
62	 ; LO G I N : 	VO L . 	35, 	N O. 	5

2010 USENIX FEDERATED CONFERENCES WEEK

June 22–25, 2010
Boston, MA
This year, USENIX combined established conferences
and new workshops into a week full of research, trends,
and community interaction, with a completely custom
izable program. For more information about the events
and the format, see http://www.usenix.org/events/
confweek10/.

2010 USENIX Annual Technical Conference

June 23–25, 2010
Boston, MA

welcome, awards, and keynote address :
joint session of 2010 usenix annual
technic al conference and usenix confer-
ence on web applic ation development

Summarized by Rik Farrow (rik@usenix.org)

Timothy Roscoe, program cochair with Paul Barham
of Annual Tech, said that 147 papers were submitted,
slightly fewer than the previous year, due to competition
from other conferences; after a thorough review pro
cess, 24 papers were accepted. Roscoe presented awards
and checks for the two Best Papers: “LiteGreen: Saving
Energy in Networked Desktops Using Virtualization,”
with Pradeep Padala of DOCOMO USA Labs accepting
the award, and “ZooKeeper: Waitfree Coordination for
Internetscale Systems,” with Benjamin Reed of Yahoo!
Research accepting.

John Ousterhout, chair of WebApps, took over the
podium. Ousterhout said that the size of the conference
was a good beginning, with 80 attendees, 26 papers
submitted, and 14 accepted. Ousterhout said that there
have been three phases of the Web: the first, distributing
documents; the second, as a platform for delivering apps;
and phase three, the current one, which will see a com
plete turnover in the application development food chain.
Ousterhout announced the Best Paper award, “Separating
Web Applications from User Data Storage with BSTORE,”
by Ramesh Chandra, Priya Gupta, and Nickolai Zeldo
vich.

Clem Cole, President of the USENIX Board, took the
stage to hand out two more awards. The USENIX Life
time Achievement Award, a.k.a. “The Flame,” went to
Ward Cunningham, the inventor of the Wiki. The STUG
award, which recognizes significant contributions to the
community that reflect the spirit and character demon
strated by those who came together in the Software Tools
User Group, went to the group who created MediaWiki,
whose work includes a tool many of us use every day—
Wikipedia. The award money was donated to the Wiki
media Foundation.

conference reports

THANKS	TO	OUR	SUMMARIZERS

2010 USENIX FEDERATED CONFERENCES WEEK

2010 USENIX Annual Technical
Conference . . .62 .
Italo Dacosta Rik Farrow
Paul Marinescu John McCullough
Aleatha ParkerWood Joshua Reich
Dan Schatzberg Marc Staveley
Xiao Zhang

USENIX Conference on Web Application
 Development (WebApps ’10) 77
Pradeep Chalise Aiman Erbad
Rik Farrow Thomas Moyer
Pradeep Teregowda

3rd Workshop on Online Social Networks
(WOSN 2010) . .84
Saptarshi Ghosh Christo Wilson

2nd USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud ’10) 91
Alva L. Couch Rik Farrow
Joshua Reich Malte Schwarzkopf

2nd Workshop on Hot Topics in Storage
and File Systems (HotStorage ’10)100
Rik Farrow Aleatha ParkerWood

Configuration Management Summit . . . 104
Aleksey Tsalolikhin

2nd USENIX Workshop on Hot Topics in
Parallelism (HotPar ’10)106
Romain Cledat Rik Farrow
Chris Gregg James C. Jenista

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 63

keynote address

■■ Lessons of Scale at Facebook
Keynote by Bobby Johnson, Director of Engineering, Facebook, Inc.

Summarized by Xiao Zhang (xiao@cs.rochester.edu)

Bobby Johnson explained how they address the technical
challenges as the number of Facebook users grows explo
sively. In particular, he elaborated on three key perspectives:
moving fast, server scaling, and client performance.

To be able to move fast, Facebook has a culture of making
frequent small changes. Johnson commented that it was
really easy to figure out what went wrong in production if
you only changed one thing at a time and watched it closely
over time.

The server infrastructure of Facebook is divided into Web
Server, Memcache, and Database. Most of the scalability
work falls into the Memcache layer, because it has to serve
hundreds og millions of objects in a second. Johnson gave
an example on how to dynamically scale the number of
Memcache machines communicating with the switch to
avoid packet dropping due to overload. He also pointed
out most machine failures were due to software, and many
failed machines run the same piece of buggy code. He told
an anecdote of twenty machines leaking memory at the
same rate.

Johnson introduced two projects to improve client perfor
mance. The first is called Big Pipe, which splits objects in
a page and runs them in pipelines. By doing so, it allows
priority content to be shown quickly and also benefits from
parallelism. The second is a small JavaScript library core
called PRIMER, which does bareminimum things to make
a page feel interactive during loading. Big Pipe and PRIMER
share the property of dividing things into a fast path and a
slow path.

In closing, Johnson talked about engineering culture at
Facebook. One particular principle is that control and re
sponsibility have to go together.

Marvin Theimer asked if all data had to stay in memory.
Johnson replied that the social graph data is entirely in
dexed in memory, while pictures and videos are stored in
disk. He also mentioned increasing interest in flash stor
age. Bill LeFebvre inquired about the problem of constantly
increasing storage demand. Johnson said that Facebook
does not plan to delete data and that the current solution
is to buy lots of cheap hard drives. John Ousterhout asked
whether PHP is the right language for Facebook. Johnson
agreed that PHP is not a great language for running Web
applications, although it is a fantastic language for writing
them. And that’s partially why Facebook has a compiler
project to transfer PHP to C++ code. Johnson also empha
sized that an interpreter language is critical for Facebook
building things quickly. Ben Johnson asked about data
consistency, and Johnson replied that Facebook cares about
consistency and puts a lot of work there.

june 23 , 10 : 30 a .m .– noon

Summarized by Joshua Reich (reich@cs.columbia.edu)

■■ DEFCon: High-Performance Event Processing with
 Information Security
Matteo Migliavacca and Ioannis Papagiannis, Imperial College
London; David M. Eyers, University of Cambridge; Brian Shand,
CBCU, Eastern Cancer Registry, National Health Service UK;
Jean Bacon, Computer Laboratory, University of Cambridge;
Peter Pietzuch, Imperial College London

Matteo Migliavacca presented the problem: eventstream
processing needs strong security—this is of particular ap
plication in financial contexts. If flows are incorrect, this
can lead to security violations (e.g., companies may see each
other’s trade data). Consequently, the authors propose track
ing and controlling data flows. Their primary contribution
is a decentralized event flow control, DEFCon, implemented
in Java, where all data is tagged. For data tagged with an ac
cess security tag, one either needs to have access granted or
the data needs to be declassified in order to be read.

Preventing nodes from peeking at data is actually rather
tricky in practice, as there are many opportunities for
information leakage (e.g., returning “access denied” pro
vides information, and failure to respond may also do so).
The DEFCon approach assumes that all units communicate
through labeled events. This could be done using VM or
OSlevel mechanisms, but they would prove too heavy for
lowlatency environments. Instead, the authors use threads
that share data in a single address space. They wrote an
implementation using Java threads, but need to have them
share immutable data objects, and thus some engineering
design is called for. The authors show that with the right set
of techniques the overhead can be made reasonably small.

Why use only one VM? For performance. Why not use
features Java already has to divide flows? Currently existing
features don’t focus on label checking performance. Addi
tionally, these approaches are generic, and they want to be
as efficient as possible for their domain.

■■ Wide-Area Route Control for Distributed Services
Vytautas Valancius and Nick Feamster, Georgia Institute of Tech-
nology; Jennifer Rexford, Princeton University; Akihiro Nakao,
The University of Tokyo

Currently, all traffic from a given data center uses only one
path to the user, Vytautas (Valas) Valancius began. Yet dif
ferent cloud apps have different requirements. Interactive
applications need low latency and low jitter, while bulkdata
applications need high throughput at low cost. Amazon EC2
has 58+ routing peers but picks only one route per user!

Today, if one does want to route flexibly one needs to obtain
dedicated connectivity and numbered Internet resources,
which are both difficult and expensive to set up. The au
thors proposed essentially building a BGPlevel NAT Transit
Portal. Each service has a virtual router through which all
traffic flows. This virtual router essentially uncovers the

64	 ; LO G I N : 	VO L . 	35, 	N O. 	5

Transit Portal’s info, allowing the virtual router to decide
which path it would like to use for a given traffic flow (at
least first hop).

In this setup each service has its own router (virtual or
physical). Each router has a link to the Transit Portal, which
emulates a connection to an upstream ISP (e.g., three links
to a Transit Portal for three peered ISPs). This exposes a
standard BGP router control interface. The authors have
found it takes about 30 seconds to converge when a service
router changes a path. Their system is currently deployed in
academic settings, built on top of a regular router running
custom software at three active sites.

Active experiments include BGP poisoning, IP anycast, and
advanced networking class—students can use BGP.

The authors are also exploring advanced Transit Portal ap
plications such as fast DNS and service migration (currently
only available to large operators that have their own global
network backbones).

The final challenge addressed by Valas was scaling. Here the
Transit Portal needs to scale to dozens of sessions to ISPs
and hundreds of hosted sessions, but standard BGP only
chooses one peer to send to. Consequently, the authors have
implemented separate routing tables for each peered ISP.
They use virtual routing tables to shrink from 90 to 60 MB
per ISP and schedule/send routing updates in bundles to
reduce CPU usage.

Future work includes more deployment sites, making it ac
cessible to testbeds (e.g., GENI), faster forwarding NetFPGA,
OpenFlow, and a userfriendly interface for route control
(running BGP is heavyweight right now).

Someone wondered whether this could have applications
beyond the cloud. Valas responded that it is indeed more
general. Have they considered abuse, security risks? Good
question. These things have been seen in the wild (e.g.,
the YouTube Pakistan problem). They currently advocate
that administrators regulate which paths users should be
allowed to announce. How do they manage to negotiate
between users and the ISP? By making the market more
competitive and letting economic incentives prevail.

■■ LiteGreen: Saving Energy in Networked Desktops Using
Virtualization
Tathagata Das, Microsoft Research India; Pradeep Padala,
 DOCOMO USA Labs; Venkat Padmanabhan and Ram Ramjee,
Microsoft Research India; Kang G. Shin, The University of
Michigan

Won Best Paper Award!

Pradeep Padala began by saying that PCs waste much
energy while idling but users do not like disruption. Also,
manual methods for waking machines for remote access are
cumbersome and, thus, automated energy saving methods
are needed. Padala noted that much energy waste oc
curs during idle periods of less than three hours and this
is the energy they focus on saving (their approach does

save power for longer idle periods as well). The LiteGreen
architecture calls for users to always run their OS inside a
VM. This VM runs inside a hypervisor/VMM either locally
(when the user is physically present or significant computa
tion needs be done) or remotely (when the machine would
have been idling). LiteGreen maintains instant availability
and masks migration effects by using a combination of
indirection (even when the VM is local users, log in through
Remote Desktop) and live migration of VMs between the
local machine and the remote LiteGreen server.

This setup requires that the user’s PC, the LiteGreen server,
and network storage server (data is no longer stored on local
harddrives) all be attached to a gigabit switch (the network
storage could run on a separate backbone, of course). There
is a severalsecond delay while live migration occurs and
the Remote Desktop session transfers from remote to local
VM instances (or vice versa).

The authors explore how idle should be defined/when VMs
should be migrated, coming up with heuristics involving
user activity and resource usage (both on the local machine
and on the LiteGreen server). Finding good heuristics for
this problem is still very much an open question. With their
current methods, the authors found that on some machines
very little energy could be saved, but for machines that slept
soundly overnight, savings were quite significant. This does
prove a bit problematic visàvis the authors’ goal of saving
power on <3hour idle periods.

Their prototype was built on top of HyperV and Xen. They
found they could shrink VMs 8x by using just the working
set. Moreover, they may get even larger consolidation ratios
if the overlap between VM working sets is significant. For
now they claim that 80 or so VMs could be supported by a
single LiteGreen server.

How did they support the large amount of storage needed
for all of their VMs? They only need to store the main OS
image on the server and can use snapshots to reduce VM
images even further. But what about user data? They use
shared storage—e.g., NAS, SAN. It seems as if they’ve taken
VDI and made it a harder problem—why not go for thin
client, since they are running RDP anyway? This is different
from thin clients. You need to have lots of servers for peak
usage, but here they only keep idle VMs. What about scal
ability? They can support 100 users per machine. But don’t
idle Windows VMs use a lot of resource consumption com
pared to the VMs they’ve implemented on? With work they
can get similar numbers. Do power savings also include
server consumption? Yes. The server takes 250W, more or
less static. Current servers aren’t energy proportional.

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 65

june 23 , 1 : 00 p.m .–2 : 00 p.m . : invited talk

■■ Visualizing Data
Ben Fry, Author and Consultant

Summarized by Marc Staveley (marc@staveley.com)

Ben Fry talked about his work in providing ways to under
stand through various methods of visualization the moun
tains of data that are being produced today. In his words,
“Given a pile of data, how can we very quickly visualize it
and mine through it to ask interesting questions?”

Fry is a crossdiscipline practitioner combining graphic arts
and computer science. He is the author (along with Casey
Reas) of Processing, which is an open source programming
language and environment for images, animation, and inter
actions. With Processing it is possible to quickly and easily
generate an interactive image of “information that dances
before your eyes.”

Fry showed a number of examples to illustrate the power of
Processing. One was a graphic of Fortune 500 companies
over time that allowed the user to see the rise and fall of
different companies and market segments by just mousing
over their names. Another was a DNA browser that allowed
the user to “look at the forest and the trees at the same
time” by providing the user a way to expand segments on
a DNA strand while still seeing the full chromosome for
context. Fry also showed work where data was used to just
provide a pretty picture that could, for example, be used
as a magazine cover or illustration. One example was DNA
strands spelled out on many planes.

A vibrant community has built up around Processing, with
a user base that has grown to over 25,000 active members.
Fry, of course, had a graphic that showed the activity of the
user base over time. Processing, which is written in Java (so
it works on Windows, Mac, and Linux), is an interpreted
interactive visualization language that hides the complexity
of graphic generation, while still providing a powerful set of
primitives.

The community has contributed a large number of different
libraries to the project to extend the power of Processing.
There is even a port to JavaScript (processing.js) which al
lows Processing datasets to be visualized entirely in a Web
browser.

To learn more about Processing, you can pick one of the
available books, including Fry’s Getting Started with Process-
ing, which just came out for the nontechnical market. Or
go to processing.org to read the wiki and download the
environment.

An audience member noted that Processing and Apple
Quartz Composer are similar. Fry replied that Quartz is all
GUI programming–based (i.e., drag and drop boxes), while
Processing is text programming–based, which he believes is
more powerful for doing things the original designer didn’t
think of.

june 23 , 2 : 00 p.m .– 3 : 00 p.m .

Summarized by Marc Staveley (marc@staveley.com)

■■ Stout: An Adaptive Interface to Scalable Cloud Storage
John C. McCullough, University of California, San Diego; John
Dunagan and Alec Wolman, Microsoft Research, Redmond; Alex
C. Snoeren, University of California, San Diego

John McCullough observed that there is a need to improve
the performance of application server access to the storage
tier in multitier Web architectures, especially when those
applications are hosted in cloud environments where access
to the storage tier may have competition from other users of
the cloud.

When the storage tier is under high load, it is possible to
achieve this improvement by batching storage requests from
middle tier applications, thereby amortizing overhead costs
over a number of storage requests. But there is a throughput
vs. latency tension; when load is low on the storage tier, you
want latency to dominate by batching only a small number
of requests (or not batching at all), but when load is high,
batching aggressively will increase aggregate throughput.

Stout is a storage interposition library that uses an adaptive
algorithm to choose the batch size based on the current
load on the storage tier. The algorithm runs independently
in each middle tier application but adapts to give each appli
cation a fair share of the storage bandwidth. It does this by
using the latency history of recent storage requests to adjust
the batch size (similar to recent work in TCP congestion
control).

Would using Stout on some of the middletier servers but
not others still achieve fair sharing? The clients not using
Stout would not achieve fair share, while those that do
would still be able to improve their overall performance.

■■ IsoStack—Highly Efficient Network Processing on
 Dedicated Cores
Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda,
IBM Research—Haifa

Leah Shalev observed that TCP/IP is a major consumer of
CPU cycles but wastes lots of those cycles on multiproces
sor machines with crosscalls and cache line misses (stalls).
She claims that TCP/IP uses tens of thousands of CPU
cycles for just hundreds of “useful” instructions per packet.

The problem with running the TCP/IP stack on a multi
processor (including multicore) system is that using a single
lock produces high contention, while using finergrained
locking has higher overhead and causes many crosscalls
and cache line misses. She noted that using CPU affinity to
keep the application on the same CPU as the TCP/IP stack
for that application doesn’t work in practice with multi
threaded applications using multiple cores.

IsoStack runs as a single kernel thread isolating the network
stack to a single dedicated CPU with a lightweight intercon
nect API between the rest of the kernel and the network

66	 ; LO G I N : 	VO L . 	35, 	N O. 	5

stack on the single CPU. They produced the intercon
nect by splitting the socket layer with the front end in
the application and the back end in IsoStack. They have
achieved near line speed (10GiB/s) with a 25% CPU utili
zation on an IBM Power6 with eight cores.

An audience member asked whether this is a scalable
solution as networks get faster but single cores do not.
Is there a future bottleneck looming for IsoStack? Shalev
replied that ReceiveSide Scaling (explained in the paper)
can be used to scale IsoStack to use multiple cores with
out the overhead of introducing any locks.

june 23 , 3 : 30 p. m .– 5 : 30 p.m .

Summarized by Aleatha Parker-Wood (aleatha@soe.ucsc.edu)

■■ A Realistic Evaluation of Memory Hardware Errors and
Software System Susceptibility
Xin Li, Michael C. Huang, and Kai Shen, University of
 Rochester; Lingkun Chu, Ask.com

Xin Li presented a survey of memory hardware errors,
focusing on nontransient errors. The data was col
lected from 212 servers at Ask.com, with over 800GB of
memory, monitored for nine months. In addition, they
looked at data from PlanetLab machines, and 20 desk
tops from the University of Rochester. These results have
been previously reported in USENIX ’07.

One purpose of this work is to evaluate the efficacy of
countermeasures such as ECC and Chipkill. These coun
termeasures are often expensive to add to a chip, and so
the authors wanted to examine how often these problems
occurred, as well as whether countermeasures were ef
fective when applied. Since memory errors are rare, the
authors used Monte Carlo simulation in order to step up
error rates and evaluate the impact on software, with and
without each of the countermeasures applied.

The authors were particularly interested in the effect on
software running on faulty memory, since not all errors
are accessed. In order to evaluate the effect, they injected
faults into a virtual machine. To track memory accesses,
they used a novel memorytracking approach which
relies on page access controls for coarsegrained tracking
and then uses hardware watch points for faults within
the page. They concluded that without error correction,
50% of nontransient errors cause errors in software, in
the form of wrong output, software crash, or a kernel
crash. When ECC is applied, the frequency is reduced,
but some errors still creep through and are just as severe.

Mohit Saxena from the University of Wisconsin—Madi
son asked how the approach compared to 2bit ECC
and cache errors. Li said he was unfamiliar with the
approach, but believed it was a weaker model than the
Chipkill ECC. If it was widely available, he would look
into its effect.

■■ The Utility Coprocessor: Massively Parallel Computation
from the Coffee Shop
John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch,
Microsoft Research

Jeremy Elson presented a utilitycomputing framework
specifically designed for desktop applications working in
high latency, low bandwidth applications for limited periods
of time. A framework like this would allow highly paral
lelizable applications, such as software development, video
editing, 3D modeling, and strategy games to take full
advantage of the computational power of the cloud. How
ever, users and application designers are unlikely to want to
install a new operating system or write highly specialized
code to take advantage of this computing power. And users
have highly heterogeneous systems, with different software
and libraries, which the system should take advantage of.

To achieve a system with a low barrier to entry, they re
jected manual replication of code, and software as a service.
Instead, they suggest a remote file system, which requests
files as needed from the client file system. To keep this from
being prohibitively slow, they use a variety of techniques.
First, they carefully relax consistency semantics, using task
open to taskclose rather than fileopen to fileclose. This
reduces the amount of data transferred. Second, they use a
contentaddressable storage (CAS) model to ensure not only
that data can be reused between runs of the software, but
that users using the same libraries or software can leverage
data from one another. On the first run, the parameters are
sent to a distributor, and from there to worker processes.
Workers request the files they need, such as libraries and
binaries. Writers write to a temporary area and, on comple
tion, the results are returned to the client. Subsequently, re
mote file hashes are checked against the local files to ensure
that files are up to date, and differential compression is used
to send changes.

Since all of the libraries and software are pulled from the
client, there are no major OS compatibility issues or any
need to manually update libraries on the cluster. One clus
ter can be shared across a variety of users and applications.
The authors note that the only downside is a lack of shared
memory. All IPC must be done through the file system.

Someone asked about what was required to persist be
tween invocations, whether a file system was needed or
whether computer time would need to be rented. Elson
replied that all that was needed was a file system. Further,
since the system used contentaddressable storage, the file
might already be cached from a different user. What about
licensing issues, since the net result might be thousands of
copies of Photoshop running on the cluster? A good point,
but not one that Elson felt qualified to address. What about
privacy issues? Cache sharing was not a vulnerability, since
if you can name a file, you must already have a copy of it.
Another audience member noted that the current model for
cloud computing is to preallocate virtual machines, which
are then billed by startup cost. Did Elson think the charge

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 67

model would change? Elson said that for the time being, it
was best to assume that one client would be the only one
using it. This would still be economical for many tasks, es
pecially extended ones. However, he predicted that the cost
model might change if there were enough people to amor
tize the cost of these clusters. Finally, an audience member
noted that the target applications might benefit from using
GPUs, or computing resources on a remote desktop. Elson
replied that making things faster locally was always supe
rior, but that it wasn’t always practical to take a spare GPU
to a coffee shop.

■■ Apiary: Easy-to-Use Desktop Application Fault
 Containment on Commodity Operating Systems
Shaya Potter and Jason Nieh, Columbia University

Shaya Potter presented Apiary, a framework for fault con
tainment. Desktop applications are a common vector for
exploitation. However, many of these applications have
no reason to persist data or to interact with one another.
One possibility would be to use an isolated VM for each
application or instance of an application, in order to keep
the impact of exploited applications to a minimum. But
this represents a significant amount of overhead, both for
the system and for the user. Instead, the authors propose a
slightly smaller virtual system, known as a container. Con
tainers can contain one or more applications and can either
persist data between invocations, in an isolated file system,
or be ephemeral. They retain the look and feel of the desk
top. They are low overhead and quick to instantiate. They
offer a lower degree of isolation than a full hardware VM,
but are sufficient for most applications. If applications need
to invoke external applications, such as a browser invoking
a PDF viewer, an ephemeral container can be invoked for
the duration of that session.

The system uses unioning file system concepts to manage
packages. They introduced a new file system, known as the
Virtual Layered File System (VLFS). VLFS turns packages
into readonly shared layers. This allows different applica
tions to depend on different versions of packages. Since lay
ers are shared, a file system image for an ephemeral appli
cation can be created instantly by dynamically composing
layers. Any file system changes are updated to the private
layer, which isolates changes and makes malicious file
system changes visible. The authors presented their system
in a variety of case studies, and concluded that it introduces
approximately a 10% overhead for 25 parallel instances run
ning a suite of applications.

Catherine Zhang from IBM asked what would need to be
changed to migrate to this system. Potter replied that you’d
need to replace all of the packages with layers. The authors
have a tool which converts packages into layers, but it’s
not very robust yet. John McCullough from UC San Diego
asked how important it was to have the different layers for
applications, and whether that was just to support conflict
ing versions. Potter replied that it also supports granularity.
For instance, if a security hole is found in a library such as

libc, it is better to be able to simply upgrade a single layer.
Someone asked what happens when you don’t want ephem
eral behaviors, such as when a document is downloaded
from the Web. Potter replied that files that are changed in
an ephemeral process are persisted to the file system, but
the container itself is deleted after use.

■■ Tolerating Malicious Device Drivers in Linux
Silas Boyd-Wickizer and Nickolai Zeldovich, MIT CSAIL

Silas BoydWickizer presented SUD, a confinement system
for Linux device drivers. SUD (not an acronym) is designed
to convert existing kernelspace device drivers into drivers
that can be run in user space. One of the major obstacles
to this goal is the lack of modularity in the current driver
interfaces. The kernel runtime cannot currently be used for
drivers in a different protection domain.

To achieve their goal of userspace drivers with a minimum
of rewriting, they emulate the kernel environment in user
space using SUD UserMode Linux (UML), which can be
used to shadow necessary variables. In addition, they add
proxy drivers to the Linux kernel, which allows reuse of the
existing driver APIs. Proxy drivers and SUDUML converts
the existing Linux driver APIs into RPCs. The proxy driver
is responsible for synchronizing shadowed variables before
and after RPCs. Nonpreemptable functions are imple
mented in the proxy driver to prevent the userspace driver
from being preempted. SUD adds a hardware access module
to the kernel to prevent drivers from doing real physical
accesses which could be used to attack the system directly
via hardware. By using I/O virtualization, the driver can
be given direct device access while preventing attacks. This
is implemented using the IOMMU capability of modern
systems.

Wenji Wu from FermiLab asked how many times SUD
copied from user space to the kernel, for instance, in the
given example of packet transmission. BoydWickizer re
plied that shared buffers in the userkernel shared memory
remove any actual copy operations in that example. How
does the driver write to the actual registers for the hard
ware from user space? The memory is mapped using mmap.
How is control passed from the proxy driver to the user
space driver, and does that need to be privileged? Silas
replied that it did not need to be privileged. Xin Li from
the University of Rochester asked how often device drivers
were actually malicious versus simply a source of bugs. In
general, drivers were not written to be malicious, but due to
exploitation could become malicious over time. Li followed
up, saying that this implied that the interface between the
user level and the kernel level is fragile and that pushing
the device driver outside the kernel wouldn’t improve the
situation. BoydWickizer replied that this sort of isolation
made it easier to restart the driver and keep it from crash
ing the kernel. An audience member noted that because the
userspace drivers had a flag set to keep them from being
swapped out, this would result in partitions in physi
cal memory, which might make it hard to allocate large

68	 ; LO G I N : 	VO L . 	35, 	N O. 	5

contiguous buffers. BoydWickizer replied that since most
of the DMA buffers were a few megabytes or smaller, this
wasn’t a major concern.

june 24, 9 : 00 a.m.–10 : 00 a.m. : keynote address

■■ Some Thoughts About Concurrency
Ivan Sutherland, Visiting Scientist at Portland State University

Summarized by Dan Schatzberg (schatzberg.dan@gmail.com)

Ivan Sutherland opened the second day of the conference
by discussing his design for an asynchronous computer. He
has created the Asynchronous Research Center at Portland
State University to work on this design, which he believes is
achievable if we change two paradigms.

The first paradigm is that of sequential computing. When
Maurice Wilkes ran the first program on EDSAC on May 6,
1949, the nature of the computing was a sequential order of
operations. The cost of logic operations was much greater
than the costs of communication between the operators.
So it made sense to focus on the sequence of logic opera
tions. But now the majority of the cost in the system is in
communication. We currently don’t have a vocabulary to
configure communication. The details are hidden from the
software. Sutherland then described his design, called Fleet.
Fleet is a system designed to have configurable communica
tion between the functional units. Programming is done by
describing where data is sent to or from a functional unit.
Sutherland claims that because the default is concurrent
execution, programming the machine for concurrency is
simpler.

The other paradigm is the use of a clock. It is not a neces
sary for a machine to have a clock. At one time it was useful
for dealing with electrical noise, but now it creates power
supply spikes. Because Fleet is designed so that functional
units run when they have input to do so, there is no need
for a clock tick for each execution. Everything runs con
currently (not just across “cores” but across all functional
units).

Sutherland concluded his talk by saying that the system was
still in its infancy. There is still much to do to make such a
system really useful.

june 24 , 10 : 30 a .m .– noon

Summarized by Dan Schatzberg (schatzberg.dan@gmail.com)

■■ Proxychain: Developing a Robust and Efficient
 Authentication Infrastructure for Carrier-Scale
VoIP Networks
Italo Dacosta and Patrick Traynor, Converging Infrastructure
Security (CISEC) Laboratory, Georgia Tech Information Security
Center (GTISC), Georgia Institute of Technology

Italo Dacosta presented work done with Patrick Traynor
on efficient largescale authentication. He began by talking
about the tradeoffs among performance, scalability, and se

curity. Some robust but computationally expensive security
mechanisms are difficult to deploy in production environ
ments, while others are more efficient but weaker and can
be broken or abused. Session Initiation Protocol (SIP) is
used for establishing, managing, and terminating sessions
between at least two clients. It is generally associated with
VoIP. Typically, only Digest authentication is used, because
it is more efficient even though it is weak.

SIP Digest Authentication is a challengeresponse protocol
that uses cryptographic hash operations. The authentication
works as follows: A user sends an invite request to a nearby
proxy server. The proxy server asks the user for a hash of
some secret stored on the database. The user responds and
the proxy queries the database for the hash value to confirm
that it matches, then sends the invite. The issue is that
each time a user sends an invite, the database server must
process a request and send it to the proxy. In testing, with
no authentication their scenario could handle 24,000 calls
per second. With authentication, they were brought down
to just 1,160 calls per second.

The proposed solution is to cache temporary credentials
created from hash chains to reduce the number of requests
to the database. A hash chain is a sequence of onetime
authentication tokens created by applying a hash function to
a secret value multiple times. The server can cache the nth
value in the chain. Then when the user sends an invite, the
server can authenticate it by asking for the (n1)th value in
the chain, hashing it, and confirming it matches the origi
nal value. Then, on the next invite from the user, the server
can ask for the (n2)th value and so on. This only requires
one database request initially and then none afterwards.
The modifications required to implement this were rela
tively small and the cached credentials are only 134 bytes
each. With Proxychain they were able to achieve 19,700
calls per second. Italo Dacosta can be reached at idacosta@
gatech.edu.

■■ ZooKeeper: Wait-free Coordination for Internet-scale
Systems
Patrick Hunt and Mahadev Konar, Yahoo! Grid; Flavio P.
 Junqueira and Benjamin Reed, Yahoo! Research

Won Best Paper Award!

Benjamin Reed presented his work on a system for Yahoo!
applications. The challenges involve lots of servers, users,
and data. Requiring fault tolerance in such a system makes
designing applications difficult. Reed discussed various
distributed system architectures, some involving a master
slave relationship and others being fully distributed with a
coordination service. Their system had a few requirements,
including waitfree (slow processes cannot slow down fast
ones), linearizable writes, serializable reads, client FIFO or
dering, and client notification of a change before the change
takes effect.

They designed a system with a very simple API that in
cluded only about 10 primitive instructions. A hierarchi

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 69

cal namespace is designed where each node has data and
children. Workers can get configuration when brought up
and set a flag to be notified of a change. Administrators can
change the configuration and then the workers receive the
updated settings. Benjamin Reed showed how the API can
be used to do leader election as well as locking.

The ZooKeeper Service is designed to have many serv
ers with a copy of the state in memory. A leader is elected,
the followers serve the client, and updates go through the
leader. 2f+1 machines tolerate f failures. The service is open
sourced at http://hadoop.apache.org/zookeeper.

■■ Testing Closed-Source Binary Device Drivers with DDT
Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea,
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Vitaly Chipounov presented work on debugging device
drivers. Testing device drivers is difficult for many reasons.
Using sample input, it is difficult to cover corner cases.
Exhaustive path exploration is also inadequate, because
drivers run in an environment, so symbolic analysis alone
is not effective. Modeling the environment completely is dif
ficult, too. Dynamically testing requires HW and cannot do
multipath execution. Static testing requires the source code
of the driver and a modified environment.

Chipounov proposes DDT as a solution. It executes the
driver symbolically within a virtualized machine. The
machine outputs symbolic values for each hardware request.
The driver is then symbolically executed, with the system
state forked on conditionals. If bugs are found, constraints
are solved. Interrupts are also symbolic. It’s not possible to
call the kernel symbolically, so each call is returned with a
random value that satisfies the constraints. With kernel API
annotations, coverage can be increased.

With this exception, an OSlevel checker can be run on
multiple paths, and a VM level checker can run outside the
machine. Detailed reports are output about bugs. Chipou
nov concluded with a demo for a reproducible blue screen
on Windows XP SP 2 based on a bug in a Microsoftcerti
fied closedsource driver.

june 24 , 1 : 00 p.m .– 3 : 00 p.m .

Summarized by Marc Staveley (marc@staveley.com)

■■ A Transparently-Scalable Metadata Service for the Ursa
Minor Storage System
Shafeeq Sinnamohideen and Raja R. Sambasivan, Carnegie
Mellon University; James Hendricks, Carnegie Mellon University
and Google; Likun Liu, Tsinghua University; Gregory R. Ganger,
Carnegie Mellon University

Shafeeq Sinnamohideen gave a brief description of the Ursa
Minor Storage System, a storage system designed to scale
to thousands of storage nodes. Ursa Minor is split into data
storage nodes (storing bulk file data) and metadata storage
nodes (storing file attributes including the location of bulk
file data on data storage nodes).

Ursa Minor needed a scalable metadata store that is con
sistent across all metadata servers. Since some operations
can affect two objects (e.g., object rename and object create)
whose metadata may be on two different servers, a mecha
nism was needed to maintain consistency across metadata
server boundaries.

Sinnamohideen’s team decided not to use a distributed
transaction protocol (like Farsite) or a shared state with
distributed locking protocol (like GPFS), since these seemed
to be overly complex systems to handle an infrequent event.
Instead, they decided to migrate all of the metadata objects
needed for the operation to a single metadata server before
applying the metadata change.

The authors noted that multiobject operations usually oper
ate on objects that are close in the filesystem hierarchy. So
they decided to organize the store so that objects that are
close in the filesystem hierarchy are handled by the same
metadata server and therefore do not require object migra
tion to have operations applied to them. Sinnamohideen
showed that the latency added by this model does not
adversely affect the overall system, since multiobject opera
tions are so very rare. The team then measured the perfor
mance of the store with a modified version of SPECsfs97
(with multisever OPS at 100 times the observed usage) and
showed that the system scales linearly with added metadata
servers.

It was noted during the question period that this only
works if metadata migration can happen quickly. In Ursa
Minor the metadata is actually stored on the data storage
nodes, so migrating metadata doesn’t require actually mov
ing the data, but just changing which metadata server is
responsible for it.

■■ FlashVM: Virtual Memory Management on Flash
Mohit Saxena and Michael M. Swift, University of Wisconsin—
Madison

Mohit Saxena noted that application memory footprints are
everincreasing but we don’t always have the ability to just
add more DRAM (e.g., power and DIMM slots limitations).
Saxena presented a virtual memory subsystem for the Linux
kernel which uses Flash memory as the backing store. He
showed how they had modified the current VM subsystem
to remove the disk optimizations, which are not needed for
a Flash backing store. Saxena then went on to show how
they handled the characteristics of Flash—for example, the
need to erase pages before writing to them (it was noted
that the SSD discard command is very slow, so FlashVM
coalesces discards to amortize the cost of the command).

Their performance evaluation showed up to a 94% per
formance increase when there is pressure on the virtual
memory subsystem. But Saxena believes that there is more
work to be done in avoiding expensive discard operations.

Does their architecture interfere with the wear leveling that
is being done by the SSD? Saxena did not believe so, since
they are not doing any leveling themselves, but they do ag

70	 ; LO G I N : 	VO L . 	35, 	N O. 	5

gressively reduce the number of writes to the device so as to
extend its life.

■■ Dyson: An Architecture for Extensible Wireless LANs
Rohan Murty, Harvard University; Jitendra Padhye and Alec
Wolman, Microsoft Research; Matt Welsh, Harvard University

Matt Welsh believes that 802.11 (WLAN) is not suitable for
the new applications and classes of traffic that it is cur
rently being asked to handle. The inherent problems can be
mitigated if the access points and clients are all cooperating
to maximize aggregate throughput, unlike 802.11, where
all decisions are made by the clients with no coordination
between clients or the access points. Welsh also noted that
changing 802.11 is a very lengthy process (802.11e took
over six years to complete).

Dyson is an extensible WLAN system that uses a central
controller to gather traffic data from the access points and
clients and allows the IT administrators to set policies. The
policies are short Python scripts that can, for example,
cause all clients to associate the access point with the lowest
load factor or separate VoIP traffic from bulk TCP traf
fic (which greatly reduces jitter). This combination of data
gathering across all participants and policy implementation
gives an elegant solution to current WLAN problems.

An audience member made the observation that this could
all be done without the need for a central controller, since
all the APs and clients are communicating with each other.
Welsh agreed but thinks it would be much more difficult
to get decentralized decisions working. Someone also asked
what the overhead of the data gathering packets was, to
which Welsh responded that it is very, very low, since most
of the information can be piggybacked on standard 802.11
control messages.

■■ ChunkStash: Speeding Up Inline Storage Deduplication
Using Flash Memory
Biplob Debnath, University of Minnesota, Twin Cities; Sudipta
Sengupta and Jin Li, Microsoft Research, Redmond

Sudipta Sengupta noted that using deduplication to decrease
the amount of data stored in enterprise backup systems
can save a significant amount of storage. It can also save
network bandwidth if the target is not on the local machine
(which can be very important if the target is across a WAN).

But in order to run deduplication at line speeds it is neces
sary to have a scheme for quickly looking up the chunk
fingerprint (in their case a 20byte SHA1 hash) in the
database of previously seen chunks. The problem is that
with current data stores this database is too large to keep in
memory. Previous systems have used diskbased database
schemes with heavy caching, but there are still performance
challenges.

Sengupta’s team devised a scheme to use Flash memory
to hold the database. Their system uses Flashaware data
structures and algorithms and strives for low RAM usage
to allow for large Flash databases. Chunk metadata (chunk
length and location) is organized on Flash in a logstruc

tured manner, with a cuckoo hash table of the chunks in
RAM. They also have a metadata cache in RAM.

Sengupta compared ChunkStash with using Berkeley DB
to store the database on hard disk and SSD, showing that
they get a 25x (HDD) and 3x (SSD) improvement over using
Berkeley DB.

An audience member asked if deduplication can be done
offline. That is, copy all the data to secondary storage and
then dedup the secondary storage in batch mode before
moving off to tape. Sengupta replied that it could be done,
but you lose one of the benefits of local deduplication,
which is decreasing network traffic if the backup system is
remote.

june	 2 4 , 3 : 30 	 p.m .–4 : 30 	 p.m . : 	 invited	 talk

■■ Google Books: Making All the World’s Books Universally
Accessible and Useful
Jon Orwant, Engineering Manager, Google

Summarized by Italo Dacosta (idacosta@gatech.edu)

The Google Books project is an example of Google’s philoso
phy of organizing the world’s information. The main goal
of this project is to digitize the content of all the books in
the world, organize it, and allow everyone to search it. Jon
Orwant, the leader of the Google Books project, presented
the motivation behind Google Books, the challenges faced
by this project, and the benefits and possible uses provided
by this service.

Orwant said that Google Books can be divided into two
parts: the publishers half and the libraries half. Today
Google works with approximately 30,000 publishers
worldwide. While publishers want their books to appear in
Google Books, they demand that only 20% of the books’
content be displayed as text snippets. Surprisingly, only
10% of the books received by publishers are in digital
format. As a result, Google has to digitize most of the books
provided by publishers.

According to Google Books’ weekly count, there are ap
proximately 174 million books worldwide. From this total,
20% are in the public domain (out of copyright), 10–15%
are in print (copyrighted), and the rest are books that are
presumably copyrighted but out of print. The problem with
the books in the last category is that they are only available
in libraries. Therefore, to make these books more accessible
to the public, Google began to scan books from libraries in
2005. Since then, Google has been working with more than
40 public and private libraries and has scanned around
12 million books. Orwant estimates that all the books in
the world will be scanned in 10 to 15 years. In addition,
Orwant mentioned that libraries benefit from this project,
because they can obtain digital copies of the books for
backup purposes for free because no money is exchanged
during the process. However, Google has been the subject of
several lawsuits from groups such as the American Associa

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 71

tion of Publishers and the Authors Guild regarding the fair
use of the books’ content. Orwant expects that a soonto
beapproved settlement will allow Google Books to continue
scanning books while providing additional benefits to
libraries, publishers, and copyright holders.

The process followed by Google to digitize each book is
conducted in seven steps. First, the book is obtained from
the publisher or library and is scanned. Second, the book’s
scanned pages are enhanced using several image process
ing techniques (i.e., cropping, cleaning, dewarping). Third,
optical character recognition (OCR) techniques are applied
to obtain the text that will allow people to search the book’s
content. Fourth, the scanned book is analyzed to under
stand its structure (i.e., text flow, headers, footers, etc.).
Fifth, the book is identified based on the metadata avail
able from different sources. Sixth, the book is classified and
indexed. In the seventh and final step, the digitized book is
served in Google Books.

The process of adding books to Google Books faces several
challenges such as: careful handling of library books; books
in many different languages; multiple inaccurate, inad
equate, and illformatted metadata sources; nonmonograph
books (e.g., boxed sets, series, and multivolume works);
the lack of unique book identifiers (e.g., ISBN); determining
a book’s contributors; and figuring out a book’s structure
(e.g., page numbers, publication year). To overcome these
challenges, Google relies on different engineering and
computer science techniques, as well as the creativity of
Google’s engineers (on their 20% time projects).

Finally, Orwant described how all the information gathered
by Google Books represents a “corpus of human knowledge”
and presented some examples of how to take advantage of
this knowledge. He commented on the use of Google Books
by researchers doing linguistic analysis (i.e., predicting the
regularization of verbs and determining popular words in
a particular decade). Also, Orwant described how Google
Books could be used to test the “Great Man” hypothesis by
determining if great ideas and discoveries could have been
reported earlier in history by people in different cultures
and places. These types of applications are possible because
Google Books allows searching not only for phrases but also
for concepts. In conclusion, Google Books exposes infor
mation that before was only available on library shelves,
allowing everyone to ask questions that were not possible to
be answered before.

During the Q&A, someone asked to what books the Google
settlement applies. Orwant answered that the settlement
applies to books scanned until May 5, 2009. The settle
ment also gives partial benefits to books scanned after that
date and to future books. Orwant added that most of the
settlement benefits only apply inside the US. Can the books
covered by the settlement be scanned and sold by Google
without the authors’ permission? Copyright holders can
decide if they want their books in Google Books or not. If a
book is out of print and the author does not come forward,

Google can sell the book and put the money in escrow until
the author reclaims it. Orwant added that other companies
as well as Google can sell the books. A short discussion on
whether this was a fair practice followed. Another attendee
asked if Google is planning to do the same with other forms
of media. Orwant answered that it is a good idea but there
are several technical and legal challenges associated with
gathering information from other types of media.

june 24, 4 : 30 p.m .– 6 : 00 p.m . :
work-in-progress reports (wips)

First three WiPs summarized by Aleatha Parker-Wood
(aleatha@soe.ucsc.edu)

■■ Live Gang Migration of Virtual Machines
Umesh Deshpande, Xiaoshuang Wang, and Kartik Gopalan,
State University of New York, Binghamton

Umesh Deshpande presented Live Gang Migration. Colo
cated virtual machines are often migrated for load balanc
ing. Since VMs often share a lot of pages, this can result in
many duplicate pages being sent across the network. Live
Gang Migration identifies these identical pages and transfers
only a single instance. Further instances are migrated by
transferring a page ID to the remote machine. In their ex
periments, this resulted in 40% reduction in total migration
time and 60% reduction in network traffic. Kai Shen noted
that VM monitors already have a feature identifying identi
cal pages, and Deshpande responded that there is a feature
for sharing pages on the same host but that Live Gang
Migration is for reducing duplicate pages during migration,
a case which is not currently addressed.

■■ Remote Shadow I/O: A Framework to Achieve High Perfor-
mance Remote I/O Using the Shadow Device State
Sejin Park and Chanik Park, POSTECH, Pohang, South Korea

Sejin Park presented Remote Shadow I/O. This work focuses
on unmodified guest OSes running within a virtual ma
chine (VM). Remote I/O is a significant amount of overhead
for virtual machines. Currently, performing remote I/O to
a hard drive requires the guest OS to go through VMExit
Handler. However, in their analysis, 80% of disk I/O doesn’t
actually modify the disk, just reads or sets state in the file
system. Only 20% of requests actually access disk. They
propose to take advantage of this by maintaining a shadow
device state in the hypervisor during the 80% of get/set disk
I/O operations. When the 20% of real I/O occurs, updates
are piggybacked into the write, in order to synchronize the
state with the real disk state. Scheduling overhead is high,
so the expectation is that 8.8% of performance can be im
proved for their test trace.

John McCullough from UCSD asked how this compared to
paravirtualized devices such as for Windows. Park replied
that they don’t consider this to be a paravirtualized device.
Dan Peek from Facebook asked whether there was extra la
tency that’s added to a real request because of the additional

72	 ; LO G I N : 	VO L . 	35, 	N O. 	5

changes, since the system has to replay the shadow device
to the real device. Park replied that the real device has the
same latency.

■■ Designing a Snapshot File System for Storage Class
Memory
Eunji Lee, Seung-hoon Yoo, and Kern Koh, Seoul National Uni-
versity, South Korea; Hyokyung Bahn, Ewha University, South
Korea

Eunji Lee presented a new snapshot filesystem concept.
Storage Class Memory (SCM) is nonvolatile and byte ad
dressable. It is expected to be widely deployed by 2020. It
will likely replace hard disk drives, due to high performance
and low power consumption. The authors wanted to build
a snapshot file system which exploits the properties of Stor
age Class Memory. Storage Class Memory has no seek time
but has a limited capacity. Current algorithms optimize
seek time by using extra capacity, using copy on write, for
instance. For Storage Class Memory, the authors suggest that
systems should reduce space usage rather than seek time,
using a “write in place” snapshot policy. Rather than creating
a new root and new data in a new location, they copy the old
data into a new location and overwrite the existing location
with the new data. Rather than mounting a new root, the
system needs to do more work to recompute an old version,
but this is rare. To access it, the system restores using copy
on write, updating the new data back to the old data.

Someone asked if this system was optimized for rollback
versus time travel. Lee replied that it was. Peter Desnoy
ers asked how the system was maintaining the copies it
made and whether they were linked off the old block. Lee
replied that the old data blocks are contained in a list, with
a pointer in the old inode to the list.

Last three WiPs summarized by: John McCullough (jmccullo@
cs.ucsd.edu)

■■ Multi-Client Proxy Server on a Low-Power Wireless Router
Amal Fahad and Kai Shen, University of Rochester

Mobile devices are often limited by their connection quality
and battery life. Wireless gateways can potentially improve
the experience for mobile devices by leveraging their im
proved network connectivity and dedicated power source.
Potential activities include caching/prefetching, media trans
coding, Web site customization, offloaded computation, and
security functions. The main challenge is supporting such
highdemand services on a lowpower device. So far they
have studied the Squid caching proxy and found that it has
a modest latency increase over a desktop implementation
for cache hits, but for cache misses the writes have higher
latency because of the shortcomings of the compactflash
storage media.

■■ SSDAlloc: Hybrid SSD/RAM Memory Allocation Made
Easy
Anirudh Badam and Vivek S. Pai, Princeton University

Flash storage provides cheaper and more powerefficient
storage than DRAM. While most Flash does not support

bytelevel access, it is still useful for increasing workingset
capacity. Current techniques either involve custom coding
to SSDs, which is labor intensive, or using SSDs as a swap
backing store, which is not very well suited to the medium.
This work provides a calloc style interface to a runtime that
keeps objects in memory when in use, maintains unused
objects in a packed form in RAM for caching, and man
ages logstructured page storage on the SSD. This approach
provides transparent access with a 2–6x performance gain
over SSDbacked swap. Information about the project can
be found at http://www.cs.princeton.edu/~abadam/ssdalloc
.html.

■■ Jboa Minicluster (Just a Bunch of Atoms): New Techniques
for HPC
Mitch Williams, Sandia National Lab

Sandia has a long history of building portable miniclusters
for HPC demonstrations and small scale simulations. His
torically, miniclusters have been constructed from Pentium
2, Pentium 3, Geode lx800, Core2Duos, Via C7, and, most
recently, Atom processors. Most of the work focuses on
virtual machines and software. The goal is to hit 50M VMs.
The current 16node cluster gets 3K VMs on lguest using
oneSIS, Clustermatic, and VMatic. The current goal is to
study botnetspreading behavior on a simulated Internet.
Currently, they hope to look at other platforms, potentially
including cellphone style platforms, because Atom is slow
as a cluster node.

june 25 , 9 : 00 a .m .– 10 : 00 a .m . : invited talk

■■ Reconstructing Ancient Rome: 700 Years of IT and
 Knowledge Management
Maximilian Schich, DFG Visiting Research Scientist at
 BarabásiLab, Center for Complex Network Research at
 Northeastern University

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

Documentation provides a fascinating view of our world.
Today we have research projects that can construct 3D
models of places like the Coliseum based purely on photos
from Flickr. Beyond that we have Google Street View, which
gives us views into even more obscure locations. These
views give us a strong sense of what the world looks like
today, but can we get a sense of what they looked like long
ago?

Historical evidence provides only limited evidence. The
best maps of ancient Rome include only onethird of the
city, and it can be very hard to reconstruct what is missing.
During the Renaissance there were many who documented
ancient Rome, providing insight into ground plans and
architecture—or at least part of it, as the documentation is
heavytailed with concentration on the most popular monu
ments and little focus on anything else. The documentation
that does exist has been through a remixing process.

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 73

The documentation process iterates through five steps:
(1) study existing fragments or potential source documen
tation and surveys; (2) integrate the fragments, creating
sketchy ground plans; (3) make a full reconstruction, which
may have missing pieces; (4) refragment the reconstruc
tion when publishing, losing the uninteresting parts due to
the high cost of paper; (5) recombine the fragments, taking
artistic liberties when putting them back together. This
process repeats, losing more information, and introducing
architectural pieces from one document to fill in gaps in
another, or even making things up completely. Historically,
we can observe the process of the “inductive surveyor” who
adds documentation for monuments lacking any kind of
source documentation.

This leads to a paradox of progress in modern archeology,
as it tends to cite modern work and the ancient sources
with little mention of the middle period. This falls in line
with the practice of citing the original source rather than
the place it appeared, but it is hard to know what the inter
mediate source may have introduced. Encyclopedias have
collected the various historical documents. In the mid20th
century, researchers started putting together card indices
to locate monuments and sculptures. The problem of citing
the original, rather than the source used, persisted. In more
modern forms, the cardindices were put in a database that
gives you a UI to browse for documents associated with a
monument, or monuments associated with a document, but
provides little information on how they relate. Schich has
used linkclustering to show crosscorrelation between the
Roman baths with maps and provide higherlevel informa
tion than simple document queries and counts. Having full
access to the data can be highly beneficial, because others
may have a better idea for hot to interpret data than the
simple structure a query UI can provide. The datasets are
complex networks of complex networks, which are them
selves part of larger networks. In many ways we are ap
proaching highthroughput humanities: research databases
have been on the order of thousands or tens of thousands,
but now Google Books has scanned millions of books. Per
haps we can make a huge atlas of the humanities. For more
information see http://schich.info.

An audience member, observing that we’re drowning in
data and that a lone person is inadequate, asked whether it
would be more appropriate for a doctorate to be completed
by teams. Schich responded that this question has come
up before, as someone’s life work might be reduced to two
points on a line. There is enough complex overlap that we
can’t carve up the world into pieces for individual study.
Someone else observed that there is a lot of aggregate data
and asked whether there are ways to tag it with how valid
it is and arrive at a probability of correctness. The trouble
is that each person entering data has a different idea of the
standard of correctness and you are back to the original
problem. Ideally, we want to look at correlations and im
plicit citations and be able to toss out the junk.

june 25 , 10 : 20 a .m .– noon

Summarized by Joshua Reich

■■ Sleepless in Seattle No Longer
Joshua Reich, Columbia University; Michel Goraczko, Aman
Kansal, and Jitendra Padhye, Microsoft Research

Joshua Reich pointed out that idling PCs in corporate/en
terprise networks waste significant amounts of power by
idling. These machines generally have their OS settings dis
abling sleep because users and administrators want continu
ous and seamless access to these machines. Sleepproxying
systems were suggested as a solution to this problem over a
decade ago. Yet they have not yet been deployed commer
cially. Reich argued that the key issue that need be consid
ered here is the economic feasibility of the sleepproxying
system. The authors chose a sleepproxying design for easy
and economical deployment and maintenance. Their sleep
proxies reaction policy extends the best recommendations
of previous work with their own customized improvements.

The reaction policy proposed by the authors is straightfor
ward. Right before the client machine sleeps, it broadcasts a
quick notification—informing the sleep proxy of the ports
on which it is actively listening. The sleep proxy (which can
be a lowerpower, lowcost box—potentially even a client
peer) then takes over, redirecting all traffic for the client to
itself. It responds to IP resolution traffic, wakes the client
only for incoming TCP connection attempts to the set of
ports on which it had been listening, and ignores all other
traffic.

Reich next shed light on the factors that impede the practi
cal performance of sleepproxying systems in real net
works—identifying the twin problems of “crying babies”
and “applicationbased insomnia.” The first of these ac
counts for ~10% of lost sleep and is caused by other net
worked machines that attempt to connect to sleeping clients
too often. The second accounts for ~90% of lost sleep and is
caused by applications running on the host that prevent the
host from sleeping in the first place. In both of these cases,
it appears that IT servers and applications are the main
troublemakers. The good news is that relatively lowcost ap
proaches can likely be leveraged to schedule these applica
tions in a coordinated fashion that will leave much more
potential sleep time.

How much of the sleep savings you show came from your
system as opposed to the default Windows sleep behav
ior? Reich said that in their environment it was 100%, as
Windows sleep was disabled on all of their machines before
their system was rolled out. In other environments, these
savings would be reduced by onethird to 5%—depend
ing on what proportion of the machines would have been
sleeping. How does their system differ from the Apple sleep
proxy system? Their system is geared to the home consumer
and only works in their own closed ecosystem. In terms of
reaction policy, they are quite similar (they support WiFi).
However, the focus of the authors’ work is on economic

74	 ; LO G I N : 	VO L . 	35, 	N O. 	5

deployment and learning the lessons of such and their main
finding is that the IT setup is really what you have to worry
about.

How much of the sleep achieved was due to the particular
setup at Microsoft? Wouldn’t machines wake more else
where? Reich answered yes, that’s one of the main reasons
why they chose an extensible softwarebased approach
instead of a hardware NICbased approach—so they could
do blacklisting, whitelisting, etc. However, these additional
wakeups would really come from scanning machines and
they are focused on the corporate network, which tends to
be firewalled pretty heavily, not on more open academic
networks where this would be more of an issue. You could
implement pretty much any reaction policy you’d like (al
though LiteGreenstyle virtualization wouldn’t work) using
their framework.

■■ Wide-area Network Acceleration for the Developing World
Sunghwan Ihm, Princeton University; KyoungSoo Park, Univer-
sity of Pittsburgh and KAIST; Vivek S. Pai, Princeton University

Sunghwan Ihm pointed out that Internet access in devel
oping regions is a scarce and expensive commodity. Web
proxy caching has been proposed as a solution to this
problem in the developed world. However, this solution isn’t
adequate for the developing world, where there is signifi
cantly greater diversity of demanded content (and thus
much less cacheable content). So the authors propose a
combination of Web proxy caching and WAN acceleration.
In this scheme WAN accelerators sit in both the developed
and developing world, with data being chunked together,
compressed, and sent using much less bandwidth. Chunk
metadata is stored in accelerator memory, while data is kept
on disk.

There is a significant challenge here—small chunking has a
high compression rate (less extraneous data is put in a given
chunk) and puts little pressure on the disk (fewer cache
misses) but puts much more pressure on the memory (since
many more chunk IDs need to be stored). Large chunk
ing has the opposite tradeoff: better for memory, but it
puts pressure on the network and disk. Consequently, the
authors proposed multiresolution chunking (MRC), which
uses large chunks to ameliorate memory pressure and disk
seeking and small chunks to achieve high compression
rates. They generate these chunks efficiently by detecting
the smallest chunks first and then making their way up
(data contained in small chunks may also sometimes be
encoded in larger chunks).

The authors also took advantage of the assumption that
there will be many meshed machines in such a developing
world network. If this is the case, they can trade off between
network (grabbing content from peer memory caches) and
disk (grabbing it off one’s own disk) to maximize efficiency.
The authors evaluated their work with simulation experi
ments and a small testbed implementation.

 Why not apply these techniques for the developing world to
the developed world? Sunghwan agreed.

■■ An Evaluation of Per-Chip Nonuniform Frequency Scaling
on Multicores (Short Paper)
Xiao Zhang, Kai Shen, Sandhya Dwarkadas, and Rongrong
Zhong, University of Rochester

Xiao Zhang described the problem as applying DVFS to all
cores on the same chip. However, not all cores are doing
(or need be doing) the same amount of work. The authors
proposed smart scheduling to facilitate perchip frequency
scaling, thereby saving power on the cores eligible to be
run at lower frequencies. To do so, they group applications
with a similar cachemiss ratio on the same chip. This way,
applications with high cachemiss rates can be run at lower
frequency (since the processor will most often be blocking
for I/O anyway), while applications with low cachemiss
rates can be run at higher frequencies. This also removes
pressure on the cache (as applications with a high rate of
cache misses are not continually knocking the cache lines
of applications with lower rates of cache misses out of the
cache). Likewise, it reduces pressure on the memory bus.

They evaluated their techniques on a 2chip Intel 3GHz
WoodCrest processor (two cores per chip, sharing a 4MB L2
cache) SMP running Linux 2.6.18 by running 12 SPEC
CPU 2000 benchmark applications. They found that their
techniques performed reasonably well. Moreover, it appears
that the power savings they experienced can be reasonably
approximated using a relatively straightforward model. They
then applied this model to develop frequency scaling poli
cies that provided reasonable power savings.

Someone asked why the similarity grouping without using
frequency reduction raises temperature. A CPU working
at full blast will generate more heat than two CPUs shar
ing load. Someone else pointed out that their performance
prediction model assumes that the behavior of other cores
doesn’t affect performance of the core that they are model
ing. Doesn’t that seem odd, given that lots of other resourc
es are shared? They are looking at standalone applications.
Having several applications running on other cores will
affect things, but they think it is a secondorder effect. This
holds on an SMPbased machine, not on a NUMAbased
machine.

■■ A DNS Reflection Method for Global Traffic Management
(Short Paper)
Cheng Huang, Microsoft Research; Nick Holt, Microsoft
 Corporation; Y. Angela Wang, Polytechnic Institute of NYU;
Albert Greenberg and Jin Li, Microsoft Research; Keith W. Ross,
Polytechnic Institute of NYU

Jin Li raised the question of how to best select one of many
remote locations from which to serve a Webbased content
request. In order for a provider to direct users to the server
it desires, it will use DNS redirection/reflection based on the

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 75

IP address of the client and insert that into the client’s local
DNS. This can be done using a geolocation database or
using an anycast solution.

Yet, how do we pick the best remote site for a given client?
Passive DNSbased measurement can be used, but this has
many drawbacks, particularly that the performance of some
of the clients is significantly degraded. So most CDNs have
used active probing techniques. However, many clients
(~45%) cannot be probed actively. So instead they use DNS
traffic (DNS reflection) to trigger DNS queries from any
LDNS server. Essentially, when an LDNS server that cannot
be actively probed makes a query to a toplevel DNS server,
that server reflects the query to a collector node. Then the
time between queries is measured and the network path
performance inferred.

Using 17 DNS servers and 274 Planetlab nodes, the authors
show that DNS reflection tracks within 6ms of ping.

Someone asked if they had thought about applying this
technique to similar passive measurement problems. Li said
that they have some other work in this area (e.g., measure
ments of clients to CDN providers).

june 25 , 1 : 00 p.m .–2 : 00 p.m . : invited talk

Summarized by Rik Farrow (rik@usenix.org)

■■ RoboBees: An Autonomous Colony of Robotic Pollinators
Matt Welsh, Associate Professor of Computer Science at Harvard
University

The idea started as hallway talk. Bee colonies around the
country have been dying off, yet bees are essential pollina
tors of crops. The idea turned into a short paper, then a
team was recruited. Brainstorming was followed by creation
of an outline, division of labor, and a funding request for
$10 million, which the NSF actually granted.

But that’s not where Matt Welsh started his talk. Creating a
colony of robotic bees is not just a CS project, as there are
many problems to solve. The researchers broke the problem
into three main areas: the brain, the body, and the colony,
with different teams working on each area.

The body shares some aspects with actual bees: a pair of
veined wings and small size. The veins and associated wing
corrugations are important for flight. For muscles, piezo
electric actuators that require 200 volts but just tens of
milliwatts of power are planned, with a flapping frequency
of 230 hertz—very similar to bees. First flight has been
achieved, but only when tethered to a power supply.

Power is a critical issue. Batteries will not work, because of
size limitations, so Welsh said they plan on creating fuel
cells tiny enough to fit on chips. There are existing micro
fuel cells, but they run at 200–500° C and require hydrogen
for fuel.

The brain must interpret sensors, control flight, and follow
instructions. Welsh explained how optical flow can be used
with a simple 64x64 pixel sensor from Centeye: if you want
to pass through an opening between obstacles, you want the
optical flow to be equalized on either side of the opening. If
the optical flow is getting uniformly larger, you are about to
run into a wall.

They plan on using an ARM processor and accelerometers
that can be turned on or off as needed. The program will
model neural control, keeping things as simple as possible.

For the colony, they need a noncentralized organization
but robustness as well. Welsh described using a highlevel
language to create a program that would be downloaded to
robobees to get them to search, for example. For now, they
are experimenting with Blade mCX microhelicopters, with
a goal of having 50 helicopters under radio control. Welsh
showed a video of a computer controlling a microhelicopter
via radio, flying briefly then crashing. There is obviously a
lot of work to do here.

Dan Peek of Facebook pointed out that plants and pol
linators coevolved, and that he just wanted to pass along
that idea. Dan Klein commented on a news clip that Welsh
showed toward the end of his talk. Fox News had called the
program “a good example of wasting government funds as
only 1.66 people were hired,” and Klein wondered who the
.66 person was. Welsh explained that the grant was funding
1.66 postdocs. Jitendra Padhye wondered why use flapping
wings, and Welsh said that one of the other researchers be
lieves that this is the most powerefficient design. Maximil
lian Schich worried about birds eating robobees, and Welsh
agreed that it was important that they be able to find lost
hardware.

june 25 , 2 : 00 p.m .– 3 : 00 p.m .

Summarized by John McCullough (jmccullo@cs.ucsd.edu)

■■ An Analysis of Power Consumption in a Smartphone
Aaron Carroll, NICTA and University of New South Wales;
 Gernot Heiser, NICTA, University of New South Wales, and
Open Kernel Labs

Aaron Carroll pointed out that smartphones have poor
power consumption, as evidenced by how often we have to
charge them. The situation is only getting worse as we add
functionality without any fundamental increases in bat
tery capacity. Current technology uses dynamic voltage and
frequency scaling for computation, but in real systems the
CPU doesn’t use that much power. If we ask what does use
power, the answer is often that nobody knows or vendors
won’t tell us.

To address this question, the authors instrumented an
OpenMoko Freerunner to cover 98% of the components
and measured the phone with a variety of benchmarks. In

76	 ; LO G I N : 	VO L . 	35, 	N O. 	5

the suspended state the phone draws 69mW and at idle it
draws 269mW. Half of the idle power is in the GSM chip,
and the GPU, LCD, and backlight draw significant power.
At full power, the backlight alone draws 400mW. RAM and
CPU are actually fairly powerproportional. When brows
ing email, the GSM draw is half of 610mW. When playing
back locally stored video, the CPU and RAM are dominant.
When playing audio, display power is high because SD ac
cess goes through the GPU.

The authors looked at the more modern HTC Dream (G1)
and Google Nexus One (N1) for validation, assuming the
power breakdown is similar. The G1 and N1 have better
idling power because of improvements in 3G over the older
chipsets, and they found that the radios draw similar power
even with the large differences in data transfer through
put. Computationally, DVFS provides energy benefits for
the Free runner and N1, but the G1 works better complet
ing at full power and then sleeping. This generally shows
that DVFS can still be effective, even though it has been
eschewed lately. In general, the biggest consumers of power
are the display, the cell radio, and, in some cases, the CPU.
Power is not going to RAM, Audio, Bluetooth, or storage.

One of the audience members asked about variance in the
LCD power based on displays. The author responded that
there is variation from 14mW for white to 70mW with black
for some displays, but that it varies by display technology
and in some cases you get the opposite. Therefore you have
to be sure to match a powersaving designed theme with
your phone. Was the platform measurable because of its
construction and could you measure other phones if you
had schematics? The OpenMoko is measurable because of
construction, but other platforms are likely to be hard due
to routing through multilayer circuit boards. While you can
do some inference from coarse measurements, the authors
wanted better accuracy.

■■ SleepServer: A Software-Only Approach for Reducing the
Energy Consumption of PCs within Enterprise Environments
Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta, University of
California, San Diego

Yuvraj Agarwal said that buildings represent a large fraction
of total power consumption. While the lighting, heating,
and cooling are all dutycycled well, the IT loads are typi
cally not. This is particularly worrisome as the amount of
power dedicated to IT is expected to continue increasing.
The authors instrumented the UCSD CSE building and
found that IT loads constitute 50–80% of the total building
power even when most of the machines are idle.

Most modern PCs support sleep states that reduce power
consumption to 1–2% of idle. This represents a huge poten
tial for power savings, yet most people don’t put their com
puters to sleep. The problem is that users or IT departments
want to access the computers remotely or the users want to
keep downloads running and maintain IM or VoIP pres
ence. Unfortunately, sleeping computers can’t provide that

directly. There is wakeonLAN, but it requires the magic
“wakeup” packet to be sent from the local network segment
and is typically a usability nonstarter. You can use a sleep
proxy that solves the usability problem of wakeonLAN
and can provide highlevel filters, but it cannot handle state
ful applications and users leave their computers running at
full power for simple downloads or to update emails while
they’re out to lunch. The other end of the spectrum is full
desktop VMmigration that allows the computer to run all
of its applications on a server while the desktop sleeps. But
that requires heavy technological buyin, and the degree of
power savings is tightly coupled to the scalability of hosting
heavyweight VMs on servers. The authors offer an alterna
tive called SleepServer that has most of the functionality of
VM migration with the same cost of the sleep proxy.

The goal, then, is to be able to maintain presence transpar
ently, match proxying demands for each sleeping PC, be
highly scalable, address enterprise management, and be
multiplatform. SleepServer addresses ARPs, ICMP, and
DHCP directly while providing the ability to wake up on
userdefined filters for traffic like incoming ssh or remote
desktop requests. Stateful applications such as background
Web downloads need applicationspecific “stubs” that
receive current state when the machine goes to sleep and
transfer new state back to the associated application when
the machine wakes up. SleepServer is implemented using
lightweight virtual machines that maintain the IP and MAC
addresses of the machine with all associated VLAN encap
sulation. The VMs are provisioned with 64MB of RAM and
1GB of storage, which has been shown to scale up to 250
virtual machines on a single 300W test server.

The authors have a deployment with 40 users, many of
whom would not otherwise put their computers to sleep,
due to remote access needs or needing at least one stateful
application. In early tests they found that automatic sleep
policies are much more effective than manual activation,
due primarily to forgetfulness. When using the automatic
sleep policy, overall power savings averaged to 70%. Wide
spread deployment in the department could be supported
by two servers and potentially result in a cost savings of
$60,000 per year. For more information and measurements,
see http://energy.ucsd.edu.

Can SleepServer handle 802.1X authentication? They haven’t
looked into it. Another audience member inquired about the
complexity of customizing applications and stubs for each
image. Agarwal responded that most users are typically
covered by a few stateful applications. What would be lost
if stubs were removed? A number of the users would not
participate in SleepServer without some of the features, re
gardless of whether they are used. How can you translate to
stubs? You need to modify the applications, though in gen
eral there are only a few stateful applications that the users
are concerned about. Could SleepServer be implemented in
a lightweight manner, something closer to a honeypot? The
necessary functionality could be implemented in software,

; LO G I N : 	O C TO B E R	201 0	 CO N FE RE N CE	RE P O RT S	 77

but most of this functionality already exists in VM technol
ogy and there is an implementation tradeoff.

june 25 , 3 : 30 p.m .–4 : 30 p.m .

Summarized by Paul Marinescu (pauldan.marinescu@epfl.ch)

■■ An Extensible Technique for High-Precision Testing of
Recovery Code
Paul D. Marinescu, Radu Banabic, and George Candea, École
Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Paul Marinescu started his presentation by arguing that
current generalpurpose software testing lacks the tools for
testing error recovery code, as coverage information from
various systems indicates. He then introduced a tool, LFI,
that uses librarylevel fault injection to test error recovery
code without making changes to the system under test.

Marinescu said that the real problem when doing fault
injection testing is finding good strategies to inject faults.
He then focused on answering the when, where, and what
to inject questions. He first introduced the notion of injec
tion triggers, a mechanism that allows testers to specify
with an arbitrary degree of precision when to inject. Then
he showed a static analysis tool that can automatically find
where to inject faults by choosing only the places where the
return codes are not checked. Finally, he presented a differ
ent static analysis tool that can automatically infer possible
error codes that an arbitrary library function can return.

The evaluation showed 11 new bugs LFI found in BIND,
MySQL, Git, and PBFT, as well as the ability to improve line
coverage of error recovery code from less than 5% to 35%
for Git and 60% for BIND, entirely automatically, without
writing new tests. LFI is open source software, available at
http://lfi.epfl.ch.

How can LFI work without needing source code since
some of its components were explicitly using source code
information? Marinescu replied that source code or domain
knowledge is not needed by LFI but can improve the results
if available. How fast are the static analysis tools presented?
The tools can analyze large systems (e.g., MySQL, libxml2)
in a couple of minutes.

■■ Mining Invariants from Console Logs for System Problem
Detection
Jian-Guang Lou and Qiang Fu, Microsoft Research Asia; Shenqi
Yang, Beijing University of Posts and Telecom; Ye Xu, Nanjing
University, P.R. China; Jiang Li, Microsoft Research Asia

JianGuang Lou argued that console logs are widely used
by programs because (1) they are easy to use and (2) the
free text format is very expressive. However, console logs
are usually too big to manually parse in search of abnor
mal program behavior. The speaker proposed an automatic
solution for interpreting log files. At its core, the solution
relies on linear invariants based on the execution count of
logging instructions. The linear invariants can be used to

model control flow such as sequential execution, branching,
or joining. Violations of these invariants indicate anomalies
and also point to the place where the anomaly happened.

The problem is that automatically inferring the invariants
for an arbitrary log file is NPhard. Lou proposed a three
step solution for reducing the computational cost of the
analysis: (1) the free text is transformed into structured text;
(2) log entries are grouped according to the system variables
they refer to; and (3) a hypothesis and testing algorithm
is used to find the invariants. Several strategies including
divide and conquer, early termination, and skipping are
proposed to reduce the search space of invariant mining.

The evaluation consisted of searching for anomalies in Ha
doop, CloudDB, and SharePoint log files. The approach was
able to find anomalies in all the log files, out of which about
75% were caused by bugs.

Timothy Roscoe was interested in whether domain knowl
edge could be incorporated in the proposed algorithm. Lou
said that is certainly feasible and could improve the accu
racy of the analysis.

USENIX Conference on Web Application
 Development (WebApps ’10)

June 23–24, 2010
Boston, MA

WebApps ’10 shared the opening session and Keynote Ad
dress with the 2010 USENIX Annual Technical Conference:
please see p. 63 for the report on that session.

june 23 , 10 : 30 a .m .-noon

Summarized by Rik Farrow (rik@usenix.org)

■■ Separating Web Applications from User Data Storage with
BStore

Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich, MIT
CSAIL

Won Best Paper Award!

Ramesh Chandra pointed out that while some apps (e.g.,
Google mail) rely on a single online store, other applications
require getting data from one site and doing something with
it using a different site. Chandra used an example where a
photo editing site needs to get on Flickr to gain access to a
photo.

Their solution is BSTORE, moving data storage within the
browser. BSTORE provides a single, simple (four call) API
for storing data and is implemented in JavaScript. Backend
storage can be in the cloud (S3) or local. BSTORE provides
security through tagging data. Only the principal or the
user can tag data for sharing with another application. Tag
ging is used for more than access control, as files may be
logically grouped using tags.

