
2 ; LO G I N : vO L . 3 4, N O. 6

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

I m a g I n e w at c h I n g t h e b e g I n n I n g
of a stock car race. As the drivers climb
into their cars, they ignore the webbing
for covering the drivers’ windows and do
not attach their five-point restraints or the
head-and-neck supports. Although this goes
against safety recommendations (and NAS-
CAR rules), the drivers have decided that
these safety measures are “inconvenient”
and “interfere with the experience.”

Certainly my imagined event sounds unbeliev-
able today. Yet at the end of Jeremiah Grossman’s
invited talk at the 2009 USENIX Security Sympo-
sium, I asked the audience, over 300 of the people
who had chosen to attend the premier security re-
search conference, for a show of hands on users
of NoScript. Only a few hands went up, and I sat
down, astonished.

Later that evening, a usability researcher ap-
proached me. He said that NoScript was considered
a bad example of usability. I certainly understand
that, yet when the consequences of not using
NoScript are considered, it is like not choosing to
wear a seatbelt while racing because of the incon-
venience. That security researchers would choose
a “better experience” and “convenience” over Web
browsing safety still amazes me.

Through the Browser Window

For many years now, Web browsers have been the
pen testers’ choice for getting past firewalls. I know
some very good penetration testers, and as fire-
walls became common as well as including better
configurations, the initial penetration method was
to attack via Web browsers. The pen testers may
abuse vulnerabilities in Web browsers, but just
as often they simply use features of Web brows-
ers combined with normal human weaknesses,
such as trust, that are easily exploited. While home
users’ Windows systems are the most infected with
malware installed via driveby attacks [1], busi-
nesses are not immune. Businesses can be targeted
using techniques similar to those of my pen testing
friends, but the goals in these cases are different.
Businesses may be targeted for intellectual property
or secrets, but these days the target is often bank
account information [2, 3].

I did ask Jeremiah Grossman if he used NoScript.
Grossman said he did, which is not surprising con-
sidering that he had just presented the Top 10 Web

; LO G I N : D ecem b e r 20 0 9 musI N Gs 3

Hacking Techniques (see article on p. 16) and NoScript blocks several of
these attacks. I particularly shuddered when contemplating clickjacking, a
technique that allows an attacker to trick a browser user into clicking on the
button of the attacker’s choice. Clickjacking is a feature of modern browsers,
allowing an attacker to move (hover) over an iframe so that the button to be
clicked is always under the user’s mouse. And this happens invisibly to the
user, as the iframe is hidden beneath other content.

Many years ago, I mused about having a button on my browser that would
give me the option of allowing scripting to work for a particular site.
NoScript has provided that button for many years now, and Giorgio Maone
has continued to add security features to NoScript over the years as well. I
asked Maone if he wanted to write about NoScript for this issue, and you
can find his article on p. 21.

Maone considers the same usability issues that some people complain about
to be a feature. He wants NoScript to work without cluttering up your
browser with popups. I will say that I had to learn that when a Web site
doesn’t work as expected, I need to see what NoScript is blocking. For the
most part, I have already whitelisted the sites I trust, which also happen to
be those I visit often. When I visit a new site, I have to decide whether to
allow scripting to work. I usually enable scripting temporarily unless I know
I will be visiting a site frequently. And I don’t enable scripting for all sites
that request the ability, as some of these sites just use scripting to present
advertising or to collect information about your browsing habits. I’d rather
maintain my privacy. And when I want to buy something, I will research
products rather than buy the product with the spiffy and/or annoying ad.

Advertising sites themselves can be sources of malware. In [1], the research-
ers mention that a source of drive-by downloads comes from reselling adver-
tising slots on Web pages. If there are no current buyers for advertising on a
particular Web page, these potential slots can be resold to other advertising
networks. You could wind up being the victim of an attack even when visit-
ing a trusted site, if you don’t use NoScript. Because NoScript blocks script-
ing based on the site the script comes from, you can still view your favorite
site while preventing other sites from executing scripts.

Banks and Credit Cards

Credit card companies provide you with some insulation against loss of cre-
dentials. If someone steals your credit card info, you can report it to the
credit card company and pay a limited amount (at most $50 in the US).
Banks, however, look at credential loss completely differently. Banks have
traditionally focused on using SSL to protect transaction data while it tra-
verses the Internet. At the same time, banks assume that the endpoints of
the communication, including browsers, are secure. Yet that is unlikely to be
the case today for most PC users.

Even the use of one-time passwords and password generation tokens does
not provide protection for users of malware-infected PCs. Malware has been
designed to wait until the user has provided authentication and then to ini-
tiate a fund transfer request that appears to the bank to be authenticated. If
you can’t trust your own computer, SSL really doesn’t help you at all. Adding
insult to injury, banks in some countries hold users responsible for losses if
the computers they use are not secure.

In the US, recent looting of the bank accounts of small businesses and even
a county have garnered some news. And in these cases, the owners of the

4 ; LO G I N : vO L . 3 4, N O. 6

accounts, whose credentials have been stolen using malware and botnets,
were held responsible for the losses as well.

Secure Operating Systems

It would be helpful if we could use secure operating systems. Just recently,
an Australian research project undertaken to prove the correctness of an op-
erating system, the seL4 microkernel, was completed. You can read what one
of the researchers, Gerwin Klein, has to say about this starting on p 28 of
this issue. The operating system executes with the highest level of privilege
and has exclusive access to all hardware devices, including disk and network
devices, as well as arranging for access to pages in memory. Having an oper-
ating system with proven security guarantees is a great leap forward.

We also need secure applications that we can use. I’ve written about the OP
browser before [4], a browser which uses process-based isolation for each
site that goes well beyond what Google Chrome and IE8 do today. Just the
week before I completed this column, the source code to the OP browser
went online [5]. There are still issues with the OP browser, mainly having
to do with running isolated windows on top of window managers that do
not support the concept of sharing a display among different security prin-
ciples—that is, each site acting as a separate user, isolated from what other
sites can do. And sites that rely on overlapping views, such as mashups
that use overlays on top of maps, are very difficult to deal with. But the OP
browser, because of its design, already shows higher performance on multi-
core systems than IE8 or Chrome for certain tasks.

SeCure TCP

Not even TCP itself can be considered safe. Security issues with TCP con-
nection state have been known since 1985 [6], but little has been done
beyond quick fixes, such as initial sequence number randomization. As
DNSSEC begins to see wider adoption, starting in December 2009, root
server operators will really be feeling the effects of having to support TCP
connections, as TCP connection state can easily be abused. Attackers began
using SYN floods against TCP in 1996, and only non-standard kludges de-
fend against these and similar denial-of-service attacks today.

Metzger, Simpson, and Vixie have written about a change to TCP that elimi-
nates these issues. This change, TCP Cookie Transactions (TCPCT), has
been discussed for many years in some form and appears close to being im-
plemented in at least two OS stacks soon. TCPCT can easily be integrated
into the Internet, as the new option will be ignored by systems, including
firewalls, that don’t recognize it. You can read about TCP Cookie Transac-
tions beginning on p. 35 of this issue.

Lineup

I have actually touched on many of the articles in this issue of ;login: already.
Dave Dittrich has written an article that both recalls the history of distrib-
uted denial of service (DDoS) attacks and ethics. Both researchers and in-
vestigators need to be bound by a code of ethics, perhaps legally bound.
Dittrich carefully covers this concept with a story about how he collected the
source code to early DDoS tools.

Peter Galvin covers an emerging feature in OpenSolaris: Immutable Ser-
vice Containers (ISCs). ISCs are a containment mechanism designed to be
used for networked services. Initially they work with Solaris Zones, but may

; LO G I N : D ecem b e r 20 0 9 musI N Gs 5

eventually work under Solaris VM environments as well. ISCs promise to be
another useful tool for securing services.

David Blank-Edelman provides more general advice for Perl programming,
or, as he has put it, he “likes to get meta.” Blank-Edelman describes simple
techniques, as well as how to endure them, for improving the robustness of
your Perl code.

Dave Josephsen provides 7 tips for successful Nagios implementations. Ac-
tually, you would do well to pay attention to his list no matter what type of
monitoring and reporting you are doing.

Robert Ferrell regales us with his own definitions of terms used in the secu-
rity industry. Robert has his own way of looking at things, as you will have
noticed. I find that I can strongly agree with Robert on his definitions, as a
large dose of cynicism is in order when it comes to computer security.

We have lots of book reviews this time around, and we close with reports
from the 2009 USENIX Security Symposium and two associated workshops:
HotSec and CSET.

I became paranoid about UNIX security, and later Internet security, starting
in 1984. That was the year someone shared a much-copied list of security
exploits that had occurred at UCSC over a few years. The list provided a re-
minder of what clever students could do with a little knowledge and a dose
of misguided motivation.

Today, exploiting browsers is big business. Exploits are sold on the black
market, converted into easy-to-use toolkits for exploiting browsers and Web
servers, then sold. These tools are designed to steal login credentials or to
proxy authenticated connections to banks and financial institutions. Noth-
ing magical is involved here, as our current Web browser technologies actu-
ally support the installation and use of tools that have browser-wide impact.
In fact, without this support, NoScript itself would not work.

Strap into your Web browsers! I encourage you to endure the inconvenience
of having to decide, perhaps after some research, whether you consider a site
safe or not. While NoScript’s user interface could be easier to use, I find a bit
of inconvenience a lot more palatable than the consequences.

referenCeS

[1] N. Provos, P. Mavrommatis, M.A. Rajab, and F. Monrose, “All Your
 iFRAMEs Point to Us,” Proceedings of the 17th USENIX Security Symposium,
July 2008, pp. 1–15.

[2] Kelly Jackson Higgins, “Attack of the Mini-Botnets,” DarkReading:
http://www.darkreading.com/security/attacks/showArticle.jhtml?articleID
=216402026.

[3] “Clampi Targets Banking Info”: http://www.usatoday.com/tech/news/
computersecurity/2009-07-30-clampi-computer-virus_N.htm.

[4] Chris Grier, Shuo Tang, and Samuel T. King, “Building a More Secure
Web Browser”: http://www.usenix.org/publications/login/2008-08/pdfs/
grier.pdf; Rik Farrow, “Musings,” http://www.usenix.org/publications/
login/2008-08/openpdfs/musings.pdf.

[5] OP-Browser source: http://code.google.com/p/op-web-browser/source/
checkout.

[6] R. Morris, “A Weakness in the 4.2 BSD UNIX TCP/IP Software”:
pdos.csail.mit.edu/~rtm/papers/117.pdf.

