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of the DHT (and treated like a stale, departed node). This 
allows it to still receive routing requests from its monitoree 
without affecting the behavior of the DHT. To distinguish 
between destination and routing traffic, multiple MVMs are 
inserted for every node within a “zone,” defining an N-bit 
prefix in the DHT identifier space. For all traffic captured 
within the zone, the destination can be determined with 
post-processing.

To validate their method, experiments were run with the 
Kad DHT, and it was determined that Montra captures 90% 
of all DHT traffic within the zone and correctly determines 
the destination for 90% of traffic captured for prefixes up to 
six bits in length.

On the Locality of BitTorrent-based Video File Swarming■■

Haiyang Wang and Jiangchuan Liu, Simon Fraser University;  
Ke Xu, Tsinghua University, Beijing

Haiyang Wang repeated the claim that peer-to-peer (P2P), 
specifically BitTorrent, traffic has become widely popular on 
the Internet. One of the problems with P2P traffic is that it 
is agnostic to the topology of the Internet, so peer selection 
is not optimized for locality. Locality-based peer selection 
attempts to minimize inter-ISP traffic, but it also negatively 
affects the performance of BitTorrent.

The authors did a large-scale measurement study of Bit-
Torrent traffic from btmon.com which consisted of 30,000 
video torrents and 44,000 non-video torrents, and they 
used PlanetLab to collect information on the BitTorrent 
swarms. The largest portion, 51%, was AVI files. The top AS 
measured had 16,000 thousand peers, and the top ten ASes 
had 97 to 165 thousand ASes.

Their measurement showed that large swarms do have 
poor locality and generate a lot of inter-AS traffic, but small 
swarms don’t have enough diversity within each AS to apply 
locality-based algorithms. For large enough clusters a peer 
prediction method can be used, and the authors provide a 
conditional probability-based peer prediction method, used 
only when AS clusters become large enough.
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Summarized by Rik Farrow (rik@usenix.org)

A Case for Machine Learning to Optimize Multicore ■■

Performance
Archana Ganapathi, Kaushik Datta, Armando Fox, and David 
Patterson, University of California at Berkeley

Kaushik Datta explained that compilers produce poorly 
performing code on multicore CPUs without manual tun-
ing. Their approach involves machine learning that tries 

particular motif-specific optimizations, generates code, and 
tests it. It is possible to do this for the entire problem space, 
but doing so would take many months to compute their 
example problems. 

Jim Larus asked why compilers don’t do this, and Datta 
responded that compilers do not do domain-specific modifi-
cations or change data structures to adjust for best memory 
access performance on a particular architecture. Rik Farrow 
asked if they had accounted for the difference in memory 
architecture between Intel Clovertown and AMD Barcelona, 
and Datta answered that they did, through pinning the 
memory to each Barcelona chip. Paul Emming of IBM asked 
whether the performance issues were related to memory 
bandwidth or latency, and Datta responded that it was ef-
fectively latency issues.

Archana Ganapathi took over the presentation and ex-
plained how they used machine learning to dramatically 
shorten the tuning time. Their model chooses a sample set 
of 1500 datapoints, runs the code, compares feature vectors, 
then adjusts the parameters and tries again. Someone asked 
why they chose 1500 for the sample size, and Ganapathi 
answered that this was a sweet spot in a process where the 
runtime can grow geometrically. Steve Johnson of Math-
works asked if there was some assumption about monotonic 
trend in the analysis of correlation, and Ganapathi an-
swered that there are assumptions about relationships.

Ganapathi talked more about how they chose the point that 
expressed best performance, picked two neighboring points, 
and used these to find matching points in configuration 
space. They then used a genetic algorithm to permute opti-
mizations. Their method takes about two hours to reach a 
performance level in the optimized result similar to what a 
domain expert could do with manual tuning in two weeks. 
An exhaustive automated search through the configuration 
space could take 180 days, so their learning approach shows 
real promise.

Hardware Parallelism vs. Software Parallelism■■

John A. Chandy and Janardhan Singaraju, University of 
Connecticut

John Chandy said that processor clock scaling had stopped, 
but transistor scaling will continue for a while yet. Multi-
core processors are the current answer to what to do with 
billions of transistors, but there are serious problems with 
this approach. First, software that can use multiple cores 
has not been written, and it would be difficult to write and 
debug. Then there is the problem of memory bandwidth, 
which cannot supply more than a handful of cores at once. 
Their solution is a reconfigurable hybrid multicore architec-
ture (RHyMA) that puts the reconfigurable portion of the 
processor on the “other side” of memory.

Chandy displayed a table (Table 1 in the paper) that com-
pares performance of specialized hardware to software 
implementations; it shows that hardware, even running at 
slower clock speeds, outperforms software implementations 
of specific tasks like intrusion detection, numeric simula-
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tions, and genome sequencing. Vikram Adve of the Univer-
sity of Illinois pointed out that they were comparing FPGA 
(Field Programmable Gate Arrays) to CPUs, but saying 
nothing about memory. Chandy said that this depends on 
the application—IDS, for example, which is basically string 
matching, ran 27.8 times faster in the FPGA. Adve asked 
if using FPGA helps with the memory access, and Chandy 
said that using FPGAs can make this better, but will not 
solve the data access problem.

Chandy pointed out that the use of heterogeneous proces-
sors is not a new idea. What they want to add is the ability 
to create new “cores” on the fly, using libraries of hardware. 
Steve Johnson pointed out that most operating systems are 
extremely allergic to special-purpose hardware, as most 
has state and is thus difficult to share. Chandy responded 
that they do need OS support but are not as pessimistic as 
Johnson.

Dave Patterson agreed that transistors are plentiful, but not 
power, and asked if reconfiguration was power-efficient. 
Chandy again pointed to Table 1, where FPGA versions 
are many times more efficient. Hans Boehm asked about 
security, if hardware is to be shared, and Chandy said that 
in their current version there is no way to leak information 
unless you create a routing path between two parts.

Embracing Heterogeneity—Parallel Programming for ■■

Changing Hardware
Michael D. Linderman, James Balfour, Teresa H. Meng, and 
William J. Dally, Stanford University

Michael Linderman explained how their pragmatic ap-
proach to supporting heterogeneity in processors helps solve 
some of the issues brought up about the previous paper. He 
pointed out that the software ecosystem relies on stability 
and that running software where there may be hardware 
resources for some functions but not others, depending on 
the platform, is a problem with a solution. 

Their own solution is to wrap implementations for particu-
lar algorithms with a common API so that the program has 
the same interface, regardless of whether the algorithm is 
done in software or by a specialized processor. Armando 
Fox asked if they separated policy from mechanism, and 
Linderman replied that they do via metawrappers based 
on policy. Jim Demmel asked about runtime resources and 
Linderman said that their software makes runtime choices 
depending on hardware availability.

Steve Johnson wondered how they handle the difference 
between passing arguments, as an ordinary CPU can use 
pointers but a GPU requires an array of values. Linderman 
said that the layer they propose handles copy of data when 
needed. Jim Demmel asked if data structures would need to 
be changed on the fly, and Linderman said he would get to 
this.

Linderman described this wrapper as sophisticated enough 
to support both programmer notations and the ability to 
group resources and to merge functions that should be 

combined for best performance. María Garzarán wondered 
whether they intuit the programmer’s intent, and Linder-
man replied that they don’t try to extract parallelism. Dem-
mel expressed concern about determinism, and Linderman 
suggested that this concern could be expressed within 
metawrappers. Clem Cole speculated that Boeing would 
want the same answer every time. Linderman said that 
floating point includes some degree of non-determinism, 
depending on the implementation used.

models and par adigms i

Summarized by Micah Best (mbest@sfu.ca)

Parallel Programming Must Be Deterministic by Default■■

Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and 
Marc Snir, University of Illinois at Urbana-Champaign

Parallel programming is too hard, Robert Bocchino began, 
with too many non-deterministic interleavings making it 
difficult to reason about correctness. Most programs are in-
tended to be deterministic and so parallel languages should 
be deterministic by default, non-determinism occurring 
only when explicitly requested. Some languages do guaran-
tee determinism, but mainstream general-purpose languag-
es do not. Martin Rinard brought up the point that even 
sequential programming is sometimes not deterministic, so 
why make parallel programming deterministic? Bocchino 
responded that non-determinism is limited in the sequential 
model and programmers tend to understand this, generally 
introducing it on purpose. 

The benefits of achieving this goal would be almost sequen-
tial reasoning, the avoidance of subtle bugs, and simplified 
testing. Jim Demmel asked if floating-point operations were 
included in the “almost” part of the first point. Bocchino 
agreed that floating point leads to an increase in non-deter-
minism in parallel, but reiterated that programmers under-
stand this. David Patterson asked whether this proposed 
model allowed floating point to be non-deterministic. The 
response, including an example with reduction, clarified 
that the programmer would be able to specify the level of 
non-determinism.

After Bocchino described default determinism guarantees, 
support for controlled non-determinism, and methods 
for simplifying development and porting, Rajesh Nishtala 
asked about performance. Bocchino admitted that in some 
cases determinism will have performance consequences by 
nature, but they believe that in many cases that can be al-
leviated. Checks can also introduce overhead, but they were 
focusing on doing checks statically. Nishtala followed up by 
asking how well this would scale. Bocchino answered that, 
hopefully, one won’t do this globally and in fact this may 
help with reasoning about performance.

After describing the strengths and weaknesses of approach-
es based on language, compiler, and runtime components, 
the speaker concluded that strong language mechanisms 
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are essential. Brandon Lucia brought up Kendo, a compiler-
based auto-optimization. Bocchino responded that indeed 
compiler support can help make guarantees possible. The 
talk continued with a description of the effect system, 
which uses annotation of memory, called regions, as param-
eters in order to track what areas are being read and writ-
ten during a particular operation. Nishtala asked if these 
regions are dynamically created. Bocchino responded that, 
yes, they are, but the reasoning is static. 

Deterministic parallel Java with an explicit type and ef-
fect system was then introduced and its limitations were 
discussed. Jim Larus asked about the connection between 
determinism and type effect. Bocchino responded that if 
disjoint parts had disjoint regions, you could use that to 
ensure that all computations are deterministic. Larus asked 
whether all computations were independent and was told 
they were, with every pair of memory operations either 
commutative or disjoint. Larus then asked if this wasn’t 
very restrictive. Bocchino responded that it was restric-
tive but fundamental and that they are working on more 
complex patterns. Rob Schreiber asked about the model of 
temporal epochs separated by barriers. Bocchino responded 
that the barrier model was supported. 

The talk then shifted to the topic of hidden non-determin-
ism. Bocchino outlined the use of programmer-provided 
trusted annotations with which the compiler can prove 
determinism. An example of this was the commutative 
operator, which was completely trusted by the compiler. 
Maurice Herlihy asked about operations that commutate 
with other operations. Bocchino responded that the support 
was not this fine-grained, but could be. The talk turned to 
visible non-determinism, which is sometimes necessary for 
high performance. This needed to be carefully controlled 
and explicitly requested by the programmer, with the non-
deterministic code and the deterministic code isolated from 
each other. In terms of supporting this in the language, the 
conclusion was that the benefits outweigh the costs and 
that technical solutions, not necessarily specific to Java, can 
reduce these costs.

Opportunistic Computing: A New Paradigm for Scalable ■■

Realism on Many-Cores
Romain Cledat, Tushar Kumar, Jaswanth Sreeram, and Santosh 
Pande, Georgia Institute of Technology

Santosh Pande explained that in opportunistic computing 
and scalable realism on many-cores, speedup is not always 
the end-goal. Immersive applications, such as gaming, 
multimedia, and interactive visualization, are designed to 
provide the richest and most engrossing experience possible 
to the user. Focusing on realism provides avenues to utilize 
multi- and many-cores over and above traditional task and 
data parallelism techniques.

This domain calls for algorithms with the highest sophisti-
cation possible so that a probabilistic achievement of realism 
is sufficient. The first approach for maximizing realism was 

a technique referred to as N-version parallelism. This tech-
nique involved speeding up hard-to-parallelize algorithms 
that made random choices by running multiple versions in 
isolation using different random choices and choosing the 
fastest one. This increases the probability of getting a faster 
result. Someone asked how it was known that this con-
verged on the fastest result. Santosh replied that theoretic 
results support it. Someone else asked how the 2x speedup 
was justified. This was specific to the example; in general, 
it depends on the asymptotic complexity; many algorithms 
show a great deal of variance.

Next was discussed a probability density function (PDF) 
that described the speedup of the algorithm and using this 
to determine the potential results when running N copies 
of the algorithm. To support this technique, programming 
language abstractions were required to render each instance 
of the algorithm so as to be side-effect free. 

Pande discussed the quality of the results and enhance-
ments. This involved taking advantage of additional cores, 
scaling algorithms, and data sets with available resources. 
The runtime component of the system is based on offline 
profiling via machine-learning techniques. The profiling 
infers the structure of the application and learns the cause-
effect relationship across the application. 

An audience member said that similar techniques were used 
in circuit simulation, where multiple solvers were begun 
with the hopes of getting a fast convergence to results. San-
tosh responded that, absolutely, this technique had been in-
spired by others, specifically multi-scale physics simulation. 
Another audience member asserted that N-version parallel-
ism works for randomized algorithms, but not for statistical 
sampling algorithms. Santosh replied that one could express 
computation by accuracy constraint on sampling. 

A Case for System Support for Concurrency Exceptions■■

Luis Ceze, Joseph Devietti, and Brandon Lucia, University of 
Washington; Shaz Qadeer, Microsoft Research

Brandon Lucia discussed what makes concurrency bugs 
such a challenge: they are difficult to reproduce and crashes 
may occur far from bugs during execution. Concurrency 
errors are not “fail-stop,” but their effects may be, obscur-
ing the original illegal behavior. Lucia asserted that an error 
should be delivered, an exception should be thrown, where 
the state changed to wrong. He then talked about how to 
specify exception conditions in terms of determining what 
behavior is illegal, which addressed an earlier question from 
Jim Larus. 

Lucia outlined the three basic questions of concurrency 
exceptions: when should exceptions be delivered, to which 
threads are they delivered, and what is the system state at 
delivery? The burden is on the language, and it is desirable 
for programmers to be able to encode what behavior is ille-
gal and embed their synchronization protocol. He identified 
three types of illegal behavior: locking discipline violation, 
atomicity violation, and sequential consistency violation. An 
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audience member asked if any bugs were left out, to which 
Lucia replied that ordering-constraint bugs were excluded 
for brevity. Another attendee asked if this implied sequen-
tially consistent behavior. Lucia replied that a programmer 
needed to specify what regions of code should be atomic. 

Lucia then said that locking discipline exception should 
occur when locks protecting data are not acquired before 
the data is accessed. The exception should be delivered 
immediately, before the access that violates the condition is 
given. An atomicity violation exception should be thrown 
when code was expected to execute atomically but didn’t. 
Language support for defining expected atomic code is 
needed, as is monitoring of memory access interleaving. 
Mark Moir commented that this places a burden on the 
programmer, compile writer, and architecture designer. 
Isn’t it better to change things so these problems are not 
possible? Lucia replied that they felt that this was not an 
excessive burden and not the only solution to concurrency 
errors. In response to another question about concurrent 
thread access he replied that this mechanism doesn’t create 
atomicity, it enforces atomicity. As for when to deliver the 
exception, the violating thread was a good candidate, but 
the originating thread was also a good target for receiving 
the exception.

Data-race is a heavily overloaded term, and various memory 
models may define it differently. What is really wanted is a 
guarantee on sequential consistency. A sequential consis-
tency exception occurs when it is impossible to guarantee 
that memory access reordering wasn’t observed remotely. 
This exception should be delivered immediately before the 
reordered instructions execute. Tim Harris asked about 
detecting compiler reorderings. Lucia responded that what 
is needed is a way to communicate this to the lower levels 
of the system. Was support needed to see if reordering was 
observed? Yes, based on the work of Gharachorloo and Gib-
bons.

Multi-threaded state is the sum of the state of all threads, 
and concurrency and non-determinism make precise state 
tricky. Lucia offered two options: offer precise state to the 
offending thread only, and deterministic exception replay. 
An attendee asked how the state recovery mechanism 
interacted with I/O. Lucia said this was a difficult unsolved 
problem with replay. How much simpler was this than 
transactional memory? To achieve what they want they don’t 
need to buffer values but only monitor. There is no need to 
keep an arbitrary number of versions. 

applic ations and tools

Summarized by Eric M. Hielscher (hielscher@gmail.com)

Parallelizing the Web Browser■■

Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste 
Asanović, and Rastislav Bodik, University of California, Berkeley

Leo Meyerovich pointed out that in order for handheld 
mobile devices such as smartphones to take over the space 

currently filled by laptops, the software that runs on them 
must run as fast as it now does on laptops. Bell’s Law indi-
cates that this shift to handhelds should take place due to 
shrinking transistors, but we’ve hit a power wall preventing 
handhelds from reusing the software of their laptop ances-
tors in the way laptops reused desktop software. Meyerovich 
focused on the parallelization of mobile Web browsers. 
Browsers are important because they are the dominant 
application platform, easy to deploy, Javascript is portable, 
etc. They also present an interesting challenge since writing 
programs for handheld browsers is difficult, as witnessed by 
the specialized versions of Web pages for phones and pages 
loading around seven times more slowly than on laptops.

The anatomy of the Web browser workflow is as follows: 
download pages, decompress them, lex, parse and build the 
DOM layout, render, and run scripts. Vikram Adve asked 
where the bottleneck is, and Leo responded that on hand-
helds it’s truly everywhere—everything is slow. Ras Bodik 
said that compared with IE, layout takes twice as long. The 
project’s status is as follows: work-efficient algorithms for 
various aspects of the browser have been developed, and 
work has been done on a programming model for script-
ing. While, on the surface, lexing may seem inherently 
sequential, a parallel algorithm for lexing was outlined that 
involves splitting the input text into blocks with some over-
lap. The scans can then proceed in parallel with care taken 
that the DFAs start in tolerant states. This results in an 
algorithm that wastes only a little work and scales very well 
(4.5x speedup on five processors). A parallel algorithm for 
page layout was also given that scales well up to three cores.

Here the talk turned to the problem of developing a parallel 
programming model for scripting. The extant browser pro-
gramming model is a non-preemptive event-driven model 
where handlers respond to events and execute atomically. 
To parallelize this, we must understand how a document 
is shared, including document-carried and layout-carried 
dependencies. Concurrency bugs can crop up in many 
places: GUI animations and interactions, server interac-
tions, eager script loading, JavaScript gotos, etc. Prelimi-
nary design on a new parallel scripting language has been 
done that focuses on making program structure clearer by 
making data and control explicit. Programmer productivity, 
targeting the 99% of programmers who aren’t concurrency 
experts, will be enhanced by providing callbacks to actos, 
and performance will be improved by adding structure to 
detect dependences. Rik Farrow asked whether security was 
addressed by the work, and Leo responded that security is a 
concern but that it’s orthogonal to the work at hand.

Exploring the Limits of Disjoint Access Parallelism■■

Amitabha Roy and Steven Hand, University of Cambridge; Tim 
Harris, Microsoft Research

Harris pointed out the important traditional distinction be-
tween abstractions (programming language constructs) and 
implementations (e.g., transactional memory versus locks). 
What we would like is to be able to talk about the semantics 
of our abstractions without discussing their implementa-
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tions. We then ask the question, when are TM-style imple-
mentation techniques useful? Harris showed a graph, with 
one axis representing contention for critical sections and the 
other the likelihood of conflicting memory accesses. The 
quadrant of the graph where there is high contention but 
low likelihood of conflicting accesses seems to be the region 
that is just right for TM techniques. Slower TM implementa-
tions make this sweet spot smaller, and faster ones make 
it larger. A formula characterizing the bound on possible 
speedup was given, using terms such as the probability of 
conflict, the fraction of time waiting to enter critical sec-
tions, and the fraction of time in critical sections. 

The focus of this work was to develop a tool that uses 
binary instrumentation and models of thread timing and 
memory access to allow profiling of programs for locating 
synchronization bottlenecks. An assumption in the models 
is that conflict probability is a property of a given critical 
section. Pairwise conflict probabilities are generated for 
each critical section. Comparing the tool’s predictions to 
serialized versions of a red-black tree and of Apache gave a 
fairly good match between the curves of the prediction and 
the actual data. The conclusion is that for these workloads, 
the assumptions of the model work well enough for the tool 
to be useful. The instrumentation is lightweight enough to 
allow large apps to be run at a reasonable speed and thus 
to provide good feedback. Further work includes address-
ing the questions of whether more complex timing models 
are needed for other workloads, and what the tradeoffs are 
between different conflict detection strategies.

Someone asked how stable the results were, and Harris 
replied that he wasn’t sure. Jim Larus asked whether the 
researchers felt they had a good a priori intuition about 
which locks would be good ones. Harris said they didn’t 
check ahead of time, but the results seemed very reasonable 
after the fact. María Garzarán asked whether the programs 
needed to be run with every possible number of threads. 
The profiling is done with a single thread running in order 
to get traces. Someone asked whether the tool might affect 
the computations. It was carefully validated. Paul McKen-
ney asked how this tool compares with the ad-hoc feedback 
mechanisms used by the groups who develop various large 
systems. Harris wasn’t sure, but his group was having 
discussions with such teams. Mark Moir asked about more 
refined models based on the size of transactions and on 
contention. This should be easy to plug in and would be 
interesting. Moir then asked how much profiling we could 
get for free from STM implementations. Perhaps it would 
be possible to add something like a Bloom filter to record 
access sets.

Parallel Search on Video Cards■■

Tim Kaldewey, Jeff Hagen, Andrea Di Blas, and Eric Sedlar, 
Oracle Server Technologies—Special Projects 

From a database perspective, search is sped up by the ad-
dition of indexes. The bottleneck in this domain lies with 
memory. The growth rates of the size of memory have out-
stripped those of structured data, and so the memory wall is 

increasingly an issue. Larger caches and specialized proces-
sors are the current approaches to alleviating this problem. 
One way to tolerate memory latency is through parallel 
memory accesses, increasing the throughput of computa-
tion. GPUs are a good example of high-performance archi-
tectures, with massive parallelism, high memory through-
put, and high performance/watt. The goal of this work is to 
improve the response time of search by using GPUs.

Kaldewey described an algorithm for parallel binary search. 
Divide the data sets, find which set contains the search 
query, and then redistribute the subsets of this set to the 
processors since it is the only set worth searching. The run-
time of this algorithm is log_p(n), where p is the number of 
processors, as opposed to log_2(n), assuming that redistri-
bution and lookup are free. The GPU architecture in ques-
tion has up to 16 independent streaming multiprocessors 
(MP), each with eight processing elements. The execution 
model is SIMT, or single-instruction multiple-thread, with 
each thread on an SM executing the same code. The prob-
lem with the approach as given thus far is that we need the 
number of queries to be equal to the number of processors 
or we’ll have poor hardware utilization, memory access col-
lisions will slow things down, and the number of memory 
accesses is log_2(n). More processors lead to more results, 
but a running time likely to be the worst-case expected 
running time. The number of memory accesses in the p-ary 
search algorithm is (p-1)log_p(n), as opposed to log_2(n), 
but the expected throughput is lower. In practice, however, 
with large data sets, p-ary search gets 30% performance 
improvement over binary search because GPUs parallel-
ize memory accesses; this in turn leads to fewer memory 
conflicts, and p-ary search has a smaller code footprint. 
Parallelism does have its costs, however, in that there are 
more memory accesses, but the algorithm scales on the 
number of GPUs.

The conclusion is that there is a tradeoff between response 
time and throughput, but p-ary actually improves both. 
Future work includes targeting other parallel architec-
tures, evaluating more complex functions, optimizing data 
structures, and integrating with the rest of resource man-
agement in the system (when to parallelize, how much to 
parallelize, which architecture to use). Rajesh from Berke-
ley asked at this point how much it costs to do insertions 
using this scheme, and Kaldewey said he wasn’t sure but 
that he envisions just using the GPU as a consistent cache 
of the data. Rajesh then asked how to partition the index 
over processors, and the response was that it’s data depen-
dent. A number of database people feel that more cores 
are simply a waste due to the memory wall problem. Paul 
McKenney asked whether Kaldewey would expect better or 
worse results for other things like pattern matching, and 
the response was that they saw good speedups on parallel 
scan. Hans Boehm asked why they didn’t use interpolation 
search, and Kaldewey said they haven’t looked at it. María 
Garzarán asked whether there was anything missing on the 
GPU he’d like to have, and Kaldewey responded that he re-
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ally misses dynamic memory allocation and would like bet-
ter synchronization primitives. It’s not currently possible to 
make hash tables, and a better programming environment 
would be useful. He didn’t have any preliminary results to 
share with different data structures.

panel :  par allel  computing in real-time 
inter active music  and media computing

Summarized by Rik Farrow (rik@usenix.org)

David Wessel, Center for New Music & Audio Technologies, Uni-
versity of California, Berkeley; David Zicarelli, Cycling 74; Miller 
Puckette, Department of Music, University of California, San 
Diego; Amar Chaudhary, Digidesign; Dinesh Manocha, Depart-
ment of Computer Science, University of North Carolina

David Wessel explained that live sound produced by com
puters has extreme real-time requirements. Video, even 
at 30 frames/second, can drop frames without a person 
noticing, but a much shorter audio lapse gets perceived as a 
click or pop. Wessel designs and plays instruments that use 
a computer for sound “rendering.” One of his designs, the 
SLABS, consists of many multi-touch sensitive pads. A 20" 
by 20" array of pads consists of 100 taxels/inch with 12 bits 
of sampling data per taxel, a sampling rate of 10 kilohertz, 
for a total of 4.6 gigabits per second. You can hear an ex-
ample of Wessel explaining and play the SLABS here:  
http://www.youtube.com/watch?v=q_mtCZqN0Ms.

Wessel mentioned that real-time sound has applications 
other than performance, including many channel audio 
systems and hearing aids. 

Amar Chaudhary of Digidesign (the makers of ProTools 
studio sound software) showed off Open Sound World 
(http://osw.sourceforge.net/html/note/PlayScore.html). Like 
Max/MSP (described later), OSW allows composers to put 
together executable objects (shared objects) that transform 
their inputs. The inputs can be chained together as well as 
work in parallel. There are state variables as well as activa-
tion expressions triggered by variable changes. Activation 
expressions can be functions or code similar to C++, and 
there are 250 transforms on OSW.

Chaudhary was the first person to demonstrate Max/MSP, 
a GUI that looks a little like a digital representation of a 
soundboard, with the addition of “patches,” objects that 
process sound.

OSW includes implicit parallelism, making this and other 
audio software natural users of future multicore processors. 
Chaudhary pointed out that the difference between using 
a single and two cores on his MacBook Pro was only 3–4% 
less CPU usage. David Wessel mentioned that his Mac 
usually runs at 80% CPU during performances and has as 
many as 16 different patches (for guitar players, think paral-
lel effects) going at once.

Puckette Miller, the author of Max/MSP and later of the 
open source pD (Pure Data), used Max/MSP to demon-

strate how you could have 15 oscillators and 64 channels 
at the same time. Sasha Fedorova asked about algorithms 
and data. Miller responded that there are two worlds, the 
outside world and the CPU world. Steve Johnson wondered, 
since most OSes are not real-time, how significant would it 
be to get an email during a performance. Wessel answered 
that you disconnect your network during performances and 
don’t use software that does garbage collection. Another 
panelist said that things should sound exactly the same way 
every time, leading Vakrim Adve to ask if there can be some 
slippage, some non-determinism. Chaudhary answered that 
things should be bit-accurate every time.

Miller mentioned that the UCB ParLab people present un-
derstand what happens when you try to parallelize multiple 
streams. In both Max/MSP and pD, you might have an 
array of floating-point numbers representing a stream you’d 
like to add to, as you are using it to create sound. But this 
implies sharing the data between two processors, which you 
can’t do in a general programming language.

David Zicarelli, the current support person behind Max/
SMP (see http://www.cycling74.com/products/), gave a quick 
demo of Max/SMP.

Dinesh Manocha, of the University of North Carolina, went 
last. Unlike the other presenters, he is not a musician or a 
music software designer. Manocha explained that his work 
involves rendering sounds in virtual environments. Sound 
reflects off surfaces as well as diffracting around edges, 
making any accurate rendering very much like 3D image 
rendering. Applications of this work include modulating, for 
example, cabin noise in airliner design, as well as in games. 
Game consoles allot no more than 5% of CPU for sound 
rendering, which means that most games have primitive 
sound. 

Manocha played several demonstrations of moving through 
virtual environments. As the virtual position changed, 
so did the quality of the sound. In a cathedral demo, he 
dramatically changed the apparent size of the room using 
altered sound absorption. His work cannot be done in 
real time, as it involves petaflop computation that handles 
only mid-range frequencies. He also showed demos of a 
ball dropping into water and raindrops, without then with 
sound to demonstrate how much sound adds to human 
perception.

Wessel said that one can make beautiful sounds but you 
need to be able to control them in order to perform. Chaud-
hary agreed and said that real time and control were the 
biggest challenges faced at this point. Miller suggested that 
audio programmers should not use threads but different 
address spaces. Zicarelli said that the control algorithms are 
very simple, but they are really the bottleneck as everything 
goes through them, and part of the challenge is trying 
to apply all these techniques. Manocha mentioned using 
GPUs to process sound, but said that we have no idea of the 
latency of GPUs. Latency, which must be less than 5ms, is 
always going to be the challenge. 
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oper ating systems and middleware

Tessellation: Space-Time Partitioning in a Manycore Client ■■

OS
Rose Liu, Kevin Klues, and Sarah Bird, University of Califor-
nia at Berkeley; Steven Hofmeyr, Lawrence Berkeley National 
Laboratory; Krste Asanović and John Kubiatowicz, University of 
California at Berkeley

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Rose Liu argued that space-time partitions should replace 
processes as the main abstraction for new “client” operat-
ing systems. She defined “client” operating systems as those 
that are single-user; run a heterogeneous mix of interactive, 
real-time, and batch applications; and are battery (power) 
constrained. A new client operating system was needed 
because existing operating systems were not designed for 
parallel applications. Furthermore, those operating systems 
that were designed for parallel execution mainly address 
server and HPC workloads, not client workloads.

Rose proposed that cores, memory, and even network band-
width can be partitioned. Alexandra Fedorova asked how 
spatial partitions differ from Solaris zones. Rose believed 
that zones were more of a logical partitioning than a physi-
cal one. She spelled out the benefits of spatial partitioning, 
including that it was a natural unit for fault containment 
and a natural unit for energy management, and it allows 
two-level scheduling, i.e., partitions can schedule them-
selves. Alexandra Fedorova asked what happens when one 
partition uses a library that wants to schedule itself. Rose 
deferred to the next talk (Lithe) for a solution.

Rose went on to explain how partitions allow operating 
system services to be put into partitions, similar to micro-
kernels. The space partitioning is probably not enough, 
so the authors propose space-time partitioning. The time 
multiplexing is done at a much coarser granularity, which 
alleviates some of the overhead of context-switching an 
entire partition. Rik Farrow asked if partitions were created 
by pinning threads to resources. Rose replied that threads 
are not the abstraction used within partitions (or at least 
not the default abstraction), and suggested looking at the 
abstractions discussed in the upcoming talk (Lithe). Farrow 
followed up by asking how data in the cache suffers when 
you do the space-time partitioning discussed. Alexandra 
Fedorova wanted to know how we can even attempt to par-
tition a cache. Rose proposed hardware support for cache 
partitioning. Vikram Adve asked what happens if we don’t 
get such hardware support. Alexandra Fedorova proposed 
some form of software partitioning (e.g., page coloring).

Rose then explained that the fundamental communication 
primitive across partitions is a form of message passing. Ste-
phen Johnson asked what happens when a message is sent 
to a partition that is not scheduled. The speaker said they 
are investigating mechanisms (such as priority inversion) to 
wake up partitions that have pending messages. Alexandra 
Fedorova suggested an operating system that could observe 
communication patterns and then gang-scheduling those 

partitions that communicate with one another. Rose agreed 
that this might be a promising idea. Michael Linderman 
asked if the authors planned to support legacy applications. 
Rose responded that they are considering running VMs for 
legacy OSes and applications, but that was not their imme-
diate goal. Stephen Johnson suggested that if they could get 
the software to perform fairly well, the hardware commu-
nity would follow suit and produce the hardware needed for 
a parallel operating system like this.

Alexandra Fedorova asked how the system would respond 
to changing demands of applications. John Kubitowitz 
suggested that client devices are fairly bursty, so require-
ments might change between 1000 cores and two cores. 
Krste Asanović said that sometimes it might make sense 
to just keep execution resources within the partition until 
they are needed again rather than changing partition sizes 
as frequently. An unidentified audience member suggested 
Rose look into cluster-aware managers like SLURM. Rob 
Schreiber asked what happens when the operating system 
can’t figure out a good way to schedule the partitions (be-
cause, for example, the constraints are unsatisfiable). Krste 
Asanović suggested that the system would have to perform 
some conservative approximation to handle those cases.

Lithe: Enabling Efficient Composition of Parallel Libraries■■

Heidi Pan, Massachusetts Institute of Technology; Benjamin 
Hindman and Krste Asanović, University of California, Berkeley

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Heidi Pan said that Lithe is meant to address the perfor-
mance problem of composing parallel applications. Vari-
ous parallel frameworks are well suited for various parallel 
problems, but many applications consist of heterogeneous 
problems for which different libraries are suited. Further-
more, this composition is increasingly hierarchical, such 
as a machine learning library splitting off tasks where each 
task might be a BLAS (Basic Linear Algebra Subprogram) 
routine. Naively, these libraries assume full control of the 
machine to do many of their optimizations. Previously, de-
velopers could often also assume full control and knowledge 
of a machine at design time; the expert could successfully 
tune the partitioning of resources through multiple layers. 
However, this is not abstracted well enough for mainstream 
development, bigger projects, or when there is limited 
design-time knowledge of the deployment environment. 
Worse, there is a composition problem: a developer call-
ing into a library must tune resource allocation all the way 
down the stack.

Lithe is an ABI for cooperative resource allocation within 
large programs that use different libraries (that, in turn, 
may also be large, etc.). It is envisioned as sitting on top of 
the Tessellation OS, moving allocation (if desired) into the 
application. The proposal is three-part. First, it asserts that 
hardware threads (HARTs) should be reified as a resource 
that applications should be able to manipulate. For example, 
a core with two threads would have two HARTs active at 
any time step, and each HART is owned by only one com-
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ponent. Second, frameworks should be able to cooperatively 
exchange HARTs (and, potentially, other resources). Unlike 
other proposals (e.g., Charm), the integration is low at the 
ABI level, so the team is already able to support systems like 
TBB and OpenMP. Third, not everything needs to be sched-
uled cooperatively—but this pushes the decision to frame-
work writers (who might implement such alternatives). For 
their results, the team showed that an untuned application 
struggled without cooperative allocation, but a tuned one 
did much better. The Lithe version ran a little faster than a 
manually tuned version. 

Jim Larus asked if interference says something about the 
design of libraries (e.g., hidden parameters of number of 
threads). Pan answered that today, you can typically assume 
control and expert programmers want to do this tuning. 
We’re seeing interference now that the scenario is changing. 
Someone asked about the Charm++ abstraction of virtual 
processors. Pan answered that they only build Charm on 
it, but we’re also concerned with supporting other codes—
we have a similar philosophy but a different route. Another 
person asked what the difference is between a HART and 
a processor. Ben Hindman answered that by making the 
HART an abstraction, we can do space-time partitioning. 
Someone wondered what happens when an agent wants a 
resource and doesn’t get it. Pan answered that it will have to 
keep asking. Someone else wondered how many apps in the 
consumer space require this type of support. Pan replied 
that they have a white paper that shows that a lot of gam-
ing, etc., domains exhibit these properties. Another person 
asked whether Lithe introduces composability issues, e.g., 
makes deadlocks more likely. Pan responded that in terms 
of synchronization, the runtime systems get to handle it (or 
you can use our own), decreasing the risk.

Energy-efficient Parallel Software for Mobile Hand-held ■■

Devices
Antti P. Miettinen, Nokia Research Center; Vesa Hirvisalo, 
Helsinki University of Technology

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Miettinen is interested in providing performance and energy 
simulations for heterogeneous mobile devices for developers. 
Such devices have many components, such as GPUs, CPUs, 
and radios, and some optimizations for one component (e.g., 
slowing down the CPU) might affect another (e.g., running 
the wireless card longer than desired). An example was 
presented of running various naive multi-threaded sorting 
algorithms where one or two didn’t scale, showing that it’s 
important to tune.

The proposal is to build a software simulator, parameterized 
by a machine model, that can run a mobile application and 
show speed and energy performance. It is still in the mo-
tivation and planning stage, and Miettinen asked for input 
from the workshop participants, both now and later.

Someone agreed about the existence of the problem and 
suggested looking at various groups interested in it, such 

as the RAMP project and various projects at Microsoft and 
Samsung. Another person suggested that scratchpads and 
alternative architectures are important. Finally, someone 
wondered if they considered components singly or together 
in performance and whether there is monotonicity. Miet-
tinen said that there can be nasty interactions: you might 
lower voltage/frequency to lower energy, but if you’re doing 
data transfer you don’t need this, which might have an ef-
fect on the wireless interface, losing the benefits from the 
CPU. They try to find problems like this early on.

tr ansactional memory

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Lightweight Software Transactions for Games■■

Alexandro Baldassin, State University of Campinas, Brazil; 
Sebastian Burckhardt, Microsoft Research, Redmond

Alexandro Baldassin discussed the desire to exploit mul-
ticore/manycore hardware for better performance without 
sacrificing software engineering principles, and he hypoth-
esized that software transactional memory (STM) might be 
a means to achieve this. To test this hypothesis, Alexandro 
proposed applying STM to a multi-threaded game. STM ap-
plies well to games because of the complicated interactions 
of threads with lots of shared data structures that make 
locking rather difficult.

In their first attempt at using STM they simply turned criti-
cal sections into atomic blocks. They claimed that this still 
made code too difficult to maintain, because they had to re-
member which functions inside versus outside transactions, 
and they had to perform careful copying of private versus 
shared data in and out of critical sections. Moreover, they 
claimed that it was still difficult to guarantee atomicity of 
what they called “tasks,” because a task may have multiple 
critical sections. In their second attempt, they made entire 
“tasks” be transactions. This avoided tricky code mainte-
nance issues, but it resulted in horrible performance (too 
many conflicts).

Alexandro suggested that most programmers want coarse-
grained transactions that can perform I/O and provide 
strong atomicity. He recognized, however, that it may be 
very difficult to get performance given the above require-
ments. Alexandro next described their STM-like framework. 
Unlike STM, tasks in their framework are never rolled back, 
which means they can freely do I/O. He explained that the 
execution of tasks is atomic and isolated, but there are no 
serializability or linearizability guarantees.

Dhruva Chakrabarti asked how this system can guarantee 
the absence of deadlock without rollback. Alexandro ex-
plained that rollback is only necessary for handling con-
flicts, not deadlock, and he described the mechanisms for 
resolving conflicts without rollback. Micah Best asked how 
exactly a programmer might decide how to handle many 
updated conflicts. Alexandro explained that the program-
mer only gets to resolve pair-wise conflicts. In the event 



; LO G I N :  Au gust 20 0 9	 con  fe re n ce re p o rt s	 107

of many conflicts all at once the programmer will only be 
presented with two at a time, and the programmer will have 
to decide which one to propagate only based on those two. 

Exceptions and Transactions in C++■■

Ali-Reza Adl-Tabatabai, Intel Corporation; Victor Luchangco, 
Virendra J. Marathe, and Mark Moir, Sun Microsystems Labo-
ratories; Ravi Narayanaswamy and Yang Ni, Intel Corporation; 
Dan Nussbaum, Sun Microsystems Laboratories; Xinmin Tian 
and Adam Welc, Intel Corporation; Peng Wu, IBM Research

Ali-Reza Adl-Tabatabai described the current state of the 
world regarding software transactional memory (STM). He 
limited the scope of his discussion to exception handling 
within a software transaction. He presented the following 
example:

atomic {
	 x++;
	 if (cond)
		  throw MyException();
}

and posited the question: should the update to x be com-
mitted? Ali then discussed both sides of the argument: 
commit-on-exception vs. abort-on-exception (rollback).

The commit-on-exception has the benefit of being sim-
pler to implement as well as having more sequential-like 
semantics (or even global lock-like semantics). However, if 
you commit rather than abort, you might actually break an 
invariant that some critical section is supposed to maintain, 
especially if it is because an exception is thrown that the 
programmer wasn’t expecting.

The abort-on-exception handles the broken invariant issue, 
but it raises another weird issue involving the propagating 
exception. Specifically, what if you capture some state in the 
exception that gets propagated, yet you rollback that state 
before the exception propagates?

Ali proposed that the right solution is to have both and let 
the programmer decide what they need, and he suggested 
that the only point of contention between the commit-on-
exception and abort-on-exception camps now is what the 
default should be. An audience member said that there 
should be no default, and every programmer must specify 
what they want. Ali decided to hold a vote. A majority of 
the audience agreed that there should be no default.

Leo Meyerovich asked how prepared the community is for 
STM standards like this and how close STM is to being an 
actual product where the standards will be really important. 
Ali suggested that it was still very much a work in progress 
and he hopes that lots of programmers will attempt to use 
their STM implementation (with these standards) so they 
can learn from their mistakes and make them better. Dave 
Patterson asked if the problems regarding exceptions and 
STM were specific to C++. Ali explained that the problems 
were not C++ specific, and applied just as well to languages 
like Java.

Transactional Memory Should Be an Implementation ■■

Technique, Not a Programming Interface
Hans-J. Boehm, HP Laboratories

Hans Boehm reminded the audience why locks are hard 
to use. Specifically, he targeted deadlocks as being a major 
downfall to the use of locks. Hans suggested that an obvi-
ous, although strawman, solution is to use a single (re-
entrant) global lock. He argued this eliminated lock-based 
deadlocks as well as the need to distinguish between strong 
and weak isolation and the need to worry about irreversible 
I/O actions.

Robert Bocchino asked how a global lock actually provides 
strong atomicity (strong isolation). Hans explained that a 
key assumption is the absence of data races and, therefore, 
sequential consistency of the possible interleavings.

Hans went on to ponder whether a global lock-like model 
will ever get good performance or scale. He suggested that 
one can use software transactional memory to attempt to 
implement this global lock-like semantics, but some trans-
actional memory-like constructs might not be admissible 
with such semantics. For example, implementing something 
like the retry construct will be difficult, if not impossible. 
He suggested relying on locks and condition variables for 
this type of construct instead.

Rob Schrieber asked how exception handling might be done 
with the global lock semantics. Hans said that the right 
thing is the commit-on-exception model, where the pro-
grammer will have to deal with fixing any broken invariants 
manually. Jim Larus asked how valuable something like 
atomic blocks really is for programmers. Hans reiterated 
that they relieve the burden on programmers to have to 
avoid deadlocks, but he felt only time and experience will 
show how valuable they really are.

models and par adigms i i

Summarized by Micah Best (mbest@sfu.ca)

New Abstractions for Data Parallel Programming■■

James C. Brodman, University of Illinois at Urbana-Champaign; 
Basilio B. Fraguela, Universidade da Coruña, Spain; María J. 
Garzarán and David Padua, University of Illinois at Urbana-
Champaign

After James Brodman introduced the topic of the talk, that 
of extensions to and new techniques for data parallelism, 
an audience member asked whether task parallel programs 
were scalable. Brodman replied that task parallel programs 
may be redefined as data parallel programs. He outlined the 
advantages of data parallelism in terms of programs with 
data parallel operators. These programs will be a sequence 
of data and there is an extensive collection of data parallel 
operators that allow expression of parallelism but are not 
designed explicitly for control. 

Brodman then began a detailed description of an instance 
of the suggested techniques, a method to explicitly parti-
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tion array data called the hierarchically tiled array (HTA). 
Their approach was to make tiles first-class objects in the 
language to recognize the importance of tiling in terms of 
control. Someone asked about the uniformity of tile sizes. 
Brodman responded that tiles could be non-uniform.

Higher-level HTA operations include element-by-element 
operations such as reduction, circular shift, replicate, trans-
pose, MapReduce, etc. Additionally, programmers can create 
new complex parallel operators through the primitive hmap. 
The operators in their library were sufficient naturally to 
implement several programs from a number of benchmark 
suites. The results compared favorably in terms of efficiency, 
and Brodman noted that HTA notation also produces code 
that is compact and more readable. Someone asked about 
the methods of communication for the library. Brodman 
answered that communications were done in MPI, which 
was hidden from the programmer.

Brodman pointed out that although HTA worked well for 
numerical programs, many programs are not numerical. 
There was a need to identify the data parallel operators and 
data structures needed for other data structures. Sets were 
identified as a target for this inquiry and Brodman outlined 
what would be needed to support this. Sets would require 
operators such as map, union, and reduce. Their research 
had extended to studying several applications, including 
search, data-mining, and mesh refinement. 

The next segment of the talk detailed an example of data 
parallel search in the form of the “15 puzzle,” a 4 by 4 grid 
with a single hole. A model for search and a process were 
then detailed. The effectiveness of tiling was the same as for 
arrays by emphasizing locality and parallelism; however, 
tiled sets are not created as easily as tiled arrays. The talk 
concluded with ideas for enforcing determinacy through 
map primitives or annotations for atomicity. The benefits of 
data parallelism for portability and parallelism were reiter-
ated. Finally, sets were discussed again as a promising data 
type for further research. 

Someone asked about the size of tiles and the depth of 
hierarchy. Brodman responded that these parameters would 
be set by the programmer. Who was the target audience, 
in terms of programmer expertise? The “average program-
mer” would receive the data types that would have been 
implemented in turn by experts who would produce highly 
tuned code. Could tiles from different data structures be 
tied together? They hadn’t looked into that yet, but he could 
see it as a possibility as long as the data structures were 
amenable. A final question concerned encapsulating atomic 
sections. Brodman said they were looking into it.

Ease of Use with Concurrent Collections (CnC) ■■

Kathleen Knobe, Intel 

Knobe’s research goal was to create a separation of concerns 
between the domain expert and the tuning expert. She ad-
mitted that this had not been completely achieved, but there 
was positive movement in that direction. The problem was 
that most serial languages over-constrain orderings, while 

most parallel programming languages are embedded within 
serial languages. The solution is to isolate roles and to raise 
the level of the programming model just enough to avoid 
over-constraints. Two ordering constraints were identified: 
producer/consumer constraints for dataflow dependencies, 
and controller/controllee for control dependencies. 

The design of Concurrent Collections (CnC) was informed 
by streaming and tuple spaces. From streaming came the 
concept of associating data items with computational steps, 
labeled with control tags. Tuple spaces inspired the tagging 
of each instance for independent scheduling. To illustrate 
these concepts she provided a simple example of filtering 
strings. This system of tagging relies only on application 
knowledge and does not require considering parallelism. 
Despite this, the results are still parallel, deterministic (with 
respect to results), and race-free. She then described the ex-
ecution model of how tags were used to schedule instances. 

Knobe introduced dataflow as the third influence. An audi-
ence member asked her to compare CnC and the Linda 
language and the relative restrictiveness of the two. Knobe 
answered that CnC does not require streams and they were 
careful not to make that constraint. Linda produced a result 
where, in Knobe’s words, a computation just “sits there,” 
whereas CnC is dynamically scheduled and also allows 
specification of control flow. She did note that there was a 
slight constraint in terms of syntax in only allowing deter-
ministic programs and having single assignment. 

She then offered another example, a “cell tracker,” present-
ing a CnC graph that fully captured all the information 
needed to parallelize the application. The system supports 
not only different schedules but a wide range of runtime 
systems. There are many options in the back-end for tun-
ing, since the only thing provided by the program is the 
constraint. John Kubiatowicz pointed out that there are no 
data-ordering constraints. Knobe responded that there are 
the two kinds of constraints already specified and that the 
domain expert has to know the producer-consumer rela-
tionships in the program. Another audience member asked 
about allowed data types such as arrays. Knobe responded 
that any serial code was a candidate for CnC and that data 
items can be of any type. This was followed with an inquiry 
into the feasibility of handling trees. Knobe answered that 
they used them all the time.

The discussion of the CnC implementation continued with a 
description of the various back-ends available. CnC perfor-
mance results were roughly equivalent on multicore systems 
to those obtainable with Intel TBB (Thread Building Blocks) 
or OpenMP. Someone asked about the gains in performance 
by CnC over p-threads in a dedup, one of the benchmarks 
tested. Knobe was not sure, as she didn’t write the applica-
tion. To another similar question comparing performance 
results to TBB, Knobe pointed out that the overheads were 
unknown, applications tend to vary, and there are differ-
ences in scheduling. How does developer time vary between 
TBB and CnC? Anecdotally, developers have far preferred 
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CnC to TBB. In response to questions about code reuse she 
added that both code and frameworks were amenable to 
reuse. Additionally, reuse could be accomplished by linking 
graphs. 

Motohiro Takayama asked about a development environ-
ment (IDE) for CnC. Knobe said that they hadn’t yet looked 
into it, but it needed to be addressed. She would like to 
see it merged it with a GUI, including both a debugger and 
visualizer. Romain Cledat asked what issues still remained 
between the domain and tuning expert. Knobe responded 
that issues such as grain size, support for tiling, and similar 
facets still needed to be exposed. She would like to see 
those made a little easier. 

Optimizing Collective Communication on Multicores■■

Rajesh Nishtala and Katherine A. Yelick, University of 
California, Berkeley

Rajesh Nishtala noted that as core counts continue to grow 
and application scalability takes the center stage, it is quick-
ly becoming infeasible to support uniform access to shared 
memory. An audience member wondered whether there 
was a limit, as sometimes applications simply don’t need to 
go faster. Rajesh agreed, but this research was focused on 
high-performance applications. The discussion then focused 
on a product of the research, the Partitioned Global Address 
Space Language. The central concept is to expose the idea 
of locality to programmers, a technique that has proven suc-
cessful in distributed memory. 

Nishtala discussed collective communications, which in-
volves an operation called by many threads to perform glob-
ally coordinated communication. Interfaces to the collec-
tives, used as parallel communication building blocks, are 
typically delivered through a software library and exposed 
in modern programming languages. Two categories of com-
munication were defined: one-to-many and many-to-many. 
The focus of the work was given as reducing one-to-many 
and optimizing the many-to-many pattern with barriers. 
Example trees were given with barrier performance results. 
Fast barrier enables finer-grained synchronous programs. 
Optimizing collectives for shared memory allows the pro-
grammer to do finer-grained synchronous programs. 

Potential synchronization problems were then discussed, 
to highlight the need for strictly synchronized collectives. 
These may be alleviated by using synchronization before 
and after the collective and enforcing a global ordering of 
the operations. The collective is considered complete once 
all threads have the data. 

In conclusion Rajesh reminded the audience that future sys-
tems will certainly rely on NUMA, underscoring the need 
for this type of research. Application scalability will take 
center stage. Tuning collectives for latency of throughput 
can lead to significantly different algorithmic choices, neces-
sitating passing the requirements to the collective library.

Someone asked whether the type of communication was to 
be specified by the user, if this was a “tuning issue.” Rajesh 

responded that the collective library is designed to be part 
of the runtime library, capable of detecting a situation where 
loosely synchronized collectives are applicable. Another 
question involved a particular comparison with p-threads 
in the given results. Barriers using p-threads had taken 
3ms on the Niagra. As a possible explanation, Rajesh noted 
that p-threads assumes more threads than cores. When the 
resources are not over-subscribed, the overhead becomes 
detrimental.
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The Elements of Networked Urbanism■■

Adam Greenfield, Head of Design Direction, Nokia

Summarized by Simon Peter (simon.peter@inf.ethz.ch) and 
Tudor Salomie (tsalomie@inf.ethz.ch)

Adam is working on a book called The City Is Here for You 
to Use and his talk was related to that. Adam began with a 
speculative manifesto and a diagnosis on where converging 
technical and social possibilities in our environment are 
taking civilization. If the promises of ubiquitous computing 
came true, how would we be living?

Over 50% of the world’s population is now living in cit-
ies, and this trend is accelerating. Today’s mega-cities are 
prototypes of the conditions within which post-urban 
humanity is going to live in. On the other hand, there are 
de-populating cities, like Detroit, that are beginning to lack 
vital infrastructure, like police and fire-fighters.

By the end of 2012, embedded network sensors will be 
responsible for 20% of non-video Internet traffic. By then 
the Internet will no longer be primarily a human-to-human 
communication channel. Instead, an increasing amount of 
data about the physical environment will be exchanged. 
Due to these factors, technology will be intersecting primar-
ily with an urban population, not civilization in general.

Adam structured his talk into 14 rough transitions that are 
likely to develop in urban societies:

1. Networked resources will be the components of urban 
environments. We will be surrounded by physical instal-
lations that have IP addresses and are probably program-
mable, afforded by IPv6.

2. Open APIs will become lingua franca. Consumers will be 
plugging systems seamlessly into one another. Moore’s Law 
has given us cheap, powerful sensors, and we are getting to 
a point where we just incorporate them anywhere because 
they are so cheap.

3. Building blocks of our cities will be able to adapt to 
changing conditions. Buildings will be able to configure 


