
; LO G I N : O C TO B E R 201 0	 CO N FE RE N CE RE P O RT S	 91

The authors crawled Twitter for data and performed textual
analysis to look for outage events. They focused on the
bi-gram “is down” as the primary indicator of service out-
ages, with the hashtag “#fail” being a secondary indicator
(mostly because it is a commonly used tag, hence leading to
a noisy signal). They examine the two words surrounding
service names during known outages and verify that the
word preceding the phrase “is down” effectively denotes the
name of the affected service. In order to filter out noise (e.g.,
people tweeting about non-existent outages), the authors use
an exponentially weighted moving average to determine the
incidental volume of tweets about each service. The stream
of tweets is divided into five-minute intervals, and any
service that exceeds a moving threshold for two consecutive
intervals generates an outage alarm. In order to tune the
parameters, the authors created a validation set by looking
for outages through search engines and manually inspecting
maintenance blogs. Subsequently, they tried different com-
binations of parameters and picked the ones that produced
the lowest F-scores.

In order to validate their methodology, the authors looked at
eight service disruptions that occurred in 2009, for which
they were also able to find an article or blogpost approxi-
mating the start time of the outage. Their automated system
managed to detect all eight test events, although the time to
detect the event sometimes lagged 10 to 50 minutes behind
the actual start of the outage. They noted that news articles
may be imprecise in their assessment of the actual outage
start times. The authors observed that detection times could
be improved by expanding the set of warning bi-grams,
e.g., to detect tweets such as “anyone having problems with
Gmail” instead of just “Gmail is down.”

Running the automated analysis on the entire corpus of
crawled tweets resulted in the detection of 894 outage
events affecting 245 entities. The authors determined that of
these 245 entities, 59 were false positives, mostly associated
with sporting events (where the phrase “is down” makes
sense). Of the top 50 experimentally discovered outages (as
determined by the volume of tweets containing “is down”),
the authors manually verified 48. Interestingly, nine of these
outages were of Twitter itself. One possible explanation may
be that third-party applications queue tweets during the
outages and push the updates out when Twitter comes back
online. Out of 50 random outages sampled by the authors,
35 were manually verifiable. These included outages of
major services such as World of Warcraft and Netflix.

One person was concerned about using the system to mea-
sure public sentiment, which Motoyama agreed would be
possible. Another question was about attacks, i.e., would it
be possible to spam/astroturf Twitter and fool the sensor?
This seems unlikely, given the large number of users on
Twitter, but is not impossible. Lastly, there was a question
about using tweets that are geo-tagged to further refine the
locations of failures. The author thought this would be a
very valuable feature, but presently this isn’t feasible given
the small percentage of tweets that are geo-tagged.

2nd USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud ’10)

June 22, 2010
Boston, MA

Foreword by Alva L. Couch (couch@eecs.tufts.edu)

For those of us who attended both HotCloud ’09 and ’10,
there has already been a transformation. In 2009, the work-
shop was dominated by definitions and struggles, including
carefully defining the kinds of clouds and struggling with
the oxymoron we call “cloud security.” In 2010, surprisingly,
the community has made some peace with the invariant
properties of clouds, and the workshop was overwhelmingly
solution-centered, with many small problems addressed and
at least a hint that the grand-challenge problems of cloud
privacy, security, isolation, and predictability may have
technical solutions. More profoundly, ideas have matured,
and it is reasonable to expect that many of the papers
presented in 2010 will appear shortly in full paper venues.
As scary as cloud security and privacy issues may be in
isolation, clouds still have the potential to transformation-
ally improve security and privacy of data for many small
enterprises, whose non-cloud security practices are current-
ly inadequate. In short, while 2009 painted a fairly bleak
picture with rather stormy clouds, 2010 looked forward to
a relatively sunny future, with a few cirrus clouds unobtru-
sively floating high in the sky.

perform ance and power

Summarized by Joshua Reich (reich@cs.columbia.edu)

■■ Seawall: Performance Isolation for Cloud Datacenter
Networks
Alan Shieh, Cornell University and Microsoft Research; Srikanth
Kandula, Albert Greenberg, and Changhoon Kim, Microsoft
Research

Currently, applications can’t guarantee performance after
migrating to the cloud. Globally shared resources, such as
network capacity share, are probably the most difficult to
control, and this is when other applications running in the
cloud are well behaved. When malicious users are present
(e.g., DNS attacks from cloud tenants) this problem becomes
even worse.

Alan Shieh presented Seawall, whose goals are to isolate
tenants, controlling their share of the network, while still
utilizing network capacity effectively. Additional constraints
are that tenant code is untrusted and system churn should
be minimized as VMs come and leave. Possible solutions
include counter-based flow level AC (can’t handle sufficient
number of flows), QCN (not yet standard, requires network
upgrades, solves a somewhat different problem), and end-to-
end bandwidth restrictions (easy to subvert).

Seawall works by having all traffic flow through a “Seawall
port” on the hypervisor. It requires no central controller
(each host runs its own rate controller); is enforced by “Sea-
wall ports,” sitting on the packet forwarding path (one per

92	 ; LO G I N : VO L . 35, N O. 5

source-dest pair); and detects congestion on src-dest paths,
using direct feedback, AIMD.

Practically, this approach needs to keep overhead low—in
particular, the main bottleneck is the Seawall port, which
interacts with every packet. Encapsulation might be one
approach, but this adds lots of overhead and breaks header
format optimizations in switches and hash-based load bal-
ancing. The authors suggest the possibility of “bit stealing,”
using spare bits from existing headers—e.g., IP-ID field and
some other bits from the constant part of the Seq#—and
although this seems like a bit of a kludge, they claim it
produces good performance in their simulator validation
experiments.

Someone asked about the Amazon security group, and
Shieh answered that Seawall can add that directly to the
Seawall port. Another person suggested speculative net-
work capacity use (e.g., spot pricing). Shieh noted that they
haven’t addressed this directly, although it doesn’t appear
that this would be a difficult extension. Someone asked
about the CPU time required for Seawall ports, and Shieh
said they spent a lot of time optimizing the code, but 40%
of the core cycles are still needed to implement this. Cen-
tralized rate limiting? They have considered other distrib-
uted feedback loops but believe centralized rate limiting
won’t scale.

■■ Performance Profiling in a Virtualized Environment
Jiaqing Du, EPFL, Switzerland; Nipun Sehrawat, IIT Guwahati,
India; Willy Zwaenepoel, EPFL, Switzerland

Jiaqing Du said that clouds are built on lots of different
hardware/software configurations, which provides signifi-
cant opportunities for performance profiling/tuning in the
virtualized environment. The problem is that, currently,
profilers need to interact with underlying hardware quite a
bit, and doing this is significantly more difficult in a virtual-
ized environment. XenOProf is the only existing VM pro-
filer, and it only works for Xen and requires admin access.
Profiling in the guest can be done but doesn’t tell one much
about how the system is truly performing.

At a very high level most profilers work by keeping track
of event counters and interrupts. The authors propose that
these need to be exposed to guests through the standard
PMU interface. Of course, one still needs to determine
whether the VM should track that as CPU-switched—only
in-guest execution is accounted to the guest—or domain
switched, which includes other tenants on the same ma-
chine.

The authors implemented this method for KVM, using Intel
VT extensions. Their experiment consisted of pushing pack-
ets to a Linux guest, running OProfile (in the guest), and
monitoring instruction retirements.

How long will it take manufacturers to provide hardware
support for virtualization? Du said they believe it will take
a while, since there are many different hardware/software
combinations. Thoughts about instrumentation-based pro-

filing? These should work directly in the guest without the
need for virtualization-specific techniques. How does this
differ from XenOProf? Is there a more generic methodology?
XenOProf does system-wide profiling and requires admin
access. We’ve provided more options and don’t require
admin access.

■■ The Case for Energy-Oriented Partial Desktop Migration
Nilton Bila and Eyal de Lara, University of Toronto; Matti
Hiltunen, Kaustubh Joshi, and H. Andrés Lagar-Cavilla, AT&T
Labs Research; M. Satyanarayanan, Carnegie Mellon University

Currently PCs waste significant amounts of power while
idling. Eyal de Lara said that sleep modes aren’t used
because users and IT expect always-on semantics, such
as background apps and remote access. The authors aim
to provide always-on semantics with the benefits of sleep
mode. Potential approaches include migrating a VM to a
consolidation server (like LiteGreen), but the problem is
that VMs are very large and lots of memory will be needed
on the consolidation server. Instead, the authors suggest just
migrating the working set on that machine using a page-
fault-based method.

When a machine goes to sleep a small VM is started on the
consolidation server. Every time some memory access is
attempted for memory not already present on the consolida-
tion server, the server wakes the client, grabs those pages,
and proceeds. The client falls back asleep shortly thereafter.
The authors claim this allows for many images on the same
server and relatively little network overhead.

However, in order for this to work well, sleep time needs
to be long enough and the size of the memory footprint
needs to be sufficiently small. The authors have conducted
a feasibility study for their proposed methodology, using
Snowflock. They have not actually implemented any of the
migration code. They examined four workloads: login, email
(every 10 minutes), IM client (messages every couple of min-
utes), and a multitasking workload (PDF, email, spreadsheet,
file-browser, IM) and track the resulting page faults. Since
they aren’t prefetching (although an actual implementation
would almost certainly do so), some of their results aren’t
always very good. However, their overnight test looks like
things work nicely in low-usage settings.

The authors estimate a consolidation ratio of 9:1: that is, one
can serve nine PCs on one PC, so roughly an order of mag-
nitude more PCs could be consolidated onto a high-quality
server. The remaining challenges include device methods
that will avoid some of this power-cycling, including proac-
tive methods, CAMs, and addressing policy questions as to
when to migrate VMs back and forth.

What about disk accesses? De Lara replied that this require-
ment is an order of magnitude less than memory. Why do
people need machines overnight? They don’t, but IT likes
these machines to be awake. We believe we leverage smaller
sleep times. Have you considered partial wakeup modes?
That would require massive stack changes. Wake-on-LAN is
a very simple version of this.

; LO G I N : O C TO B E R 201 0	 CO N FE RE N CE RE P O RT S	 93

■■ Energy Efficiency of Mobile Clients in Cloud Computing
Antti P. Miettinen and Jukka K. Nurminen, Nokia Research
Center

Antti P. Miettinen pointed out that one of the major prob-
lems for mobile devices using cloud applications is battery
life. One could do almost all of the processing locally (pro-
cessor intensive) or do the processing remotely, essentially
using the phone as a thin-client (radio intensive). The au-
thors sought to understand the trade-off between computing
and communication in terms of mobile phone power use.

Different cores have different energy profiles but, interest-
ingly, mobiles actually use the least efficient cores. This
is because mobile phone cores are selected for high peak
performance on single-threaded applications. The straight-
forward solution is to leverage dynamic voltage and frequen-
cy scaling (DVFS). Essentially this means using cores that
support lower power draw at decreased clock speeds.

With respect to radio power draw, the authors find that 3G
radios are much more efficient at high bit rates, while WiFi
is more forgiving of lower-bit-rate traffic. Consequently,
particularly for 3G traffic, smooth traffic is handled with
less power efficiency than bursty traffic. Moreover, if the
core is set to a lower clock cycle (power saving on the CPU)
while doing data transfer over the network, more power
may be used overall, since the data rate of the 3G card will
be slowed down accordingly (drawing more radio power).

As a very rough rule, the authors observed 1000 cycles core/
one byte of radio parity. Of course, everything depends on
the particulars. With a PDF viewer, the authors show power
can be saved by running remotely on their hardware. There
are lots of challenges: when to transition between thin and
thick client operation on mobiles, tools for managing these
transitions, energy-aware middleware, energy optimized
protocols for thick clients, etc.

How did you do the PDF viewer offload? Miettinen re-
plied that they ran evince on the server and exported
x11, but this isn’t an optimal thin client protocol, so they
could do better (e.g., crawling the PDF is a big mess using
x11). Someone else wondered if they had considered more
complex apps (e.g., OCR, image processing, auto-translate).
They hope that people will come up with these so they
can study them. Current apps more or less prune out the
computation.

economics and pricing

Summarized by Alva L. Couch (couch@eecs.tufts.edu)

■■ CloudCmp: Shopping for a Cloud Made Easy
Ang Li and Xiaowei Yang, Duke University; Srikanth Kandula
and Ming Zhang, Microsoft Research

Cloud computing involves difficult business choices. Cloud
providers describe their services in incommensurate units,
and it can be difficult to compare one service against anoth-

er for a potential use. CloudCmp attempts to aid in this de-
cision by combining service benchmarks with load profiles
to create predictions of cloud performance without deploy-
ment. Speaker Ang Li concentrated on the first part: how
to collect and utilize accurate benchmarks. This includes
three kinds of measurement: storage and retrieval time,
computation time, and network latency. Network latency
was determined by measuring the time to query distrib-
uted data centers via PlanetLab. Studies of three unnamed
cloud services indicated that different services have differ-
ent performance strengths: one excelled at quick storage
and retrieval, while another excelled at computation. The
audience was concerned about why the three services were
anonymous; Li responded that all three service agreements
include prohibitions of reverse engineering, but that in one,
disclosure of performance data was prohibited. Someone
was also concerned that the measurements were made over
short time periods and did not account for changes in back-
ground load.

■■ Distributed Systems Meet Economics: Pricing in the Cloud
Hongyi Wang, Microsoft Research Asia; Qingfeng Jing, Shanghai
Jiao Tong University; Rishan Chen, Peking University; Bingsheng
He, Zhengping Qian, and Lidong Zhou, Microsoft Research Asia

Pricing in the cloud is complex and—like pricing on first-
generation timesharing servers—can vary with load. Pricing
is fair if there is a balance between customer satisfaction
and provider satisfaction. Hongyi Wang utilized 1/cost as
a customer satisfaction index, and profit/cost (return on
investment, or ROI) as a provider satisfaction index. By
running instances of Postmark (storage-intensive), Parsec
(compute-intensive), and Hadoop (communication-intensive)
tasks on EC2, he depicted both fairness and variation in
fairness due to load. He concludes that optimality points for
customer and provider are often quite different: for Post-
mark, two VMs maximized customer satisfaction, while four
VMs maximized provider satisfaction. Not surprisingly, sat-
isfaction indices also varied with load, which he interprets
as a kind of unfairness.

Someone questioned whether this kind of analysis will lead
to fairer pricing from providers.

■■ See Spot Run: Using Spot Instances for MapReduce
Workflows
Navraj Chohan, University of California, Santa Barbara; Claris
Castillo, Mike Spreitzer, Malgorzata Steinder, and Asser Tantawi,
IBM Watson Research; Chandra Krintz, University of California,
Santa Barbara

A “spot instance” in EC2 is a server instance that is acti-
vated when the current (volatile) market price for service
exceeds a predetermined (constant) customer-specified bid
value. Spot instances are thus transient, are started when
the market price lowers below the bid, and are terminated
when the market price increases above the bid. Market
prices are determined based upon supply and demand.
Because of their transient nature, spot instances are cheaper

94	 ; LO G I N : VO L . 35, N O. 5

to use than “premium” instances that do not go online and
offline based upon demand.

Navraj Chohan and his coauthors studied the use of spot
instances during three kinds of Hadoop computations:
word-count, sorting, and Monte-Carlo computation of .
Data for the computation was kept on (“premium”) Hadoop
HDFS nodes that were always running, while spot instances
were allocated as extra workers. Even though spot instances
are cheaper to use, using spot instances can be more ex-
pensive (and slower) than using only “Premium” instances,
because of the time required to discover and correct the
effects of terminated “spot” worker nodes.

Someone asked whether running spot instances with a high
bid is equivalent to having a premium node, and whether
market prices are periodic. Chohan responded that mar-
ket prices show no predictable periodicity (and discussion
groups on the Web report that spot instances can be volatile
even if the bid price is always high enough, because Ama-
zon can terminate them for reasons other than market price
fluctuations, e.g., for maintenance).

■■ Disaster Recovery as a Cloud Service: Economic Benefits
& Deployment Challenges
Timothy Wood and Emmanuel Cecchet, University of Massa-
chusetts Amherst; K.K. Ramakrishnan, AT&T Labs—Research;
Prashant Shenoy, University of Massachusetts Amherst; Jacobus
van der Merwe, AT&T Labs—Research; Arun Venkataramani,
University of Massachusetts Amherst

Disasters happen even to clouds. Tim Wood and his team
considered how clouds should handle disastrous conditions.
Business objectives for disaster handling include “recovery
point objectives” (how much data can be lost), as well as
“recovery time objectives” (how long it takes to resume
processing of requests). Wood made some cost comparisons
between cloud-based recovery and traditional co-located
recovery. He estimated that recovery infrastructure for a
RUBiS site with four servers and 99% uptime would cost
$10,373 per year with co-located physical recovery servers
and $1,562 if recovery servers are instead located on EC2.

As a second example, a data warehouse allows one to
balance the cost of cloud recovery against recovery-point
optimization, because one only pays for the servers when
they are running to store recovery points. Open questions
include how the provider can maximize profit (due to a
similar mismatch between customer and provider satisfac-
tion to that presented in another paper above), how many
resources the customer should commit to disaster recovery,
how to deal with correlated failures (e.g., regional outages),
and how one should resume regular processing after a di-
saster is mitigated.

Someone asked whether the disaster recovery model in-
cluded regional distribution of disaster recovery resources,
and Wood responded that it did not. Would the mechanism
continue to work if “everyone” did their disaster recovery

this way? More resources would have to be available in the
cloud for this to be practical.

■■ CiteSeerx: A Cloud Perspective
Pradeep B. Teregowda, Bhuvan Urgaonkar, and C. Lee Giles,
Pennsylvania State University

The Web site CiteSeerx is supported by 22 physical serv-
ers, stores greater than 1.6 million documents and greater
than 30 million citations, and responds to about 2 million
hits a day. It includes a Web crawler, as well as software
components for document conversion and ingestion, data
storage, query response, and maintenance services. Pradeep
Teregowda discussed the options for moving this site into
the cloud, either in whole or in part. He considered two
options, including Amazon EC2 and Google AppEngine.
Moving an application to the cloud requires both data refac-
toring and code refactoring.

Data refactoring seems to be cost-effective, while the practi-
cality of code refactoring remains unknown. In particular,
the cost of moving code to AppEngine remains unknown.
He concludes that for now, hosting static content and query
response in the cloud is cost-effective, while the practicality
of moving other software components is as yet unknown.
Re-factoring the main software components may make
cloud hosting of the entire application cost-effective.

Someone asked how CiteSeerx will handle load changes,
and Teregowda answered that, for now, the plan is for the
cloud to handle only peak loads, while physical infrastruc-
ture will continue to handle non-peak loads.

new progr a mming models and
usage scenarios

Summarized by Malte Schwarzkopf
(malte.schwarzkopf@cl.cam.ac.uk)

■■ Spark: Cluster Computing with Working Sets
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica, University of California, Berkeley

Spark is a framework for cluster computing optimized for
iterative applications with fixed working sets, with datasets
reused across multiple parallel operations. Conceptually,
Spark builds upon frameworks such as MapReduce and
Dryad, but improves their limited performance on iterative
jobs such as those found in many machine learning and
data-mining applications.

Spark is written in Scala and integrates with the Scala
language for easy programmability. It defines the notion of
a resilient distributed dataset (RDD), which can be obtained
from the Hadoop Distributed File System or parallelized
arrays. RDDs can be transformed using map and filter func-
tions and are cached across operations. The main difference
from previous models is that RDDs are defined to be persis-
tent even across iterations within the driver program. Spark
supports parallel operations of reduce, collect, and foreach

; LO G I N : O C TO B E R 201 0	 CO N FE RE N CE RE P O RT S	 95

on RDDs and supplies shared variables (accumulators and
broadcast variables) to allow for data to be communicated.
For example, consider the use case of log mining: the logs
would be RDDs, and there would be a driver node (run-
ning the main driver program) as well as a set of workers.
The driver creates a distributed dataset, executes some filter
operations on it, and then calls a cache() function. At this
point, the RDDs exist as lazy objects on the cluster. On the
first iteration of the algorithm, they are then disseminated
to and cached on worker nodes. Further iterations will then
hit the version cached in memory on the worker nodes, thus
speeding up the information.

RDDs maintain fault-tolerant semantics as each RDD main-
tains lineage information that can be used to reconstruct
lost partitions (RDDs). This is done by going back to the
beginning and reapplying the filter and map operations
(this restricts the programming model to disallow certain
side effects, but provides fault tolerance).

In the evaluation, the authors compared Spark to the Ha-
doop open-source implementation of MapReduce and found
that Spark outperforms Hadoop by a factor of up to 20 on
the second and subsequent iterations, while running about
50% slower on the first iteration (Hadoop: ~127 seconds per
iteration, Spark: 174 seconds for first iteration, 6 seconds for
further iterations). There was no time for questions, due to a
demo that interactively reproduced the above results.

■■ Turning Down the LAMP: Software Specialisation for the
Cloud
Anil Madhavapeddy, University of Cambridge; Richard Mortier,
University of Nottingham; Ripduman Sohan; University of
Cambridge; Thomas Gazagnaire, Citrix Systems R&D; Steven
Hand, University of Cambridge; Tim Deegan, Citrix Systems
R&D; Derek McAuley, University of Nottingham; Jon Crowcroft,
University of Cambridge

Anil Madhavapeddy described the implementation of a
“fat-free” operating system that reduces the level of dynamic
abstraction in computer systems. The authors point out
that typical application stacks of modern operating systems
consist of a large number of abstraction layers on top of
one another, with dynamic languages adding another layer
(language runtime) and virtualization another (hypervisor).
Although undeniably convenient, these layers exist mainly
for compatibility reasons and ensure legacy compliance. For
example, as was pointed out, the POSIX layer was designed
to run compiled and linked C applications, but not dynamic
languages with garbage collection, such as Java or .NET
code. Furthermore, the number of abstraction layers means
that there is a greater potential for security vulnerabilities.

Madhavapeddy contended that the emergence of virtual-
ization has produced a unique opportunity to remove as
many compatibility abstractions as possible, as hypervisors
provide a “stable” virtual hardware platform to develop
against. This facilitates not only the removal of unnecessary
abstractions, but also means that small research efforts that

would previously have been doomed to fail due to the com-
plexity of operating systems implementation can succeed.
In addition to moving towards writing applications on top
of the “bare metal” provided by virtualization architectures,
the authors also propose to use the opportunity to intro-
duce a strong and statically typed implementation language
in order to avoid security vulnerabilities and improve code
quality. Their language of choice is OCaml, which has
strong static typing, is extensible, and has a simple runtime
system introducing minimal overheads.

As a motivating benchmark, the authors reimplemented
SSH and DNS in OCaml, and the measured performance
is on par with the best, optimized existing implementa-
tions (OpenSSH and Bind, respectively). When turning on
memoization in their DNS implementation, the authors
even managed to reach an order of magnitude performance
improvement over Bind. Coming from these motivating
measurements, they have started implementing MirageOS,
a new operating system that embraces the philosophy out-
lined above. MirageOS features zero-copy I/O and gets rid
of multicore concurrency issues by only ever running one
application. Application-level concurrency is provided by
multiple VMs running on the same host system and com-
municating using message passing.

The authors evaluated an early alpha version of MirageOS
in terms of SQL performance and memory usage and found
that the performance is improved dramatically compared to
a Linux-based setup, while the memory footprint remains
the same. In further work, the authors are planning to
investigate the use of MirageOS for highly specialized Web
servers that can run at very high performance while using
less resources than current setups. There was no time for
questions.

■■ Scripting the Cloud with Skywriting
Derek G. Murray and Steven Hand, University of Cambridge
Computer Laboratory

Derek Murray introduced Skywriting, a programming
language for cloud computing. Existing frameworks such as
MapReduce and Dryad have pioneered a managed approach
in distributed computing, freeing programmers from having
to concern themselves with the low-level details of message
passing, synchronization, and fault tolerance. However, in
doing so, they restrict the programming model to one that
corresponds to a map-reduce paradigm (MapReduce) or a
finite, static DAG (Dryad) and thus have difficulties model-
ing certain data flows. For example, unbounded iteration
and recursive computation are impossible to express in
either in any way other than submitting a series of jobs.
Ideally, as the authors assert, one would like a truly univer-
sal programming model for cloud computing, allowing any
Turing-complete program to be expressed.

With Skywriting, the authors have designed a programming
language that can express any Turing-complete program. Its
syntax is similar to JavaScript, but it is capable of express-

96	 ; LO G I N : VO L . 35, N O. 5

ing functional constructs such as lambdas. It is an inter-
preted coordination language and can delegate the actual
computation to external high-performance code. Contrary
to MapReduce and Dryad, it supports spawning tasks dy-
namically (using the spawn() primitive), as well as express-
ing data-dependencies through futures that can be derefer-
enced in the style of C pointers. In this way, Skywriting can
express data-dependent control flow such as unbounded
iteration to convergence.

The authors evaluated Skywriting by performing a micro-
benchmark that tested the job creation overhead and found
that it performs much better than Hadoop, which incurs
up to 30 seconds of overhead (Skywriting: ~2 seconds). In
order to evaluate Skywriting on real workloads, the authors
implemented the Smith-Waterman string matching algo-
rithm in Skywriting and ran it on a variety of cluster con-
figurations. They found that the best performance for two
strings of length 100,000 was achieved with 400 tasks on
20 workers with a speedup factor of about 2.5x compared
to linear, but also that the system scales to cluster sizes of
hundreds of nodes.

Anil Madhavapeddy asked whether Skywriting has an
issue that needs fixing and how one would hook it into an
existing cluster. For the former, Murray said that a possible
weakness is that Skywriting does not natively support effi-
cient data motion for MapReduce-type workflows (although
it does support MapReduce in principle) and that it is a
research prototype and much of the code is unoptimized
(e.g., the task dispatch queue is single-threaded). For the
latter question, Murray responded that Skywriting can eas-
ily be deployed onto a cluster using a set of scripts and that
binding code to allow Hadoop or Dryad workers to be tied
in with a Skywriting cluster is currently in development.

■■ Toward Risk Assessment as a Service in Cloud
Environments
Burton S. Kaliski Jr. and Wayne Pauley, EMC Corporation

Formal risk assessment is a necessity for many commercial
outfits nowadays, but tends to be a highly time-consuming
service. There are a number of well-established standards,
but all assessment is still done manually by humans. Wayne
Pauley asserted that as a consequence of this, traditional
risk management strategies fail when applied to the cloud,
which is a fast-paced, dynamic environment that is also
geographically diverse and on-demand. Endpoint devices
can be anything and resource pooling means that it is
impossible to tell in advance what resources are going to be
shared with. Subcontracting at the cloud provider and the
challenge of having to meter and monitor customers while
avoiding leaking private data through observation of usage
characteristics are further issues.

The authors introduced the notion of “risk assessment as a
service,” in a manner akin to the automated credit ratings in
use today. Various different models are possible to imagine:
self-assessment by the cloud provider, third-party audit,

or consumer assessment involving internal and external
agents. To facilitate this, the authors have designed a risk
assessment architecture for the cloud, with a risk monitor
and a set of agents as its core components. The risk monitor
is supplied with information from a variety of agents (both
with the cloud and with customers) and also receives infor-
mation from external auditors and definition lists.

After having sketched the architecture, Pauley now sees
their future work in figuring out what sensors are needed
with the agents, what implementation language to use for
the system, and working out how customers and provid-
ers can react to the assessment in an automated fashion.
Furthermore, they plan to undertake an evaluation of the
effectiveness of automated assessment versus traditional
(manual) methods, as well as of the actual trust assurances
given by the automated measurements.

How much money should be spent on security assurances
and can risk be measured in a monetary form? Pauley
replied that some equilibrium needs to be found; currently,
there is not that much intellectual property in the cloud, but
as we start moving more information into it, the importance
of determining the value of individual assets in order to as-
sign risk thresholds and monetary value to it will grow.

■■ Information-Acquisition-as-a-Service for Cyber-Physical
Cloud Computing
Silviu S. Craciunas, Andreas Haas, Christoph M. Kirsch, Hannes
Payer, Harald Röck, Andreas Rottmann, Ana Sokolova, and
Rainer Trummer, University of Salzburg, Austria; Joshua Love
and Raja Sengupta, University of California, Berkeley

Christoph Kirsch described using virtualized flying vehicles
carrying sensors as information acquisition nodes that can
be sold using a similar elasticity model to other resources in
cloud computing. The authors are prototyping this concept
using an autonomous quadrocopter, called JAviator, as their
hardware platform. The quadrocopter is controlled by a
computer and must be controlled this way, as the platform
is unstable without computerized control. The quadrocopter
acts as a “cyber-physical server,” having an IP address and a
geographic location, plus the capability to move about and
carry sensors. Multiple quadrocopters can form a “cloud.”
Kirsch went on to introduce the notion of a “virtual vehicle”
that can migrate between physical vehicles (which can run
multiple virtual vehicles at the same time). One use case
for this is as follows: imagine there are a number of flying
vehicles that follow predefined routes. If someone now were
to require a vehicle that describes a flight route that none
of the physical vehicles describes individually but which a
combination of them could cover, transparently migrating
a virtual vehicle between different physical vehicles enables
us to provide this.

In the experimental setting, real vehicles with real sensors
(Webcam, laser, ultrasonic, gyroscope, accelerometer, etc.)
exist, as well as real servers that are mounted onto real ve-
hicles. The latter are still works-in-progress and will provide

; LO G I N : O C TO B E R 201 0	 CO N FE RE N CE RE P O RT S	 97

a powerful small form-factor server more powerful than an
embedded system. Virtual vehicles can run on those physi-
cal vehicles and servers and have access to virtual sensors
(also still a work-in-progress—current efforts are focused
mainly on the Webcam) as well as virtual processors (which
provide real-time guarantees required for flight control).
Migration of virtual vehicles between different physical
vehicles needs to be really quite fast (~10ms), due to the
short reconnaissance times the physical vehicles experience.
Furthermore, there is the notion of “virtual actors,” which
substantiate themselves in the form of virtual vehicles and
which can pilot real or other virtual vehicles.

The current research effort is split between Salzburg (virtu-
alization infrastructure) and Berkeley (collaborative control),
with joint work on the programming language. In the vir-
tualization infrastructure, an “Earliest Deadline First” (EDF)
scheduler was added to Xen to support temporal in addi-
tion to spatial isolation, and future work is concerned with
power isolation, migration, and tracking real and virtual
vehicles. The collaborative control problem is mainly con-
cerned with the allocation of real vehicles to virtual vehicles
under consideration of mutable flight plans (read-only flight
plans for physical vehicles are easy, but read-write flight
plans for virtual ones are hard due to potentially conflicting
interests of virtual vehicles). The programming language in
use is the Collaborative Sensing Language (CSL), which will
specify dynamically changing missions of virtual vehicles.
The key challenge here is said to be the handling of con-
current and dynamically changing sets of real and virtual
vehicles.

How flexible are virtual vehicles and are there any other
cyber-physical systems that the authors know about? Virtual
vehicles are quite flexible, but of course ultimately must
conform to the limits of real vehicles that can only fly in
certain ways (in addition to other challenges). To the second
question, “anything that moves” is potentially a cyber-physi-
cal system; however, the applications considered in this case
require certain computational power, which excludes some
options (e.g., very lightweight sensor nodes).

securit y and reliabilit y

Summarized by Rik Farrow (rik@usenix.org)

■■ A First Look at Problems in the Cloud
Theophilus Benson, University of Wisconsin—Madison; Sambit
Sahu, IBM Research; Aditya Akella, University of Wisconsin—
Madison; Anees Shaikh, IBM Research

Benson explained that they studied three years of support
data of an Infrastructure as a Service (IaaS) cloud provider.
The data was from a support forum where a new thread
was treated as a trouble ticket, and resolution could come
from other users or the IaaS support group. They used an
automated information retrieval algorithm (Lemur) for ex-
traction of problem clusters, then selected a subset of these
clusters for manual analysis.

The authors found that most problems with the cloud
service fell into five categories: image maintenance, connec-
tivity, performance, virtual infrastructure, and application-
related. Over the three-year period, image maintenance
problems declined as better APIs and tools appeared for
dealing with images. Problems with virtual infrastructure
increased whenever new features, such as cloud storage, ap-
peared. Over time, fewer operator interventions occurred as
users became better able to solve their own problems as the
online support database grew in size.

Benson gave an example of a problem that required the
cloud support to intervene. A user complained of losing
connectivity with her instance, and it turned out the VM in-
stance was running out of memory and killing the ssh dae-
mon. Benson suggested that cloud providers expose more
information to their users without divulging infrastructure
details while avoiding storage overhead by collecting more
data/logs. He also suggested adding more user controls.

John Arrasjid suggested that they should have test plans
from the provider’s developers ready when new releases
come out. Benson agreed, saying that would be a good way
to decide which tools to expose to users. Christina Serbin
asked about a spike in a graph that occurred in March
2009. Benson replied that this was an anomaly.

■■ Secure Cloud Computing with a Virtualized Network
Infrastructure
Fang Hao, T.V. Lakshman, Sarit Mukherjee, and Haoyu Song,
Bell Labs, Alcatel-Lucent

Fang Hao laid out their goals: isolation transparency (see
only the user’s own virtual network), location independence
(locate anywhere in the data center), easy policy control
(change policy settings for cloud resources on the fly), scal-
ability (restricted by total resources available), and low cost
(use off-the-shelf whenever possible). VLANs have been
used to provide network isolation, but this solution has
problems. The VLAN ID field only supports 4096 VLANs,
and hypervisors must be configured to map VLANs to
particular VMs, a potential weakness, as hypervisors can be
attacked.

Their solution involves adding Forwarding Elements and
a Central Controller. FEs are Layer 2 routers that enforce
forwarding of packets to a particular edge network and in-
terface. FEs attach edge networks to the core networks and
route packets between core networks. Users decide which
VMs can communicate, and the Central Controller config-
ures the FEs.

Hao described an attack that used traceroute to determine
domain 0 addresses and looked for other numerically
close addresses with a short roundtrip time. Their solution
prevents this attack, because only addresses that are part
of a virtual network can be seen, since the FEs control the
forwarding of packets.

Someone asked about the delay imposed when a host first
issued an ARP for an address, an operation that the Central

98	 ; LO G I N : VO L . 35, N O. 5

Controller must handle. Hao responded that this occurs
in the data center, so latency will be low. Also, this only
occurs once, for the first packet. The same person asked
about how they came up with the Layer 2 mechanisms, and
Hao answered that it is basically a hash reuse process, and
that they really didn’t evaluate performance. Wayne Pauley
asked if removing traceroute increased the number of sup-
port requests, and Hao answered that traceroute is still
available, but can only be used to view the customer’s own
virtualized network.

■■ Look Who’s Talking: Discovering Dependencies between
Virtual Machines Using CPU Utilization
Renuka Apte, Liting Hu, Karsten Schwan, and Arpan Ghosh,
Georgia Institute of Technology

Renuka Apte described a system for uncovering relation-
ships between VMs by examining CPU usage. Knowing
which VMs have dependencies is useful when it comes to
migrating VMs, as you don’t want to move related VMs too
far apart, where “far” has to do with network latency.

They use xentop to monitor CPU utilization, at a frequency
of once a second with a window of 300 seconds. Both of
these values can be adjusted, but this is what they found
worked well in their experiment. Then they used k-means
for clustering spikes in CPU utilization. The value of k must
be supplied by the user but should match the number of
applications sharing dependencies. They found they could
identify dependencies with 91% true positives and 99% true
negatives. They ran three applications in their test, with
multiple instances of RUBIS and one of Hadoop, with one
master and three slaves.

Someone asked what the meaning of false positives was,
and Apte answered that it meant identifying a particular de-
pendency that didn’t exist. This would be harder to measure
in the real world, where dependencies are not known in
advance. Someone else suggested looking at network traffic
instead of CPU load, and Apte pointed out that VMs can
share the same physical system and not have any external
network traffic. You would also need to clean up traffic
traces to remove any non-significant traffic when resolving
dependencies.

■■ A Collaborative Monitoring Mechanism for Making a
Multitenant Platform Accountable
Chen Wang, CSIRO ICT Center, Australia; Ying Zhou,
The University of Sydney, Australia

The speaker for this presentation was held up because of
visa issues, so the session chair made a brief summary of
the paper. The authors use Merkel B-tree, which is authen-
ticated so you can present evidence back to the cloud pro-
vider. The goal is to provide clients of a multitenant service,
such as force.com, with a means of providing evidence that
SLAs have not been met, for example.

panel

Summarized by Alva L. Couch (couch@eecs.tufts.edu)

■■ Barriers to Cloud Adoption and Research Opportunities
Moderator: Erich Nahum, IBM T.J. Watson Research Center

Panelists: Albert Greenberg, Microsoft Research; Trent Jaeger,
Pennsylvania State University; Orran Krieger, VMware; Prashant
Shenoy, University of Massachusetts Amherst; Ion Stoica, Uni-
versity of California, Berkeley

Trent Jaeger discussed the misconceptions common to cloud
security. The cloud provider thinks of security as “guards”
around the user’s data, which is processed within the cloud,
while a security expert thinks of data as something that
should be encrypted whenever it is stored in the cloud.
Neither of these is practical. We need an intermediate ap-
proach in which data is secure in the cloud but computation
can still occur inside the cloud. The key to this approach
is some form of transparent security where data remains
both secure in the cloud and available to applications. This
requires a number of security measures, including proofs of
host “correctness.”

Orran Krieger discussed the role of clouds in “fungible”
computing. A “fungible” asset is a commodity whose
provider can be freely changed without impact. If clouds
become fungible, then cloud providers can compete with
host applications without incurring refactoring costs.
Fungible computing is a transformational paradigm. A new
company or startup can use the cloud as a cost-effective way
of experimenting without capital investment, in the sense
that no capital equipment is either purchased or managed to
create, for example, a new Web site. When a company fails,
its images are deleted, so there is little overhead incurred for
failure.

There are two competing paradigms for clouds: vertically
integrated clouds like Amazon, AppEngine, Azure, and
IBM, and the cloud “marketplace” of a plethora of VM host-
ing services. Krieger hopes that the “marketplace” wins. For
this to happen, we need common abstractions for writing
virtualized applications, as well as practical methods for
federating services to be used by the applications.

Krieger envisions future transformational features, includ-
ing a “follow-me-anywhere” desktop, laptops with remotely
administered system administration and security features,
and even the ability to be “a sysadmin for your mom.” No
one has even started tackling the “tough problems.”

Prashant Shenoy discussed three challenges of cloud com-
puting, including economics, manageability, and network/
cloud interoperability. The cloud argument is that leasing is
cheaper than owning. But in fact, this is built into outsourc-
ing agreements and one who outsources IT does not interact
with cloud economics directly. Those who do must deal
with new challenges, including resource provisioning. There

; LO G I N : O C TO B E R 201 0	 CO N FE RE N CE RE P O RT S	 99

remains a need for an economically justifiable private cloud
model.

Second, there is a need for enterprise management tools
such as IBM Tivoli and HP OpenView to understand and
be able to manage the cloud, as one way to make private
clouds economically justifiable for large enterprises.

Third, there is a need for coordination between cloud
management and the network in which the cloud func-
tions. Optimizing cloud application configuration requires
also adjusting network configuration, including available
bandwidth. Enterprise management tools such as IBM Tivoli
and HP OpenView must be extended to manage the cloud
and should also be able to tune the cloud, applications, and
network as one integrated task.

Ion Stoica discussed the need for meaningful service level
agreements (SLAs) in selling and consuming cloud services.
SLAs provide the customer with “one throat to choke” when
things go wrong, and they serve as a contract and point of
accountability between customer and provider. In this con-
text, research opportunities include achieving high utiliza-
tion (for the provider) in the presence of interactive applica-
tions, providing appropriate isolation between applications,
and the ability to scale up and down. The “holy grail” is
that an application can safely assume that it is running in
isolation.

A second issue is “multi-datacenter support” for cloud appli-
cations. To achieve appropriate availability and scalability,
we need a shared API for applications that can be provided
at several places to support migration. Research challenges
include intelligently choosing locations for an application,
designing an appropriate API for interactions with the data
center, and assuring data consistency, no matter what hap-
pens.

Finally, the cloud needs to provide appropriate and usable
notions of data security that allow applications to safely
execute across administrative domains. Research opportuni-
ties include how to construct privacy-preserving queries,
how to utilize encrypted data, and how to leverage test-case
management (TCM) in the cloud environment.

Moderator Erich Nahum then pointed out that the panel
was way too much in agreement. In response, Krieger
claimed that the whole security paranoia about clouds
is overblown. In fact, the same security problems affect
non-cloud systems and customers don’t seem to care. Trent
Jaeger pointed out (in agreement) that in the 1990s we
had agent computing and sent code “into the wild” to be
executed. We again have a mental hurdle to leap, in writing
code to be executed on systems one does not own.

Sambit Sahu asked about trusted security structures. What
can one do to analyze security when one cannot examine
the software stack in the cloud? Jaeger asked how one is
even going to know what is running. Krieger responded

that you can know what you are doing, but not what is run-
ning beside you.

Someone then asked what utility computing regulations
should be. Krieger responded that providers must be regu-
lated, but some of the things that turn utilities into monop-
olies will not happen in this case. There will be a market for
third-party auditors to ensure compliance. Shenoy pointed
out that for clouds, the main issue is not going to be regu-
lation but, rather, compliance with standards, driven by
customer needs.

Someone asked about the new kinds of security attacks that
arise from “inside” the cloud. Krieger predicted that the
larger enterprises are not going to have this problem, be-
cause they are going to be running their own private clouds.
The smaller enterprises, which cannot justify private clouds,
are going to be the ones at risk. The need is to provide secu-
rity to smaller enterprises that—in fact—they would not be
able to afford to provide for themselves “in a million years.”

Someone responded that the inside attacker has access.
Krieger responded that in the future, the attacker won’t have
access, and that there are technical solutions to this prob-
lem. Krieger pointed out that the cloud is awesome for Web
apps that need to scale, but—as a whole—looks more like
a 24/7 enterprise application with nearly constant load and
potentially low (10%) utilization, due to the need to respond
to demand changes. We would like to think of it as an 80%
utilization, but this may not be realistic.

Someone next asked how one migrates to the cloud. She
noy responded that the key is to understand your own
cloud usage strategy. Krieger responded that he is not sure
whether there is a problem for larger enterprises, because
enterprise data centers are already virtualized and any-
thing that will run there will run in the cloud. The ap-
propriate migration strategy is to make the cloud look like
the enterprise from which the application was migrated.
Shenoy pointed out that virtualization is already ubiquitous
outside the cloud. Stoica said that getting out of the cloud
is straightforward; one just duplicates the API outside, and
only when it becomes cost-effective.

A member of the audience admitted to some remaining con-
fusion about how to define the cloud. Krieger reminded us
of the story of the blind men and the elephant. It is not that
interesting to define the term “cloud” as any more than we
have done to support the Web so far. Even the very simple
model of IaaS—if it can be standardized—is going to be
transformative.

