
; LO G I N : O C TO B E R 201 0 CO N FE RE N CE RE P O RT S 77

but most of this functionality already exists in VM technol-
ogy and there is an implementation trade-off.

june 25 , 3 : 30 p.m .–4 : 30 p.m .

Summarized by Paul Marinescu (pauldan.marinescu@epfl.ch)

■■ An Extensible Technique for High-Precision Testing of
Recovery Code
Paul D. Marinescu, Radu Banabic, and George Candea, École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Paul Marinescu started his presentation by arguing that
current general-purpose software testing lacks the tools for
testing error recovery code, as coverage information from
various systems indicates. He then introduced a tool, LFI,
that uses library-level fault injection to test error recovery
code without making changes to the system under test.

Marinescu said that the real problem when doing fault-
injection testing is finding good strategies to inject faults.
He then focused on answering the when, where, and what
to inject questions. He first introduced the notion of injec-
tion triggers, a mechanism that allows testers to specify
with an arbitrary degree of precision when to inject. Then
he showed a static analysis tool that can automatically find
where to inject faults by choosing only the places where the
return codes are not checked. Finally, he presented a differ-
ent static analysis tool that can automatically infer possible
error codes that an arbitrary library function can return.

The evaluation showed 11 new bugs LFI found in BIND,
MySQL, Git, and PBFT, as well as the ability to improve line
coverage of error recovery code from less than 5% to 35%
for Git and 60% for BIND, entirely automatically, without
writing new tests. LFI is open source software, available at
http://lfi.epfl.ch.

How can LFI work without needing source code since
some of its components were explicitly using source code
information? Marinescu replied that source code or domain
knowledge is not needed by LFI but can improve the results
if available. How fast are the static analysis tools presented?
The tools can analyze large systems (e.g., MySQL, libxml2)
in a couple of minutes.

■■ Mining Invariants from Console Logs for System Problem
Detection
Jian-Guang Lou and Qiang Fu, Microsoft Research Asia; Shenqi
Yang, Beijing University of Posts and Telecom; Ye Xu, Nanjing
University, P.R. China; Jiang Li, Microsoft Research Asia

Jian-Guang Lou argued that console logs are widely used
by programs because (1) they are easy to use and (2) the
free text format is very expressive. However, console logs
are usually too big to manually parse in search of abnor-
mal program behavior. The speaker proposed an automatic
solution for interpreting log files. At its core, the solution
relies on linear invariants based on the execution count of
logging instructions. The linear invariants can be used to

model control flow such as sequential execution, branching,
or joining. Violations of these invariants indicate anomalies
and also point to the place where the anomaly happened.

The problem is that automatically inferring the invariants
for an arbitrary log file is NP-hard. Lou proposed a three-
step solution for reducing the computational cost of the
analysis: (1) the free text is transformed into structured text;
(2) log entries are grouped according to the system variables
they refer to; and (3) a hypothesis and testing algorithm
is used to find the invariants. Several strategies including
divide and conquer, early termination, and skipping are
proposed to reduce the search space of invariant mining.

The evaluation consisted of searching for anomalies in Ha-
doop, CloudDB, and SharePoint log files. The approach was
able to find anomalies in all the log files, out of which about
75% were caused by bugs.

Timothy Roscoe was interested in whether domain knowl-
edge could be incorporated in the proposed algorithm. Lou
said that is certainly feasible and could improve the accu-
racy of the analysis.

USENIX Conference on Web Application
 Development (WebApps ’10)

June 23–24, 2010
Boston, MA

WebApps ’10 shared the opening session and Keynote Ad-
dress with the 2010 USENIX Annual Technical Conference:
please see p. 63 for the report on that session.

june 23 , 10 : 30 a .m .-noon

Summarized by Rik Farrow (rik@usenix.org)

■■ Separating Web Applications from User Data Storage with
BStore

Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich, MIT
CSAIL

Won Best Paper Award!

Ramesh Chandra pointed out that while some apps (e.g.,
Google mail) rely on a single online store, other applications
require getting data from one site and doing something with
it using a different site. Chandra used an example where a
photo editing site needs to get on Flickr to gain access to a
photo.

Their solution is BSTORE, moving data storage within the
browser. BSTORE provides a single, simple (four call) API
for storing data and is implemented in JavaScript. Back-end
storage can be in the cloud (S3) or local. BSTORE provides
security through tagging data. Only the principal or the
user can tag data for sharing with another application. Tag-
ging is used for more than access control, as files may be
logically grouped using tags.

78 ; LO G I N : VO L . 35, N O. 5

They ported several Web apps with a minimal amount of
effort, adding about 5% to the size of the app. BSTORE uses
postMessage for RPC within the browser, and currently only
works in Firefox and Chrome. Performance is similar to
using XMLHttpRequest.

Someone asked if BSTORE could use the browser cache for
local store, and Chandra pointed out that the browser cache
uses the same origin policy for security, so cannot be used.
Dan Peek asked if they had tried to extend this to multiuser
control, and Chandra said that tagging supports this. Also,
they include version numbers with files, and that would
prevent a file from being overwritten. Ben Livshits asked
if they had thought about XSS or code injection. Chandra
replied that each piece of code runs in its own window and
process space, and they use an RPC built on top of post-
Message.

■■ AjaxTracker: Active Measurement System for High-Fidelity
Characterization of AJAX Applications
Myungjin Lee and Ramana Rao Kompella, Purdue University;
Sumeet Singh, Cisco Systems

Myungjin Lee pointed out that applications are being mi-
grated to the cloud using AJAX (Asynchronous JavaScript
and XML). AJAX supports autonomous action on the client
side, and this poses problems for measuring performance.
The authors’ goal is to characterize full application sessions,
including flows/servers, request/response distributions, and
inter-request time, as well as local operations such as drag-
ging an icon into the trash or clicking on a map.

Their approach involves capturing X events using a pro-
gram as well as capturing network traffic at the client side
using tcpdump. They compared their approach, which
collects both X events and network traffic, to a network-
only approach, and tested both at four different bandwidth
conditions. You can download the tool here: http://www
.cs.purdue.edu/synlab/ajaxtracker/.

James Mickens wondered if they were using the DOM object
ID in XML files. Lee pointed out that they are using an
object ID as defined by users, since they have access to the
X event that generated the actual event in the Web browser.
Someone else asked how well their approach worked in
richly dependent apps, and Lee said that there were limita-
tions to their approach. John Ousterhout wondered if they
had overfitted their data as shown in a graph in their paper.
Lee said that they had picked one of four bandwidths to
characterize the dominant bandwidth based on network
traces, but did not use a sophisticated model to fit the curve.

■■ JSMeter: Comparing the Behavior of JavaScript
 Benchmarks with Real Web Applications
Paruj Ratanaworabhan, Kasetsart University; Benjamin Livshits
and Benjamin G. Zorn, Microsoft Research

Ben Zorn stated that benchmarks, such as SunSpider and
V8, do a poor job of capturing real-world Web applica-
tion performance. JSMeter is a Microsoft Research project

that instruments Internet Explorer, but is only currently
available within Microsoft. The advantage of being able to
instrument the browser itself, rather than running bench-
marks on top of the browser, is that JSMeter can measure
three areas of JavaScript runtime behavior: functions and
code; heap-allocated objects and data; and events and han-
dlers. Zorn pointed out that JavaScript is event-driven, and
benchmarks run tight loops, allocate little data on the heap,
and have few events.

Zorn displayed graphs showing the different heap behavior
of several Web apps, including ones from Google, Amazon,
eBay, The Economist, and Microsoft. JSMeter makes it easy
to see different programming styles, such as how the heaps
grow continuously with Gmail, while eBay wipes the heap
clean with each new page. JSMeter also clearly shows that
Google caches functions across reloads to speed perfor-
mance. In Bing, you stay on the same page and the heap
grows a lot over time, where Google focuses on using less
memory.

Zorn went on to point out more shortcomings of V8 and
SunSpider that make them poor benchmarks (and one that
makes IE look much slower than Firefox and Chrome). He
suggested that people visit their Web site and read their
tech report: http://research.microsoft.com/en-us/projects/
jsmeter/.

Does JSMeter deal with anonymous functions? JSMeter does
monitor them, uses hashes to identify functions, and counts
each invocation. Have they have noticed any changes in
the way JavaScript is being used? JavaScript use is indeed
a moving target and they expect its use will keep changing
over time. Armando Fox mentioned that there are a number
of code frameworks that generate JavaScript and wondered
what framework writers could do to make the world better.
Zorn said that the amount of code downloaded affected per-
formance a lot, so why download code that is never going to
be executed? He suggested staging code and lazily down-
loading code as needed. Someone else asked about how
Web apps could better use browsers, and Zorn suggested
that better tools need to be available. While JSMeter was an
internship project in IE8, IE9 will provide tools that will be
available to developers.

june 23 , 1 : 30 p.m .– 3 : 00 p.m .

Summarized by Aiman Erbad (aerbad@cs.ubc.ca)

■■ JSZap: Compressing JavaScript Code
Martin Burtscher, University of Texas at Austin; Benjamin
Livshits and Benjamin G. Zorn, Microsoft Research; Gaurav
Sinha, IIT Kanpur

Ben Livshits from Microsoft Research introduced JSZap, a
technique to efficiently compress JavaScript code based on
Abstract Syntax Tree (AST) representation. Livshits claimed
that 85% of downloads for rich Web applications is Java-
Script code. An application like Bing Maps has more than

; LO G I N : O C TO B E R 201 0 CO N FE RE N CE RE P O RT S 79

70,000 lines of code, which translates to more than 1MB of
network traffic. This trend adheres to the conventional wis-
dom of moving more code to the client for responsiveness.
However, execution cannot start without the code, so their
approach aims to make the wire format lighter.

The main idea in JSZap is to send JavaScript code using an
AST-based representation instead of sending the raw code
and generating the AST at the client. JSZap uses Gzip as
second-level compressor, following the wisdom that says if
you can’t beat them, join them. JSZap splits the JavaScript
compression into three streams: productions, identifiers,
and literals. JSZap proposes a number of techniques for
compressing productions, such as frequency-based produc-
tion renaming, differential encoding, predictable production
elimination, and tree-based prediction by partial match. To
compress identifiers, JSZap used a symbol table instead of
a flat stream. JSZap achieved an average 10% improvement
across the board. Preliminary results were verified using
benchmarks with different sizes, application types, and a
mix of machine-generated and hand-crafted code. Livshits
claimed that AST-based representations can have broader
applicability in caching incremental updates, unblocking
HTML parser, correctness, and security checks.

Dan Peek from Facebook asked why the AST is the right
abstraction level. Livshits explained that the language is
standardized while lower-level representations (byte codes)
are specific to browsers, and it is a small step to get the
AST. Wanchun Li from Georgia Tech asked about perfor-
mance trade-off and how much time it takes to parse the
AST. Livshits explained that is future work and that they
are not concerned about time on the server side. Jon Howell
from MSR asked about other places where Gzip fails and the
JSZap algorithm succeeds. Livshits mentioned tree-based
predictive matching where structure matters, and places
where the window of compression is small in Gzip. In a
follow-up, Dan Peek asked about the ability to tweak Gzip
settings. Livshits said they used the same settings in the
browser, because some powerful compression algorithms
are not supported by browser implementations.

■■ Leveraging Cognitive Factors in Securing WWW with
CAPTCHA
Amalia Rusu and Rebecca Docimo, Fairfield University; Adrian
Rusu, Rowan University

Amalia Rusu explained how they mapped their knowledge
in the field of handwriting recognition and image analy-
sis to improve Web security and CAPTCHA generation
algorithms. CAPTCHA challenges are generated automati-
cally on the fly without dependence on a database and are
public, so the algorithm/code to build CAPTCHAs should
be publicly accessible. They are used widely to differenti-
ate between humans and machines and secure Web sites.
CAPTCHAs are made harder for machines but this some-
times comes at the expense of human usability. The authors’
work can improve the user experience of CAPTCHA while
still maintaining or even improving the security, which

Rusu refers to as usable security. The main contribution is
to introduce structures and transformations in CAPTCHA
challenges based on cognitive factors so that only machine
recognition is hindered.

Some basic ideas which this work revolves around are:
handwritten CAPTCHAs have unique characters that
increase readability while making it harder for machine rec-
ognition, and tree-based structures are the basic structure
for information visualizations so trees are familiar to people.
They also leverage principles of cognitive psychology (such
as symmetry, proximity, similarity, etc.) and geon theory
in pattern recognition to transform handwriting. These
could also be extended to the tree structure as well. So the
CAPTCHA they envision is a tree structure with each node
representing a handwritten word. To solve the challenge,
the human/machine will answer a question such as what
are the words connected with an edge, or give me all the
pairs in this tree. So in order to pass the CAPTCHA you
need to recognize the words, segment the information, and
interpret it, which is where machines fail. In a preliminary
evaluation, they tested with both machines and users with
three state-of-the-art recognizers. Machines had a low rec-
ognition rate of 1–5%. In usability testing, the recognition
rate for humans is more than 80%, and users gave these
CAPTCHAs a difficulty level of 2 (5 is most difficult). These
results show the feasibility of the handwritten tree-based
CAPTCHAs.

James Mickens from MSR asked how you would attack this
system. Rusu explained that the pre-processing phase before
segmentation is used to attack CAPTCHAs. They created
some custom attacks based on techniques such as occlusion.
These attacks can make recognition for other transforma-
tions worse, so we cannot combine attacks for different
kind of transformations. Dan Peek from Facebook asked
if these techniques can enhance recognition neutral to the
language. Rusu explained that, for their approach to work,
they need to generate everything on the fly. So if they have
a tool to generate the words based on IP addresses using the
language common in the specific region, this might improve
the CAPTCHA generation and make it language-neutral.

■■ Gulfstream: Staged Static Analysis for Streaming
JavaScript Applications
Salvatore Guarnieri, University of Washington; Benjamin
Livshits, Microsoft Research

Salvatore Guarnieri introduced Gulfstream, which helps
with safe inclusion of third-party source code using staged
static analysis. Two ways to have safe inclusion are run-time
enforcement, which detects the behavior of code at run-time
and prevents the damage, and static analysis, which ana-
lyzes the code before it is sent and, if it detects that some-
thing bad could possibly happen, prevents the page from
being sent to the user. Static techniques are the focus here,
and they usually require full source code. But JavaScript is
usually streamed as you interact with the page. Updates are
relatively small compared to the static page you are getting

80 ; LO G I N : VO L . 35, N O. 5

from the server initially. Gulfstream performs offline static
analysis on the static page in the server and online analysis
of the small updates in the client.

To understand the behavior of the program they use que-
ries. For example, what does variable f refer to or is alert()
ever called? To get the information, they use points-to
analysis, which tells them what memory location f points
to. They have two techniques for the points-to analysis: (1)
datalog with an engine based on binary decision diagrams,
which is fast for large programs and highly tuned but has
a large start-up cost and is difficult to integrate in brows-
ers; (2) graph-based flow analysis, which has a small start
time but does not scale very well. This trade-off is reason-
able when the updates are small. Gulfstream starts by
normalizing the JavaScript, building the flow graph, and
serializing the graph. Then Gulfstream performs points-to
analysis and uses the results along with the flow graph to
answer the queries. In evaluation they asked if Gulfstream
is faster than non-staged (static) analysis using a representa-
tive benchmark. They simulated analysis on a diverse set of
devices (PC and mobile) with different CPUs and network
speeds. The main results are that slow devices benefit the
most from Gulfstream because the analysis is CPU-intensive
and is harder to perform in slow devices. A slow network
can negate the benefits of the staged analysis if the CPU
is fast enough to finish the full analysis before the staged
analysis results finish transferring over the network. Large
page updates don’t benefit from Gulfstream due to analysis
overhead (> 60kb).

Jon Howell from MSR asked why answering queries is
slow—taking tens of seconds for large devices (which means
minutes for small devices)—for both techniques. Guarni-
eri mentioned that they need to optimize the approach to
yield timely results. Godmar Back from Virginia Tech asked
whether the fact that all these applications were written to
be modular can be exploited in the analysis. Guarnieri said
that optimizations based on modularity might have mali-
cious applications, so they were not considered.

june 23, 3 : 30 p. m .– 5 : 0 0 p.m . :
work-in-progress reports (wips)
and poster promos

Summarized by Pradeep Teregowda (pbt105@psu.edu)

■■ Detecting User-Visible Failures in AJAX Web Applications
by Analyzing Users’ Interaction Data
Wanchun Li, Georgia Institute of Technology

Wanchun Li pointed out that developers and administra-
tors are not aware of user failures and issues with interfaces,
which include AJAX and input elements in Web applica-
tions. He presented a method for detecting such failures of
interfaces by identifying interactions such as repeated steps
or missteps from user interaction data. He presented initial
results for an AJAX application.

■■ Doha: Real-Time Support for Event-driven Web
 Applications
Aiman Erbad and Charles Krasic, University of British Columbia

Aiman Erbad presented Doha in the context of HTML5.
The proposed HTML5 standards provide powerful tools
for execution on the client side. Doha allows developers to
effectively leverage workers on the client side. It does this
by managing resources and coordination of Web workers so
that event-driven Web applications can be supported in real
time.

■■ MyEbay Research Web Service: An Application to Practice
the Web Service
Shaun-inn Wu and Jian Huang, California State University San
Marcos

Shaun-inn Wu presented an approach for involving students
in building Web applications. MyEbay was built for students
involved in undergraduate coursework. This service allows
users to explore the depth of the Web application features
and interfaces. MyEbay has been successful in involving
students in Web application projects.

■■ A Seamless Online Application and Advising System for a
Degree Program
Shaun-inn Wu, California State University San Marcos

Scheduling university courses presents several challenges,
especially coordinating student choices and courses. Shaun-
inn Wu and his group are building an online advice system
for degree programs offered by the university. In scheduling
courses, students are advised to contact other students fol-
lowing the same course pattern.

■■ Fine-Grained Isolation in Web Browsers Using Script
Spaces
Amarjyoti Deka and Godmar Back, Virginia Tech

Godmar Back points out that the current state of browser
isolation cannot support complex applications even with
Google Chrome. Pages contain widgets executing third-par-
ty code; client-side extensions running content scripts on
Web pages are particular examples. Script Spaces developed
by his team provide an isolated execution environment for
all parts of the Web page, separate namespaces, and access
to CPU and memory. Script Spaces allows for fail-safe load-
ing of pages without lockups. A prototype based on Firefox
3.0 has been developed.

■■ SaaS and Cloud Computing in Undergraduate Software
Education
Armando Fox, University of California, Berkeley

Armando Fox discussed the use of cloud computing for a
SaaS course. Adopting cloud computing saved resources
and made it easier to finish assignments. The focus on
SaaS using agile development also resulted in high-quality
working prototypes by the end of the semester. Dedicated
server resources would have consumed entire data centers
and could now be used only when needed. The lifetime of
projects also lasted more than the length of the course.

; LO G I N : O C TO B E R 201 0 CO N FE RE N CE RE P O RT S 81

■■ xHunter: Tracking XSS Attacks on the Net
Elias Athanasopoulos, FORTH-ICS

Elias Athanasopoulos presented xHunter, a tool which
allows researchers to track and analyze patterns of XSS
attacks. Cross-site scripting (XSS) attacks are a significant
security issue for Web applications. xHunter processes
URLs, trying to build syntax trees using the provided URL.
It marks those as suspicious that generate high-depth JavaS-
cript syntax trees. Elias requested that users submit URLs
to xHunter.

■■ A Case for PIQL: Performance Insightful Query Language
Michael Armbrust, Nick Lanham, Stephen Tu, Armando Fox,
Michael Franklin, and David Patterson, University of California,
Berkeley

Stephen Tu et al. found that many applications are mov-
ing away from traditional relational databases to key/value
pair stores for scalability and performance guarantees. They
propose PIQL, an expressive language for key/value stores.
An aspect of PIQL adoption was challenging developers to
think beyond the standard database design, forcing them
to handle performance issues at design time. Applications
developed with PIQL were demonstrated.

■■ A Performance-Monitoring Framework for Multi-Tier Web
Applications
Chris McCoy, Northeastern University and Smarter Travel
Media; Ryan Miller, Smarter Travel Media

Chris McCoy and Ryan Miller found it was a challenge
monitoring profile information across multiple tiers, espe-
cially when they consist of heterogeneous systems and ap-
plications. The tool they developed allows administrators to
monitor performance across the cluster with multiple tiers
supporting better granularity than those provided by cur-
rent tools. The data collected from the systems is displayed
in a user-friendly interface.

■■ A Combined Autonomic and On-Demand Approach to
 Configuring Virtualized Development Environments
Ryan Miller, Smarter Travel Media; Matt Warren, Northeastern
University and Smarter Travel Media

Ryan Miller said that developers in virtualized environ-
ments can save time and improve efficiency by adopting
the proposed autonomic and on-demand configuration
system. Such an adoption would reduce development time
by enabling administrators to quickly deploy the virtual-
ized environment without being constrained by complex
configuration steps.

■■ Taking Control Away from Users . . . in a Good Way
Jon Howell, Microsoft Research

Jon Howell raised the provocative question of how much
control should be vested with users. The contention was
that, while simple choices are easy for the user to under-
stand and answer, questions which are more involved tend
to confuse the user. Such a model already exists in data
centers and can be extended to desktops and Web brows-

ers. Architectural changes and user interface issues were
discussed.

june 2 4 , 9 : 00 a .m .– 10 : 00 a .m . : invited talk

■■ Gmail: Past, Present, and Future
Adam de Boor, Staff Software Engineer, Google

Summarized by Pradeep Chalise (pradeepchalise@gmail.com)

Adam de Boor started by outlining his talk: where Gmail
came from, where it is now, what the Gmail team learned,
and their plans for the future. Today, Gmail has expanded
beyond mail to include video chat, voice chat, Gmail labs,
and lots more. For Gmail to arrive at this stage, it had to un-
dergo a lot of technical modifications since its launch back
in 2004. At that time, Gmail was a slick Webmail applica-
tion using AJAX, and it has continued to develop ever since.
De Boor said that to fulfill Gmail’s promise to its users, it
has evolved into a single complex application supporting a
lot of diverse functionalities.

De Boor wanted to provide some higher-level concepts
regarding the macro architecture of the communication be-
tween the Gmail client and server, how the business logic is
invoked and is used to reply to the client for chat, mail, etc.
He explained some details of implementation of the Gmail
client module and the Gmail server. Then he provided an
introduction to mods, which are named code segments
enabled on a per-user basis. He then combined the concept
of modules and mods to give us the clear idea of what is
possible and what is served. He also compared Gmail with
Microsoft Windows features like video, chat, messaging, etc.

Gmail’s future plans include dealing with service-oriented
architecture, trying to make users feel that Gmail is like a
desktop application. Gmail developers are now planning to
use HTML5, which is exciting because it reduces the DOM
by 30% and initial load time by 12%.

Finally, de Boor informed the audience about the lessons
learned by the Gmail team through its experience: testing is
vital, type-checking is important, it’s beneficial to instru-
ment everything and codify lessons learned in sanity tests.

Since Google heavily depends on JavaScript, are there any
plans on the horizon for using any other language? Lots of
programmers understand JavaScript and do simple things
with it, so they will continue using it. There is no single ap-
plication that doesn’t use JavaScript right now.

june 2 4 , 10 : 30 a .m .– noon

Summarized by Pradeep Chalise (pradeepchalise@gmail.com)

■■ Managing State for Ajax-Driven Web Components
John Ousterhout and Eric Stratmann, Stanford University

John Ousterhout started his speech by giving an introduc-
tion to the basics of Ajax and why and how Ajax-driven
components cause problems. To deal with the problem

82 ; LO G I N : VO L . 35, N O. 5

that Ajax complicates Web applications is the idea of using
reusable Ajax components that hide complexity. But this
solution creates the problem of maintaining the state of
the browser across Ajax requests. To solve this problem,
his team proposes two possible solutions: using reminders,
which store state on the browser, and using page properties,
which store state on the server. He also emphasized that
neither of these solutions is perfect.

Reminders are the collection of name-value pairs similar to
the View State mechanism in ASP.net, except more granu-
lar and embedded in the page by server-side components.
Reminders, however, have security implications since they
store internal server state (potentially sensitive), requiring
the use of encryption.

Page properties, which are name-value pairs specific to a
page, are stored in session, are created during the initial
page rendering, and are accessible/modifiable during Ajax
requests. Page properties have no security issues but include
extra overhead for saving properties. The biggest problem
with Properties is garbage collection.

To demonstrate the work his team has done, Ousterhout
provided trace-driven simulations showing a graph with
broken pages per one thousand views in the Y axis and the
Least Recently Used list length (per-user) in the X axis. He
concluded that managing Web application state is hard,
and neither reminders nor page properties are ideal but that
garbage collection problems are less serious than security
problems and that, overall, page properties are better.

■■ SVC: Selector-based View Composition for Web
 Frameworks
William P. Zeller and Edward W. Felten, Princeton University

William Zeller started his talk by giving an introduction to
Selector-based View Composition (SVC) as a new program-
ming style for Web application development. Developing a
framework like SVC targeted for supporting both JavaScript
and non-JavaScript browsers is worthwhile because there
are still some browsers without JavaScript. He showed us
how requests travel in a Model View Controller (MVC) ar-
chitecture pattern from client to the controller and browser
first without and then with SVC. Further, he went into de-
tails of the SVC-server side API. APIs are used to compose
views together, and (CSS) selectors are used to identify the
point of composition.

SVC allows developers to write/view/update code only
once. He also said that the reasons for using selectors are
that they are familiar to developers, are more common in
JS frameworks, and are used in the HTML5 API. To give an
idea of what SVC looks like, he provided some actual code
samples, showing that they implemented nine actions with
the possibility of easy extension. He also made clear how
non-DOM actions are added to SVC.

Finally, he talked about the alternatives to SVC such as
GWT, Cappuccino, and RIS, but none of them supports

non-Ajax browsers, which are supported by the SVC model.
He also said that extension of SVC could be done in terms
of additional language support (Python instead of PHP) and
additional client-side libraries. He concluded that SVC pro-
vides automatic progressive enhancement and compatibility
with older browsers.

Further information about this paper can be found at
http://svc.from.bz.

■■ Silo: Exploiting JavaScript and DOM Storage for Faster
Page Loads
James Mickens, Microsoft Research

James Mickens started by discussing the process of interac-
tion between a client and a server and how large round-trip
times (RTT) are harmful and increase page load time. There
are two general approaches to decreasing the RTT: (1) re-
ducing Cascading Style Sheets and JavaScript in a page, but
nobody will do that because it would decrease the page’s
fanciness; (2) inlining JavaScript and CSS, but doing so
would make the browser cache useless.

As a solution to this problem, he introduced Silo, a system
that leverages JavaScript and DOM storage to reduce both
the number of HTTP requests and the bandwidth required
to construct a page. Mickens evaluated the Silo protocol
as having the advantages of being able to fetch an arbi-
trary number of JSS/CSS in two RTTs, with caching being
restored and working on unmodified browsers. Silo exploits
four key features: read/write, key+value, asynchronously
fetching Web data, and overwriting a page’s data.

Mickens said that slow pages cause anger and depres-
sion. To avoid this, we either have to reduce the number of
objects or inline everything. Both options have their own
problems. But Silo is an appropriate solution since it uses
JavaScript and DOM storage to aggressively inline HTML,
JS, and CSS and uses Cache with DOM storage instead of
regular browser cache.

Someone asked if Silo is helpful for all kinds of Web sites,
or are there any situations where you lose some functional-
ity by using Silo? Wickens responded that delays may vary
depending on how the Web site is designed.

june 2 4 , 1 : 30 p.m .– 3 : 00 p.m .

Summarized by Thomas Moyer (tmmoyer@cse.psu.edu)

■■ Pixaxe: A Declarative, Client-Focused Web Application
Framework
Rob King, TippingPoint DVLabs

Rob King presented Pixaxe, a client-focused Web applica-
tion framework, supporting the model-view-controller
(MVC) design pattern. The framework is designed for
building Web interfaces with legacy code in mind. Pixaxe
is built from several components, with each component
being stand-alone. King presented the general structure of
an example Pixaxe application and described each of the

; LO G I N : O C TO B E R 201 0 CO N FE RE N CE RE P O RT S 83

underlying components and how they work together to form
the overall framework.

One of the main features of Pixaxe is that all of the process-
ing is done on the client. The only operation the server is
required to support is the ability to serve static files. The
views developed for Pixaxe are valid XHTML, meaning the
application developer can leverage existing knowledge of
XSL transformations and XSLT macros. The logic in the
views is written in the form of Jenner expressions. Jenner is
one of the three components for Pixaxe. Furthermore, the
Jenner component is a superset of the ECMAScript expres-
sion language (Esel), the second component of the frame-
work. The final component of the framework is the parser/
combinator library, named Kouprey. Kouprey is written in
ECMAScript, and runs in all major browsers supporting
JavaScript. King finished by highlighting the availability of
the code at http://www.deadpixi.com and taking questions.

To illustrate the simplicity of the framework, King presented
a complex example that pulled log files from a server and
presented them to the client. The client was responsible for
all of the rendering and processing, with the server only
providing the code and data. The client stores all of the data
in the model, which is then used by the view to generate
the final output seen by the client.

One audience member wondered how complex an applica-
tion had to become before Pixaxe was no longer a good
framework to choose. King responded that the best target
for Pixaxe was a single model with a single view and that
more complex applications would probably be suited to
other frameworks.

■■ Featherweight Firefox: Formalizing the Core of a Web
Browser
Aaron Bohannon and Benjamin C. Pierce, University of
 Pennsylvania

Aaron Bohannon began the talk with a series of questions
related to the behavior of browsers. The first question re-
lated to properties of the DOM, specifically the ownerDocu-
ment property and how the value is set. The second ques-
tion related to altering the DOM to force script re-execution,
noting that it is not possible to re-execute a script once
it has been run. The final question discussed how event
handlers can obtain access to the window that received the
event, noting that the asynchronous nature of event han-
dlers made the answer to this question unclear. Bohannon
used these three questions to drive home a simple point:
we don’t fully understand all of the complex components of
today’s browsers and how they interact.

Featherweight Firefox is a model of the core functionality
of the browser. Bohannon described the larger goal of this
body of work to be a formal understanding of the security
policies of browsers and how the enforcement happens. A
formal model of the core functionality is required before
formal security proofs can be presented. The model pre-
sented in the talk does not include any security features of

the browser, such that the model can serve as a basis for
modeling both current and proposed security features.

Bohannon highlighted several of the key features of the
model, including the modeling of multiple windows and
pages, mutable DOM trees, user inputs, event handlers,
cookies, and network operations. Currently, the model does
not have support for history, HTTP error codes and redi-
rects, timeouts, or JavaScript and file URL handlers. Some
of these features would require modeling the current secu-
rity features of the browser, and are left out as a result.

The first questioner asked who the target audience of the
model was. Bohannon sees the target audience as browser
developers and researchers. Browser developers can use
the model to gain insight into the browser, and researchers
can use the model to develop new security mechanisms for
browsers. What larger lessons were learned in doing this
modeling? That browser behavior was found to be highly
non-deterministic and standardizing the behavior would
make things simpler. Why did the authors use small-step
semantics? Small-step was chosen since it provides the most
detailed information about the browser’s internal workings.

■■ DBTaint: Cross-Application Information Flow Tracking via
Databases
Benjamin Davis and Hao Chen, University of California, Davis

Benjamin Davis presented DBTaint, a system for providing
taint tracking in Web applications. Davis began by describ-
ing current solutions for taint tracking and how they are in-
sufficient. For example, systemwide tracking typically works
at the process level, leading to marking all Web application
processes as tainted as soon as they process any user input.
The next approach was to examine solutions that perform
taint tracking within a single process, such as Perl’s taint
mode. Davis argued that such systems don’t allow for track-
ing information flow between the various applications that
comprise a Web application.

DBTaint is a system that provides information flow tracking
between the Web application and the database storing the
data. DBTaint relies on the taint tracking systems present in
languages like Perl and Ruby, as well as work being done to
add taint tracking to Java and PHP. These systems allow the
Web application to mark and track information as it enters
the application and as it is processed. The database schema
for an application is modified slightly to track the taint
value of each value in the database. The prototype relies
on the composite datatypes provided by PostgreSQL. The
database interface is modified to work with these composite
datatypes. The current prototype provides support for pa-
rametrized queries as well as queries constructed on the fly.
The evaluation showed that the overhead was roughly 10%.

Does the system work with queries that are built on-the-fly,
and not as parametrized queries? The current system does
handle this; Davis provided a quick example showing that
the taint tracking would require knowing which parts of the
SQL statement were tainted. The second question related to

84 ; LO G I N : VO L . 35, N O. 5

handling implicit flows in the application. Davis responded
that the current system only handles explicit flows. Had
DBTaint led to the discovery of any flaws in the applica-
tions used in the evaluation? They did not discover any new
flaws, but discussed several possible uses of DBTaint be-
yond information flow tracking, such as regression testing.

june 2 4 , 3 : 30 p. m .–4 : 30 p.m .

Summarized by Thomas Moyer (tmmoyer@cse.psu.edu)

■■ xJS: Practical XSS Prevention for Web Application
 Development
Elias Athanasopoulos, Vasilis Pappas, Antonis Krithina-
kis, Spyros Ligouras, and Evangelos P. Markatos, Institute of
 Computer Science, Foundation for Research and Technology—
Hellas; Thomas Karagiannis, Microsoft Research, Cambridge

Elias Athanasopoulos opened the talk with justification
for another anti-cross-site scripting (XSS) framework. He
argued that each of today’s frameworks failed in certain
ways, including not being developer-friendly, unacceptable
overhead, not being backwards-compatible, and not being
DOM-independent. Their solution, xJS, addresses each of
these issues and can defeat most XSS attacks. Athanaso-
poulos then introduced a new type of XSS attack called
“return-to-JavaScript” attacks. He gave some examples of
these attacks and showed how current techniques failed to
prevent them.

xJS is a solution based on instruction-set randomization.
The legitimate JavaScript in each page is passed through an
isolation operator on the server that encodes the JavaScript.
In order to decode the JavaScript on the client, the key is
passed to the client. In their implementation, the isola-
tion operator was the XOR operation followed by Base64
encoding. This encoded blob is then inserted where the
script code would normally be and the client must run the
isolation operator before being able to execute the script.
Any injected code will be injected as plaintext and become
muddled and not be understood by the JavaScript inter-
preter.

What JavaScript was protected in their implementation? The
current implementation only encoded stand-alone JavaScript
files, script tags in static files, and event handler code (e.g.,
onclick, onload, etc.) in static files. Handling dynamically
generated files is future work.

■■ SeerSuite: Developing a Scalable and Reliable Application
Framework for Building Digital Libraries by Crawling the
Web
Pradeep B. Teregowda, Pennsylvania State University; Isaac G.
Councill, Google; Juan Pablo Fernández R., Madian Kasbha,
Shuyi Zheng, and C. Lee Giles, Pennsylvania State University

Pradeep Teregowda began with a description of SeerSuite
and what services currently utilized SeerSuite. The Seer-
Suite framework is used to build digital libraries in an auto-
mated fashion. SeerSuite, unlike other digital libraries, does

not rely solely on user submissions. Sites like CiteSeerX and
ChemXSeer are currently available as examples of digital li-
braries built by SeerSuite. Scalability and reliability are two
of the main design goals of the SeerSuite framework.

The architecture of SeerSuite was described, with a focus
on how the framework automatically crawls the Web and
builds a digital library. The Web crawler begins with a set
of seed sites that it scans for links and documents. When
documents are found, another component within the frame-
work converts the document to plaintext and extracts the
necessary information. The document metadata that was
extracted is inserted into the database, adding the content
to the digital library.

One audience member asked about semantic information
provided by third parties. Teregowda responded that federa-
tion of services allows third parties to provide services and
access available data.

3rd Workshop on Online Social Networks
(WOSN 2010)

June 22, 2010
Boston, MA

session 1

Summarized by Saptarshi Ghosh (saptarshi.ghosh@gmail.com)

Balachander Krishnamurthy opened WOSN 2010 by
welcoming the attendees and thanking the contributors.
He read out welcome messages from Prgram Chairs Bruce
Maggs and Andrew Tomkins (who could not be present).

■■ Ghostbusting Facebook: Detecting and Characterizing
Phantom Profiles in Online Social Gaming Applications
Atif Nazir, Saqib Raza, Chen-Nee Chuah, and Burkhard
 Schipper, University of California, Davis

Atif Nazir presented techniques to characterize and detect
phantom profiles in online social gaming applications. He
highlighted the fact that social gaming, platforms for which
are provided by several popular OSNs, is now a billion-dol-
lar industry, yet no one has previously studied the impact
of social games on the underlying social graph. Highly
engaging social games provide a tendency for some gamers
to cheat by creating fake (phantom) profiles which contami-
nate the social graph. Whereas most OSNs presently rely on
reports by users and manual inspection to detect phantom
profiles, the objective of this work is to characterize phan-
tom profiles in a gaming application and devise a super-
vised algorithm to detect such profiles.

The authors study the phantom profiles created in a social
game played in Facebook, the “Fighters’ Club” (FC) game,
where two users start a fight and friends of either user can
support them. A set of 13 OSN-and-game-biased attributes
were tested to identify phantom profiles. However, the
social-network-based properties (e.g., number of friends,

