect scaling. 
The Piccolo code is available at piccolo.news.cs.nyu.edu.



 96   ;login: VOL.  36,  NO.  1

SPORC: Group Collaboration using Untrusted Cloud 
Resources
Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. 

Felten, Princeton University

Ariel Feldman presented a system for building collaborative 
projects on an untrusted server, motivated by the desire to 
use cloud services without trusting the provider. The system 
presented a single server with a number of clients, moving 
the application state to the client, as well as a copy of state 
stored client-side and all server storage being encrypted. 
The system relies on the previously researched ideas of fork* 
consistency and operational transformation (OT).

Feldman took the audience through a number of common 
scenarios. He outlined how the fork* consistency is repre-
sented by a history hash embedded in each commit, includ-
ing sequence numbers and corresponding checks when an 
update is pushed out to the clients. In addition, Feldman dem-
onstrated in detail how the OT transform functions can be 
used to deal with merging forked groups, as well as handling 
pending transactions and offline commits. Lastly, Feldman 
talked about how access control works in SPORC: symmetric 
keys (for efficiency) keep the commits encrypted in transit 
and on the server. Access control list (ACL) changes are 
performed with barriers to prevent conflicting changes; all 
changes after a barrier are rejected until the change is fully 
committed. Redistribution of AES keys is done via encryp-
tion as well, preserving a chain of encrypted keys for use by 
members joining later. Feldman argues that at no point would 
the server have to be trusted. Performance evaluations on a 
local-area network indicate that SPORC would have usable 
latency and throughput for moderate-sized groups.

Bryan Ford of Yale proposed a scenario where Alice attempts 
to evict (malicious) Bob from the access list, but Bob adds 
(equally malicious) Eve and Fred before he is evicted, and the 
process cascades such that there are more and more mali-
cious members of the community. Feldman explained that 
there are three levels of access possible in SPORC: admin-
istrators, editors, and readers, providing some assurance, 
although a rogue administrator could cause substantial 
problems. Josh Triplett probed the choice to use servers, 
if they are simply used for ordering and storage. Feldman 
replied that they allow for a more timely commit process 
than a decentralized system. He also verified that the project 
assumed a correct client. However, he pointed out that fork* 
recovery allows for an undo option, if necessary.

Comet: An Active Distributed Key-Value Store
Roxana Geambasu, Amit A. Levy, Tadayoshi Kohno, Arvind 

Krishnamurthy, and Henry M. Levy, University of Washington

Roxana Geambasu presented Comet, a variation on distrib-
uted hash tables (DHT), which allows applications to make 
use of small bits of code inserted in the DHT. Motivated by 
earlier work (Vanish, Geambasu 2009) which exposed the 
frustrating nature of working with a one-size-fits-all DHT 
serving many applications, the project produced a system 
that is flexible, lightweight, and provides isolation of the 
included code. The goal was to create an extensible DHT that 
can offer different capabilities to the different applications.

The implementation of this project focused on a unit called 
the Active Storage Object (ASO), which consists of data and 
tiny snippets of code, written in a very restricted form of Lua. 
The architecture of the system consists of an active runtime 
over the standard DHT, which ASOs can access via hand-
lers and an ASO API. The ASO is sandboxed and has a very 
limited interface to the outside world, enhancing the overall 
security of the system. The sandbox allows the ASO to have 
some knowledge of the host and the DHT in general, but 
restricts actions to periodic tasks, interceptions of accesses, 
and minimal DHT actions (put, get, lookup). Geambasu 
demonstrated how even these limited ASOs can create pow-
erful capabilities for the application. Her examples include 
an altered replication policy, a proximity tracker for closest 
peers, and self-monitoring code. She pointed out that Comet 
not only allows policies to differ between applications, but 
opens up new opportunities for tracking and analyzing usage, 
or even adding debugging or logging possibilities. 

Pietros Maniatos of Intel Labs, Berkeley, wondered about 
security. Geambasu noted that there were global restrictions 
set on the ASOs such that they could not take over the host, 
and clarified that the only classes of operations allowed in 
the modified Lua code were math operations, string opera-
tions, and table manipulation. Additionally, there is a hard 
limit on lines of code allowed. She also addressed the ques-
tion of replicas sharing data or being treated separately: the 
replicas are indeed treated as separate copies, but they can 
locate and even merge with each other, if desired. Dutch 
Meyer asked about variance in performance, for example, 
with a garbage collector, and Geambasu suggested they might 
use another type of language. Ben Wester (U. Michigan, Ann 
Arbor) asked if code gets run on every get, and Geambasu 
replied that in a traditional DHT, things may fail, requests get 
dropped, so some redundancy is a good thing.



 ;login: FEBRUARY 2011  Conference Reports   97

to a subset of instances. Onix can also aggregate data, reduc-
ing its fidelity before sharing. For example, when exporting 
uptime data, Onix can present an average of the information 
to other nodes instead of providing an exhaustive dataset. 
Link failures are the application’s responsibility, but Onix 
assumes a reliable management connectivity or uses a 
multi-pathing protocol. Failures are handled using distrib-
uted coordination (via Zookeeper integration). Performance 
details are available in the paper.

Jeremy stressed that Onix is a real, production program. A 
prototype of over 150,000 lines of code is currently under 
testing and expected to be deployed in future products in the 
next few months or within the year.

Marco Canini from EPFL asked several questions about 
the application of Onix. Jeremy explained that there is only 
one kind of routing protocol per network, and that the Onix 
“application” is a program that manipulates the NIB graph 
to set up the routing the way that the application developer 
requires. There are several protocols for exchanging mes-
sages, but one easy way is using the OpenFlow protocol. 
Network bootstrapping depends on the particular configura-
tion. An attendee from UCSD asked how the Onix ARP cache 
could be refreshed. Jeremy said that hosts sent out ARPs 
periodically. Eddie Kohler from UCLA asked about Jeremy’s 
favorite implementation trick in Onix. Jeremy likes the fact 
that Onix provides a lot of the distributed mechanisms that 
are hidden from the programmer, as well as the fact that 
distributed storage can be swapped out transparently to the 
programmer.

Can the Production Network Be the Testbed?
Rob Sherwood, Deutsche Telekom Inc. R&D Lab; Glen Gibb and Kok-

Kiong Yap, Stanford University; Guido Appenzeller, Big Switch Networks; 

Martin Casado, Nicira Networks; Nick McKeown and Guru Parulkar, 

Stanford University

Rob Sherwood described a new technique and prototype 
implementation called FlowVisor which allows realistic 
evaluation of new networking services within production 
networks. It’s difficult to evaluate new services in practice. 
Services may not be fully ready for production, but there’s a 
need to test them. Rob described real networking as a black-
box system, with hundreds of thousands of devices, while no 
one really knows realistic Internet topologies. Some test-
beds use software routers, but performance can suffer due 
to limited hardware scale, artificial topologies, and limited 
adoption, leading to the use of synthetic data. Subsequently, 
the driving motivation for this technique is to allow produc-
tion networks to serve as testbeds while providing strong 
isolation between production and testbed networking. Rob 
believes that the production network can indeed be the testbed.

Production Networks

Summarized by Peter Bailis (pbailis@eecs.harvard.edu)

Onix: A Distributed Control Platform for Large-scale 
Production Networks
Teemu Koponen, Martin Casado, Natasha Gude, and Jeremy Stribling, 

Nicira Networks; Leon Poutievski, Min Zhu, and Rajiv Ramanathan, 

Google; Yuichiro Iwata, Hiroaki Inoue, and Takayuki Hama, NEC; Scott 

Shenker, International Computer Science Institute (ICSI) and UC 

Berkeley

Jeremy Stribling presented Onix, a software system for 
controlling large-scale networks. Onix is a cross-institution 
effort designed for real-world production network deploy-
ments and is currently under quality-assurance testing. 
Jeremy began by describing typical router architecture: 
a fast-path forwarding plane determines where to send 
packets, while a control plane inside the device can repro-
gram the forwarding plane and handle exceptions. Central-
izing the control plane as in Software-Defined Networking 
(SDN) allows greater control over the network, but many of 
the issues related to scalable rule propagation and device 
reprogramming are difficult. Onix moves this centralized 
control logic to a distributed infrastructure while providing a 
high-level interface, solving state distribution problems and 
abstracting low-level mechanisms. Onix has several goals, 
including generality, scalability, reliability, simplicity, and 
performance.

For generality, developers program against a network graph 
called the Network Information Base (NIB) in which nodes 
are physical entities like switches, hosts, and ports. The 
NIB is the focal point of the system, and Onix takes care of 
talking to other instances, importing external state changes 
and exporting local state changes. Because different data has 
different storage requirements, it can be stored in replicated 
transactional storage (SQL) or in a one-hop in-memory DHT. 
For an ARP server, for example, the switch topology would be 
stored as hard state in the transactional storage, and the IP 
and MAC soft state would be stored in the DHT. This storage 
is specified pre-runtime, and at runtime the programmer 
only interacts with the NIB.

Scalability and reliability concerns amount to distributed 
state management problems. There are application-specific 
tradeoffs involved in determining how to partition the net-
work. For example, in some networks Onix need not connect 
to every switch, which is more scalable than connecting to 
all of them. Traditional network scaling uses partitioning 
(VLAN systems) and aggregation, which reduces fidelity. 
Onix instead uses different instances to control different 
parts of the network, and network equipment connects only 



 98   ;login: VOL.  36,  NO.  1

Building Extensible Networks with Rule-Based 
Forwarding
Lucian Popa, University of California, Berkeley, and ICSI, Berkeley; 

Norbert Egi, Lancaster University; Sylvia Ratnasamy, Intel Labs, Berkeley; 

Ion Stoica, University of California, Berkeley

Lucian Popa presented rule-based forwarding (RBF), a 
technique for allowing flexible Internet packet forwarding. 
The goal of this work was to allow more general forwarding 
directions, which provide routers with information on how to 
send their packets. This generality could provide the ability 
to use middleboxes, source routes, or in-network packet pro-
cessing. Their thesis is that flexibility needs to be balanced 
by providing policy-based access, and there is a balance 
between flexibility and constrained access. The idea here is 
that forwarding directives are carried inside packets; routers 
only need to verify that the packet complies with the policies 
of all involved parties and forward the packet. Lucian argued 
that this allows the appropriate balance between flexibility 
and policy enforcement.

Lucian presented a rule-based forwarding architecture. 
Rules are leased from and certified by trusted third parties, 
and all entities involved in the rule are certified. The RBF 
control plane consists of both a distribution infrastruc-
ture and a certification infrastructure. RBF assumes an 
anti-spoofing mechanism, the existence of rule-certifying 
entities, and a DDoS-resistant rule distribution. Rules are 
represented as a sequence of if-then-else statements that are 
comparison operations on router state, along with several 
actions (e.g., drop packet); however, rules cannot modify 
router attributes. Thus, the rules are flexible (allowing many 
policies), compliant (certified), and safe (cannot modify 
state). In practice, rule forwarding incurs little size overhead 
(between 60 and 140 bytes, or 13% on standard IP packet, 
27% with RSA signatures) and limited runtime overhead. 
They incur negligible overhead on a software router on a fast 
path and a 10% slowdown on the slow path, when verifying 
RSA signatures and using real traffic.

Michael Walfish from UT Austin asked about the feasibility 
of determining if a particular inter-domain path was taken. 
Lucian answered that cryptographic guarantees can solve 
this problem. Michael also asked about unnamed stakehold-
ers in the network—how can we name rule entities in the 
network a priori? Lucian claimed that if we treat rule-based 
forwarding like an overlay network, this is not a problem; 
after considerable discussion, this question was taken 
offline. Andreas from AT&T Research asked about the effect 
on latency, which is negligible in the current implementa-
tion. Helen Wang from Microsoft Research asked about the 
deployability on today’s ISPs. Lucian answered that a partial 
deployment is possible and might be able to detect whether 

Rob described network slicing, a new technique for accom-
plishing this isolation. The network is partitioned into logical 
copies called slices, each of which controls its own packet 
forwarding. Users pick which slice controls their traffic, and 
existing production services and testbed services can run 
in separate slices. This enforces isolation, while allowing 
the logical testbed to mirror the production network topol-
ogy. Network slicing can be accomplished by multiplexing 
the data plane, a custom, high-performance ASIC within the 
router that enforces rules between multiple control planes, 
which compute forwarding rules and push them to the data 
plane. The data plane is unmodified, allowing forwarding 
without performance penalty, while the multiple slices share 
the general-purpose CPU on the router.

Rob described FlowSpace and FlowVisor, an implementa-
tion of network slicing. FlowSpace maps packets to differ-
ent network slices according to twelve OpenFlow header 
types, including IP address, MAC address, and TCP port. 
This allows users to opt into slices at a fine granularity, like 
HTTP, VoIP, or other network services. FlowVisor controls 
the control plane using the OpenFlow protocol, allowing 
external control. FlowVisor handles exceptions from the data 
plane and forwards them to the slice controller, which checks 
the policy and forwards it to the router. Handlers are cached 
for scalability. To keep slices from monopolizing the CPU, 
the system currently rate-limits rule insertions and uses 
periodic drop-rules to throttle exceptions, although future 
systems should have proper rate limiters. FlowVisor is cur-
rently deployed on or will be deployed on eight campuses and 
with two ISPs.

Jeff Mogul from HP Labs noted that the CPU is a limited 
resource and that this might limit the flow set-up rate, which 
Rob acknowledged. An attendee from UBC asked about the 
effect on latency. Rob showed that the average latency is 
approximately half a millisecond but depends on the opera-
tion. Another attendee asked about the requirements for 
forwarding memory. Rob agreed that the number of rules is a 
scarce commodity on current routers, but hardware manu-
facturers are working on expanding this. Rob mentioned 
that there are several techniques (e.g., caching) for operating 
without a complete set of forwarding memory. Finally, Josh 
Triplett from Portland State University asked whether the 
authors had considered using some slices as control slices for 
the system. Rob responded that in practice the experimental 
slices use the production slice for the control plane.



 ;login: FEBRUARY 2011  Conference Reports   99

myr Kuznetsv from EPFL exclaimed that the work almost 
made him throw away his mobile device! He encouraged the 
authors to provide the tool as a Web site that can test applica-
tions uploaded by concerned users. In answering other ques-
tions, Enck clarified that TaintDroid identifies when private 
data has left the phone, as opposed to detecting privacy 
violations. He also explained that many instances of private 
data leaking were non-malicious, so even as some application 
writers may attempt to circumvent the system, it may still be 
widely useful in the future.

StarTrack Next Generation: A Scalable Infrastructure 
for Track-Based Applications
Maya Haridasan, Iqbal Mohomed, Doug Terry, Chandramohan A. 

Thekkath, and Li Zhang, Microsoft Research Silicon Valley

Maya Haridasan presented her work on a service designed 
to manage paths based on GPS location coordinates. Mobile 
devices are now capable of recording their paths as a series of 
location and time tuples, which Haridasan calls a track. Once 
stored, these historical tracks can be a valuable source of 
information for users. Among many other examples, Star-
Track could enable applications that provide personalized 
driving directions that take into account routes the driver is 
already familiar with. Using tracks from multiple users, ride-
sharing applications could be developed.

To reach these goals, Haridasan and her team created the 
StarTrack service, designed to store and manage tracks and 
to provide a track-based programming interface. However, 
challenges arise in that tracks are error-prone, scalability is 
difficult, and applications require a flexible API. To address 
these concerns, Haridasan and her team developed a set of 
novel algorithms and data structures to compactly store, 
compare, join, and sort sets of tracks. After evaluating Star-
Track against several other potential implementations, she 
closed by asking anyone interested in using the infrastruc-
ture to contact the authors.

Petros Maniatis from Intel Labs proposed a class of queries 
where information from multiple clients must be aggregated 
but not revealed. For example, the request “give me walking 
directions that don’t intersect with my ex-partner” requires 
some knowledge of another’s location, but ideally in a way 
that doesn’t share private data. Haridasan and her team had 
considered similar use cases, but haven’t found a solution 
yet. Michael Nowlan of Yale asked if there was any intention 
to associate intent or content with a track. Such a pairing 
could be used to separate driving tracks from other modes 
of transportation or to keep some paths private. Haridasan 
explained that there was already metadata associated with 
tracks, and ACLs could be used to preserve privacy, so such 
designs should already be possible. Stefan Sariou of Micro-

some packets are or are not policy-compliant, but some pack-
ets would still be received. Rule-based forwarding enables 
more services, Lucian claimed, so this is still a benefit for 
ISPs.

Mobility

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

TaintDroid: An Information-Flow Tracking System for 
Realtime Privacy Monitoring on Smartphones
William Enck, The Pennsylvania State University; Peter Gilbert, Duke 

University; Byung-gon Chun, Intel Labs; Landon P. Cox, Duke University; 

Jaeyeon Jung, Intel Labs; Patrick McDaniel, The Pennsylvania State 

University; Anmol N. Sheth, Intel Labs

William Enck explained how to balance fun and utility with 
privacy. He detailed how applications downloaded to a smart-
phone have full access to potentially private information, 
such as the GPS unit, microphone, camera, address book, 
and the phone’s unique ID. Too often, users are surprised at 
what information is transmitted from the phone. In one such 
example, a popular wallpaper application was sending users’ 
phone numbers back to the developer. While this particular 
example was found to be non-malicious, it serves as a warn-
ing that our software may be revealing information that 
users are not comfortable disclosing.

TaintDroid is a VM-based taint tracking system for Android 
phones. In order to determine when private information has 
left the phone, the authors modified the Dalvik interpreter 
to store and propagate taint tags for variables. This allows 
private data to be tracked, for example, from its source in 
the address book until it is released to the network. Despite 
operating in a resource-constrained environment, Taint-
Droid runs in real time. It displays warnings during live use 
of an application and was shown to have only a 14% overhead. 
The authors evaluated the system on 30 applications ran-
domly selected from the 50 most popular applications in the 
Android Marketplace. Ultimately, 105 connections transmit-
ted private data, while only 37 of those messages were clearly 
legitimate. Of the 30 studied applications, 15 shared location 
information with advertisement servers, and 7 shared device 
identifiers with a remote server. In no cases were these 
disclosures described in the EULA or evident from the user 
interface.

Iqbal Mohomed from Microsoft Research asked about 
implicit information flows, such as using timing per-
turbations to leak information to another process. Enck 
acknowledged that this is an existing problem, one that can 
be addressed with static analysis, although doing so intro-
duces trade-offs such as high false-positive rates. Volody-



 100   ;login: VOL.  36,  NO.  1

The most important take-away measurements were 
approximately 10% CPU overhead per level of nesting, that 
multi-dimensional paging can be a several hundred percent 
performance win for page-fault heavy loads, and that multi-
level device assignment can obtain equal device perfor-
mance but at significant CPU cost. A significant portion 
of the added cost for multi-level device assignment could 
be removed if direct interrupt delivery to nested VMs was 
supported. The code was mature and efficient enough to be 
added to KVM.

An audience member from NICTA asked whether the perfor-
mance would continue to get 10% worse per level of nesting. 
Ben-Yehuda responded that the exit multiplication effect 
would get worse as the level of nesting increased, and thus 
nesting performance would generally get worse by more than 
10% per level with higher degrees of nesting. Nathan Taylor 
of the University of British Columbia asked about the secu-
rity implications of this work, whether this would facilitate 
VM-based rootkits and whether I/O would remain safe with 
this implementation. Ben-Yehuda noted that OSes can easily 
detect when they are being virtualized (via timing irregu-
larities, for example), so that VM-based rootkits are no less 
detectable with this work. He also said that trusted comput-
ing technology could potentially be employed to ensure the 
underlying hypervisor boots from a known safe environment. 
Sorav Bansal of IIT Delhi asked whether binary translation 
could help further reduce overhead, and Ben-Yehuda said this 
was possible but difficult for nested virtualization, due to 
lack of knowledge of hypervisor memory layout.

mClock: Handling Throughput Variability for 
Hypervisor IO Scheduling
Ajay Gulati, VMware Inc.; Arif Merchant, HP Labs; Peter J. Varman, Rice 

University

Ajay Gulati presented mClock, a new algorithm for schedul-
ing I/O requests from VMs. He pointed out that controls on 
CPU allocation for VMs are fairly mature by now, but that 
there aren’t equivalent controls for I/O requests (IOPS). In 
particular, reservation and limit controls of a fixed number 
of IOPS/time are not available, which is problematic in that 
storage is often from a shared network device, causing vari-
able total capacity for all VMs on a host and making pure 
proportional sharing inappropriate.

Scheduling algorithms for VMs are often phrased in terms 
of time tags, in which the VM with the minimum time tag 
is scheduled. Gulati explained that the key points of mClock 
were real-time tags and separate time tags for reservations, 
limits, and proportional shares of resources beyond reserva-
tions. Real-time tags are used to ensure that the procedure 
can track actual rates of IOPS/time. Tags are prioritized so 

soft Research asked about handling errors and incorrect 
data. Haridasan replied that much of this was handled by the 
GPS location canonicalization algorithm, which converts a 
set of collected GPS samples into a path that goes through the 
underlying road network.

Virtualization 

Summarized by Alan Dunn (adunn@cs.utexas.edu)

The Turtles Project: Design and Implementation of 
Nested Virtualization
Muli Ben-Yehuda, IBM Research—Haifa; Michael D. Day, IBM Linux 

Technology Center; Zvi Dubitzky, Michael Factor, Nadav Har’El, and Abel 

Gordon, IBM Research—Haifa; Anthony Liguori, IBM Linux Technology 

Center; Orit Wasserman and Ben-Ami Yassour, IBM Research—Haifa

>Awarded Jay Lepreau Best Paper! 

Muli Ben-Yehuda presented the Turtles Project, which was 
awarded one of two Jay Lepreau Best Paper awards for OSDI 
’10. The Turtles Project is an implementation of nested 
virtualization support for the Intel x86 architecture, which 
means it allows software written to use virtualization hard-
ware support to run inside a hypervisor that already uses 
that hardware. Nested virtualization support allows for new 
applications, like hardware virtualization support for OSes 
that already are hypervisors (e.g., Windows 7 with XP mode) 
and deployment of virtual machines in the cloud. The x86 
architecture supports only one level of virtualization in hard-
ware natively, so multiplexing the virtualization hardware 
is necessary. The difficulty is to perform this efficiently, 
as changing the state used by the virtualization hardware 
requires expensive VM exits, and multiplicatively more exits 
per level of nesting.

Ben-Yehuda focused on MMU and I/O virtualization effi-
ciency improvements. For MMU virtualization, he described 
three schemes in increasing order of efficiency. The key 
problem is that even with extra Extended Page Table (EPT) 
hardware support for more efficient translation, with any 
nesting depth greater than one there will be more transla-
tions necessary than hardware can provide, so translations 
must be compressed into fewer mappings. The most efficient 
“multi-dimensional” paging scheme compresses EPT map-
pings, since they change less frequently. For I/O virtualiza-
tion efficiency, Ben-Yehuda described the most difficult case 
they had to tackle: the direct assignment of devices to nested 
VMs. Direct assignment requires an IOMMU for safety, but 
for nesting there is added difficulty, since the IOMMU itself 
must be emulated and requires analogous mapping compres-
sion.



 ;login: FEBRUARY 2011  Conference Reports   101

becomes easier in this design, since hardware counter values 
can be converted into new system clock times merely by 
using the calibration variables of Dom0 on the new machine 
rather than transplanting feedback-related state calibrated 
on one machine onto another whose counters have origins, 
drift, and temperature environment that are completely dif-
ferent.

The RADclock-based design was tested against Xen’s current 
and prior timekeeping mechanisms. Veitch said that the mea-
sured error in standard RADclock operation appears to be 
low enough that the primary source appears to be air-condi-
tioning flow in the room. Also, migration caused inaccuracy 
of the order of tens of microseconds in RADclock, as opposed 
to several seconds with current Xen timekeeping.

David Cock of NICTA asked whether a dependent clock 
design like RADclock could be used with feedback-based 
mechanisms without compensating clocks, as in Xen’s cur-
rent timekeeping. Veitch claimed that this would be difficult. 
Another audience member wanted clarification on what 
accuracies are achievable with RADclock. Veitch said that 
this depends primarily on characteristics of the connection 
to a time server. He pointed to his prior work showing that 
many kinds of load (e.g., high temperature) are not problem-
atic, and estimated maximal accuracy in the range of tens of 
microseconds.

Workshop on Supporting Diversity in Systems 
Research (Diversity ’10)

October 2–3, 2010 
Vancouver, BC, Canada

Summarized by James Mickens (mickens@microsoft.com)

Research Agendas: Picking Good Ones and Publishing 
Successfully
Dawn Song, University of California, Berkeley; Anthony Joseph, Intel and 

University of California, Berkeley

Dawn Song, a professor at Berkeley, provided several pieces 
of advice for students who were struggling to publish or 
pick compelling project ideas. First, she observed that many 
students only read papers in their particular subfield of 
computer science. Song recommended that students read a 
broad range of literature in computer science and beyond; by 
doing so, they will learn about important problems and tech-
niques in other areas which may relate to their own subfield. 
In a similar vein, Song advised students to communicate 
frequently with professors and other students, both through 
formal channels like reading groups and informal channels 
like lunch meetings. Such face-to-face interaction provides 

that VMs not making their reservations take precedence and 
that VMs exceeding limits are not scheduled. The effective-
ness of mClock in maintaining limits and reservations was 
demonstrated empirically with a graphical side-by-side 
throughput comparison. A separate enhancement allowing 
VMs to gain credit for being idle was made, which is impor-
tant as I/O traffic is often bursty. mClock is general enough 
to be employed for other resources (such as network I/O) as 
well.

Etienne Le Sueur from NICTA pointed out that it appeared 
that the total IOPS/time dropped under mClock. Gulati said 
that the workloads of VMs in their experiments have differ-
ent read-write ratios, degrees of randomness, and I/O sizes, 
so that the degree of variance Le Sueur observed (several 
hundred IOPS) was not unexpected. Gulati pointed to work-
load details on a backup slide that is reproduced in the paper. 
Another audience member asked how mClock balances 
latency and throughput tradeoffs. Gulati responded that 
mClock is more about dividing IOPS among VMs with reser-
vation, limit, and share controls, but that prior VMWare work 
(PARDA) in FAST ’09 dealt with latency control by throttling 
hosts. He said that for stronger guarantees, ideally one would 
have underlying hardware guarantees from vendors.

Virtualize Everything but Time
Timothy Broomhead, Laurence Cremean, Julien Ridoux, and Darryl 

Veitch, Center for Ultra-Broadband Information Networks (CUBIN), The 

University of Melbourne

Darryl Veitch presented an architecture for tracking time 
more accurately in the Xen VMM. The motivation for this 
work is that there are a number of applications—including 
finance, network monitoring, and distributed gaming—that 
require accurate timing information, but current timekeep-
ing methods produce inaccurate results in VMs. Factors like 
clock drift combine with variable latency caused by other 
VMs in ways that can cause feedback mechanisms in ntpd, 
the current de facto standard for Linux timekeeping, to 
become unstable. Additionally, it is difficult to preserve cor-
rect times during live migration of VMs.

Veitch described his group’s prior work with the Robust 
Absolute and Difference (RAD) clock, and he explained why 
it is a good fit for Xen. The key design point of RADclock is 
that it is “feedforward”-based. This means that system clock 
timestamps, which already have corrections applied, are 
not used to timestamp timing packets. Instead, raw counter 
values are used, and clock calibration is achieved through 
variables that convert raw counters into real times. VM 
clocks can then all read one hardware counter and calibra-
tion variables hosted in Dom0, which has hardware access; 
this is referred to as a dependent clock design. VM migration 




