
; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 99

of the DHT (and treated like a stale, departed node). This
allows it to still receive routing requests from its monitoree
without affecting the behavior of the DHT. To distinguish
between destination and routing traffic, multiple MVMs are
inserted for every node within a “zone,” defining an N-bit
prefix in the DHT identifier space. For all traffic captured
within the zone, the destination can be determined with
post-processing.

To validate their method, experiments were run with the
Kad DHT, and it was determined that Montra captures 90%
of all DHT traffic within the zone and correctly determines
the destination for 90% of traffic captured for prefixes up to
six bits in length.

On the Locality of BitTorrent-based Video File Swarming■■

Haiyang Wang and Jiangchuan Liu, Simon Fraser University;
Ke Xu, Tsinghua University, Beijing

Haiyang Wang repeated the claim that peer-to-peer (P2P),
specifically BitTorrent, traffic has become widely popular on
the Internet. One of the problems with P2P traffic is that it
is agnostic to the topology of the Internet, so peer selection
is not optimized for locality. Locality-based peer selection
attempts to minimize inter-ISP traffic, but it also negatively
affects the performance of BitTorrent.

The authors did a large-scale measurement study of Bit-
Torrent traffic from btmon.com which consisted of 30,000
video torrents and 44,000 non-video torrents, and they
used PlanetLab to collect information on the BitTorrent
swarms. The largest portion, 51%, was AVI files. The top AS
measured had 16,000 thousand peers, and the top ten ASes
had 97 to 165 thousand ASes.

Their measurement showed that large swarms do have
poor locality and generate a lot of inter-AS traffic, but small
swarms don’t have enough diversity within each AS to apply
locality-based algorithms. For large enough clusters a peer
prediction method can be used, and the authors provide a
conditional probability-based peer prediction method, used
only when AS clusters become large enough.

First USENIX Workshop on Hot Topics
in Parallelism (HotPar ’09)

Berkeley, CA
March 30–31, 2009

challenges and opportunities of
heterogeneous hardware

Summarized by Rik Farrow (rik@usenix.org)

A Case for Machine Learning to Optimize Multicore ■■

Performance
Archana Ganapathi, Kaushik Datta, Armando Fox, and David
Patterson, University of California at Berkeley

Kaushik Datta explained that compilers produce poorly
performing code on multicore CPUs without manual tun-
ing. Their approach involves machine learning that tries

particular motif-specific optimizations, generates code, and
tests it. It is possible to do this for the entire problem space,
but doing so would take many months to compute their
example problems.

Jim Larus asked why compilers don’t do this, and Datta
responded that compilers do not do domain-specific modifi-
cations or change data structures to adjust for best memory
access performance on a particular architecture. Rik Farrow
asked if they had accounted for the difference in memory
architecture between Intel Clovertown and AMD Barcelona,
and Datta answered that they did, through pinning the
memory to each Barcelona chip. Paul Emming of IBM asked
whether the performance issues were related to memory
bandwidth or latency, and Datta responded that it was ef-
fectively latency issues.

Archana Ganapathi took over the presentation and ex-
plained how they used machine learning to dramatically
shorten the tuning time. Their model chooses a sample set
of 1500 datapoints, runs the code, compares feature vectors,
then adjusts the parameters and tries again. Someone asked
why they chose 1500 for the sample size, and Ganapathi
answered that this was a sweet spot in a process where the
runtime can grow geometrically. Steve Johnson of Math-
works asked if there was some assumption about monotonic
trend in the analysis of correlation, and Ganapathi an-
swered that there are assumptions about relationships.

Ganapathi talked more about how they chose the point that
expressed best performance, picked two neighboring points,
and used these to find matching points in configuration
space. They then used a genetic algorithm to permute opti-
mizations. Their method takes about two hours to reach a
performance level in the optimized result similar to what a
domain expert could do with manual tuning in two weeks.
An exhaustive automated search through the configuration
space could take 180 days, so their learning approach shows
real promise.

Hardware Parallelism vs. Software Parallelism■■

John A. Chandy and Janardhan Singaraju, University of
Connecticut

John Chandy said that processor clock scaling had stopped,
but transistor scaling will continue for a while yet. Multi-
core processors are the current answer to what to do with
billions of transistors, but there are serious problems with
this approach. First, software that can use multiple cores
has not been written, and it would be difficult to write and
debug. Then there is the problem of memory bandwidth,
which cannot supply more than a handful of cores at once.
Their solution is a reconfigurable hybrid multicore architec-
ture (RHyMA) that puts the reconfigurable portion of the
processor on the “other side” of memory.

Chandy displayed a table (Table 1 in the paper) that com-
pares performance of specialized hardware to software
implementations; it shows that hardware, even running at
slower clock speeds, outperforms software implementations
of specific tasks like intrusion detection, numeric simula-

100	 ; LO G I N : VO L . 3 4 , N O. 4

tions, and genome sequencing. Vikram Adve of the Univer-
sity of Illinois pointed out that they were comparing FPGA
(Field Programmable Gate Arrays) to CPUs, but saying
nothing about memory. Chandy said that this depends on
the application—IDS, for example, which is basically string
matching, ran 27.8 times faster in the FPGA. Adve asked
if using FPGA helps with the memory access, and Chandy
said that using FPGAs can make this better, but will not
solve the data access problem.

Chandy pointed out that the use of heterogeneous proces-
sors is not a new idea. What they want to add is the ability
to create new “cores” on the fly, using libraries of hardware.
Steve Johnson pointed out that most operating systems are
extremely allergic to special-purpose hardware, as most
has state and is thus difficult to share. Chandy responded
that they do need OS support but are not as pessimistic as
Johnson.

Dave Patterson agreed that transistors are plentiful, but not
power, and asked if reconfiguration was power-efficient.
Chandy again pointed to Table 1, where FPGA versions
are many times more efficient. Hans Boehm asked about
security, if hardware is to be shared, and Chandy said that
in their current version there is no way to leak information
unless you create a routing path between two parts.

Embracing Heterogeneity—Parallel Programming for ■■

Changing Hardware
Michael D. Linderman, James Balfour, Teresa H. Meng, and
William J. Dally, Stanford University

Michael Linderman explained how their pragmatic ap-
proach to supporting heterogeneity in processors helps solve
some of the issues brought up about the previous paper. He
pointed out that the software ecosystem relies on stability
and that running software where there may be hardware
resources for some functions but not others, depending on
the platform, is a problem with a solution.

Their own solution is to wrap implementations for particu-
lar algorithms with a common API so that the program has
the same interface, regardless of whether the algorithm is
done in software or by a specialized processor. Armando
Fox asked if they separated policy from mechanism, and
Linderman replied that they do via metawrappers based
on policy. Jim Demmel asked about runtime resources and
Linderman said that their software makes runtime choices
depending on hardware availability.

Steve Johnson wondered how they handle the difference
between passing arguments, as an ordinary CPU can use
pointers but a GPU requires an array of values. Linderman
said that the layer they propose handles copy of data when
needed. Jim Demmel asked if data structures would need to
be changed on the fly, and Linderman said he would get to
this.

Linderman described this wrapper as sophisticated enough
to support both programmer notations and the ability to
group resources and to merge functions that should be

combined for best performance. María Garzarán wondered
whether they intuit the programmer’s intent, and Linder-
man replied that they don’t try to extract parallelism. Dem-
mel expressed concern about determinism, and Linderman
suggested that this concern could be expressed within
metawrappers. Clem Cole speculated that Boeing would
want the same answer every time. Linderman said that
floating point includes some degree of non-determinism,
depending on the implementation used.

models and par adigms i

Summarized by Micah Best (mbest@sfu.ca)

Parallel Programming Must Be Deterministic by Default■■

Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and
Marc Snir, University of Illinois at Urbana-Champaign

Parallel programming is too hard, Robert Bocchino began,
with too many non-deterministic interleavings making it
difficult to reason about correctness. Most programs are in-
tended to be deterministic and so parallel languages should
be deterministic by default, non-determinism occurring
only when explicitly requested. Some languages do guaran-
tee determinism, but mainstream general-purpose languag-
es do not. Martin Rinard brought up the point that even
sequential programming is sometimes not deterministic, so
why make parallel programming deterministic? Bocchino
responded that non-determinism is limited in the sequential
model and programmers tend to understand this, generally
introducing it on purpose.

The benefits of achieving this goal would be almost sequen-
tial reasoning, the avoidance of subtle bugs, and simplified
testing. Jim Demmel asked if floating-point operations were
included in the “almost” part of the first point. Bocchino
agreed that floating point leads to an increase in non-deter-
minism in parallel, but reiterated that programmers under-
stand this. David Patterson asked whether this proposed
model allowed floating point to be non-deterministic. The
response, including an example with reduction, clarified
that the programmer would be able to specify the level of
non-determinism.

After Bocchino described default determinism guarantees,
support for controlled non-determinism, and methods
for simplifying development and porting, Rajesh Nishtala
asked about performance. Bocchino admitted that in some
cases determinism will have performance consequences by
nature, but they believe that in many cases that can be al-
leviated. Checks can also introduce overhead, but they were
focusing on doing checks statically. Nishtala followed up by
asking how well this would scale. Bocchino answered that,
hopefully, one won’t do this globally and in fact this may
help with reasoning about performance.

After describing the strengths and weaknesses of approach-
es based on language, compiler, and runtime components,
the speaker concluded that strong language mechanisms

; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 101

are essential. Brandon Lucia brought up Kendo, a compiler-
based auto-optimization. Bocchino responded that indeed
compiler support can help make guarantees possible. The
talk continued with a description of the effect system,
which uses annotation of memory, called regions, as param-
eters in order to track what areas are being read and writ-
ten during a particular operation. Nishtala asked if these
regions are dynamically created. Bocchino responded that,
yes, they are, but the reasoning is static.

Deterministic parallel Java with an explicit type and ef-
fect system was then introduced and its limitations were
discussed. Jim Larus asked about the connection between
determinism and type effect. Bocchino responded that if
disjoint parts had disjoint regions, you could use that to
ensure that all computations are deterministic. Larus asked
whether all computations were independent and was told
they were, with every pair of memory operations either
commutative or disjoint. Larus then asked if this wasn’t
very restrictive. Bocchino responded that it was restric-
tive but fundamental and that they are working on more
complex patterns. Rob Schreiber asked about the model of
temporal epochs separated by barriers. Bocchino responded
that the barrier model was supported.

The talk then shifted to the topic of hidden non-determin-
ism. Bocchino outlined the use of programmer-provided
trusted annotations with which the compiler can prove
determinism. An example of this was the commutative
operator, which was completely trusted by the compiler.
Maurice Herlihy asked about operations that commutate
with other operations. Bocchino responded that the support
was not this fine-grained, but could be. The talk turned to
visible non-determinism, which is sometimes necessary for
high performance. This needed to be carefully controlled
and explicitly requested by the programmer, with the non-
deterministic code and the deterministic code isolated from
each other. In terms of supporting this in the language, the
conclusion was that the benefits outweigh the costs and
that technical solutions, not necessarily specific to Java, can
reduce these costs.

Opportunistic Computing: A New Paradigm for Scalable ■■

Realism on Many-Cores
Romain Cledat, Tushar Kumar, Jaswanth Sreeram, and Santosh
Pande, Georgia Institute of Technology

Santosh Pande explained that in opportunistic computing
and scalable realism on many-cores, speedup is not always
the end-goal. Immersive applications, such as gaming,
multimedia, and interactive visualization, are designed to
provide the richest and most engrossing experience possible
to the user. Focusing on realism provides avenues to utilize
multi- and many-cores over and above traditional task and
data parallelism techniques.

This domain calls for algorithms with the highest sophisti-
cation possible so that a probabilistic achievement of realism
is sufficient. The first approach for maximizing realism was

a technique referred to as N-version parallelism. This tech-
nique involved speeding up hard-to-parallelize algorithms
that made random choices by running multiple versions in
isolation using different random choices and choosing the
fastest one. This increases the probability of getting a faster
result. Someone asked how it was known that this con-
verged on the fastest result. Santosh replied that theoretic
results support it. Someone else asked how the 2x speedup
was justified. This was specific to the example; in general,
it depends on the asymptotic complexity; many algorithms
show a great deal of variance.

Next was discussed a probability density function (PDF)
that described the speedup of the algorithm and using this
to determine the potential results when running N copies
of the algorithm. To support this technique, programming
language abstractions were required to render each instance
of the algorithm so as to be side-effect free.

Pande discussed the quality of the results and enhance-
ments. This involved taking advantage of additional cores,
scaling algorithms, and data sets with available resources.
The runtime component of the system is based on offline
profiling via machine-learning techniques. The profiling
infers the structure of the application and learns the cause-
effect relationship across the application.

An audience member said that similar techniques were used
in circuit simulation, where multiple solvers were begun
with the hopes of getting a fast convergence to results. San-
tosh responded that, absolutely, this technique had been in-
spired by others, specifically multi-scale physics simulation.
Another audience member asserted that N-version parallel-
ism works for randomized algorithms, but not for statistical
sampling algorithms. Santosh replied that one could express
computation by accuracy constraint on sampling.

A Case for System Support for Concurrency Exceptions■■

Luis Ceze, Joseph Devietti, and Brandon Lucia, University of
Washington; Shaz Qadeer, Microsoft Research

Brandon Lucia discussed what makes concurrency bugs
such a challenge: they are difficult to reproduce and crashes
may occur far from bugs during execution. Concurrency
errors are not “fail-stop,” but their effects may be, obscur-
ing the original illegal behavior. Lucia asserted that an error
should be delivered, an exception should be thrown, where
the state changed to wrong. He then talked about how to
specify exception conditions in terms of determining what
behavior is illegal, which addressed an earlier question from
Jim Larus.

Lucia outlined the three basic questions of concurrency
exceptions: when should exceptions be delivered, to which
threads are they delivered, and what is the system state at
delivery? The burden is on the language, and it is desirable
for programmers to be able to encode what behavior is ille-
gal and embed their synchronization protocol. He identified
three types of illegal behavior: locking discipline violation,
atomicity violation, and sequential consistency violation. An

102	 ; LO G I N : VO L . 3 4, N O. 4

audience member asked if any bugs were left out, to which
Lucia replied that ordering-constraint bugs were excluded
for brevity. Another attendee asked if this implied sequen-
tially consistent behavior. Lucia replied that a programmer
needed to specify what regions of code should be atomic.

Lucia then said that locking discipline exception should
occur when locks protecting data are not acquired before
the data is accessed. The exception should be delivered
immediately, before the access that violates the condition is
given. An atomicity violation exception should be thrown
when code was expected to execute atomically but didn’t.
Language support for defining expected atomic code is
needed, as is monitoring of memory access interleaving.
Mark Moir commented that this places a burden on the
programmer, compile writer, and architecture designer.
Isn’t it better to change things so these problems are not
possible? Lucia replied that they felt that this was not an
excessive burden and not the only solution to concurrency
errors. In response to another question about concurrent
thread access he replied that this mechanism doesn’t create
atomicity, it enforces atomicity. As for when to deliver the
exception, the violating thread was a good candidate, but
the originating thread was also a good target for receiving
the exception.

Data-race is a heavily overloaded term, and various memory
models may define it differently. What is really wanted is a
guarantee on sequential consistency. A sequential consis-
tency exception occurs when it is impossible to guarantee
that memory access reordering wasn’t observed remotely.
This exception should be delivered immediately before the
reordered instructions execute. Tim Harris asked about
detecting compiler reorderings. Lucia responded that what
is needed is a way to communicate this to the lower levels
of the system. Was support needed to see if reordering was
observed? Yes, based on the work of Gharachorloo and Gib-
bons.

Multi-threaded state is the sum of the state of all threads,
and concurrency and non-determinism make precise state
tricky. Lucia offered two options: offer precise state to the
offending thread only, and deterministic exception replay.
An attendee asked how the state recovery mechanism
interacted with I/O. Lucia said this was a difficult unsolved
problem with replay. How much simpler was this than
transactional memory? To achieve what they want they don’t
need to buffer values but only monitor. There is no need to
keep an arbitrary number of versions.

applic ations and tools

Summarized by Eric M. Hielscher (hielscher@gmail.com)

Parallelizing the Web Browser■■

Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste
Asanović, and Rastislav Bodik, University of California, Berkeley

Leo Meyerovich pointed out that in order for handheld
mobile devices such as smartphones to take over the space

currently filled by laptops, the software that runs on them
must run as fast as it now does on laptops. Bell’s Law indi-
cates that this shift to handhelds should take place due to
shrinking transistors, but we’ve hit a power wall preventing
handhelds from reusing the software of their laptop ances-
tors in the way laptops reused desktop software. Meyerovich
focused on the parallelization of mobile Web browsers.
Browsers are important because they are the dominant
application platform, easy to deploy, Javascript is portable,
etc. They also present an interesting challenge since writing
programs for handheld browsers is difficult, as witnessed by
the specialized versions of Web pages for phones and pages
loading around seven times more slowly than on laptops.

The anatomy of the Web browser workflow is as follows:
download pages, decompress them, lex, parse and build the
DOM layout, render, and run scripts. Vikram Adve asked
where the bottleneck is, and Leo responded that on hand-
helds it’s truly everywhere—everything is slow. Ras Bodik
said that compared with IE, layout takes twice as long. The
project’s status is as follows: work-efficient algorithms for
various aspects of the browser have been developed, and
work has been done on a programming model for script-
ing. While, on the surface, lexing may seem inherently
sequential, a parallel algorithm for lexing was outlined that
involves splitting the input text into blocks with some over-
lap. The scans can then proceed in parallel with care taken
that the DFAs start in tolerant states. This results in an
algorithm that wastes only a little work and scales very well
(4.5x speedup on five processors). A parallel algorithm for
page layout was also given that scales well up to three cores.

Here the talk turned to the problem of developing a parallel
programming model for scripting. The extant browser pro-
gramming model is a non-preemptive event-driven model
where handlers respond to events and execute atomically.
To parallelize this, we must understand how a document
is shared, including document-carried and layout-carried
dependencies. Concurrency bugs can crop up in many
places: GUI animations and interactions, server interac-
tions, eager script loading, JavaScript gotos, etc. Prelimi-
nary design on a new parallel scripting language has been
done that focuses on making program structure clearer by
making data and control explicit. Programmer productivity,
targeting the 99% of programmers who aren’t concurrency
experts, will be enhanced by providing callbacks to actos,
and performance will be improved by adding structure to
detect dependences. Rik Farrow asked whether security was
addressed by the work, and Leo responded that security is a
concern but that it’s orthogonal to the work at hand.

Exploring the Limits of Disjoint Access Parallelism■■

Amitabha Roy and Steven Hand, University of Cambridge; Tim
Harris, Microsoft Research

Harris pointed out the important traditional distinction be-
tween abstractions (programming language constructs) and
implementations (e.g., transactional memory versus locks).
What we would like is to be able to talk about the semantics
of our abstractions without discussing their implementa-

; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 103

tions. We then ask the question, when are TM-style imple-
mentation techniques useful? Harris showed a graph, with
one axis representing contention for critical sections and the
other the likelihood of conflicting memory accesses. The
quadrant of the graph where there is high contention but
low likelihood of conflicting accesses seems to be the region
that is just right for TM techniques. Slower TM implementa-
tions make this sweet spot smaller, and faster ones make
it larger. A formula characterizing the bound on possible
speedup was given, using terms such as the probability of
conflict, the fraction of time waiting to enter critical sec-
tions, and the fraction of time in critical sections.

The focus of this work was to develop a tool that uses
binary instrumentation and models of thread timing and
memory access to allow profiling of programs for locating
synchronization bottlenecks. An assumption in the models
is that conflict probability is a property of a given critical
section. Pairwise conflict probabilities are generated for
each critical section. Comparing the tool’s predictions to
serialized versions of a red-black tree and of Apache gave a
fairly good match between the curves of the prediction and
the actual data. The conclusion is that for these workloads,
the assumptions of the model work well enough for the tool
to be useful. The instrumentation is lightweight enough to
allow large apps to be run at a reasonable speed and thus
to provide good feedback. Further work includes address-
ing the questions of whether more complex timing models
are needed for other workloads, and what the tradeoffs are
between different conflict detection strategies.

Someone asked how stable the results were, and Harris
replied that he wasn’t sure. Jim Larus asked whether the
researchers felt they had a good a priori intuition about
which locks would be good ones. Harris said they didn’t
check ahead of time, but the results seemed very reasonable
after the fact. María Garzarán asked whether the programs
needed to be run with every possible number of threads.
The profiling is done with a single thread running in order
to get traces. Someone asked whether the tool might affect
the computations. It was carefully validated. Paul McKen-
ney asked how this tool compares with the ad-hoc feedback
mechanisms used by the groups who develop various large
systems. Harris wasn’t sure, but his group was having
discussions with such teams. Mark Moir asked about more
refined models based on the size of transactions and on
contention. This should be easy to plug in and would be
interesting. Moir then asked how much profiling we could
get for free from STM implementations. Perhaps it would
be possible to add something like a Bloom filter to record
access sets.

Parallel Search on Video Cards■■

Tim Kaldewey, Jeff Hagen, Andrea Di Blas, and Eric Sedlar,
Oracle Server Technologies—Special Projects

From a database perspective, search is sped up by the ad-
dition of indexes. The bottleneck in this domain lies with
memory. The growth rates of the size of memory have out-
stripped those of structured data, and so the memory wall is

increasingly an issue. Larger caches and specialized proces-
sors are the current approaches to alleviating this problem.
One way to tolerate memory latency is through parallel
memory accesses, increasing the throughput of computa-
tion. GPUs are a good example of high-performance archi-
tectures, with massive parallelism, high memory through-
put, and high performance/watt. The goal of this work is to
improve the response time of search by using GPUs.

Kaldewey described an algorithm for parallel binary search.
Divide the data sets, find which set contains the search
query, and then redistribute the subsets of this set to the
processors since it is the only set worth searching. The run-
time of this algorithm is log_p(n), where p is the number of
processors, as opposed to log_2(n), assuming that redistri-
bution and lookup are free. The GPU architecture in ques-
tion has up to 16 independent streaming multiprocessors
(MP), each with eight processing elements. The execution
model is SIMT, or single-instruction multiple-thread, with
each thread on an SM executing the same code. The prob-
lem with the approach as given thus far is that we need the
number of queries to be equal to the number of processors
or we’ll have poor hardware utilization, memory access col-
lisions will slow things down, and the number of memory
accesses is log_2(n). More processors lead to more results,
but a running time likely to be the worst-case expected
running time. The number of memory accesses in the p-ary
search algorithm is (p-1)log_p(n), as opposed to log_2(n),
but the expected throughput is lower. In practice, however,
with large data sets, p-ary search gets 30% performance
improvement over binary search because GPUs parallel-
ize memory accesses; this in turn leads to fewer memory
conflicts, and p-ary search has a smaller code footprint.
Parallelism does have its costs, however, in that there are
more memory accesses, but the algorithm scales on the
number of GPUs.

The conclusion is that there is a tradeoff between response
time and throughput, but p-ary actually improves both.
Future work includes targeting other parallel architec-
tures, evaluating more complex functions, optimizing data
structures, and integrating with the rest of resource man-
agement in the system (when to parallelize, how much to
parallelize, which architecture to use). Rajesh from Berke-
ley asked at this point how much it costs to do insertions
using this scheme, and Kaldewey said he wasn’t sure but
that he envisions just using the GPU as a consistent cache
of the data. Rajesh then asked how to partition the index
over processors, and the response was that it’s data depen-
dent. A number of database people feel that more cores
are simply a waste due to the memory wall problem. Paul
McKenney asked whether Kaldewey would expect better or
worse results for other things like pattern matching, and
the response was that they saw good speedups on parallel
scan. Hans Boehm asked why they didn’t use interpolation
search, and Kaldewey said they haven’t looked at it. María
Garzarán asked whether there was anything missing on the
GPU he’d like to have, and Kaldewey responded that he re-

104	 ; LO G I N : VO L . 3 4 , N O. 4

ally misses dynamic memory allocation and would like bet-
ter synchronization primitives. It’s not currently possible to
make hash tables, and a better programming environment
would be useful. He didn’t have any preliminary results to
share with different data structures.

panel : par allel computing in real-time
inter active music and media computing

Summarized by Rik Farrow (rik@usenix.org)

David Wessel, Center for New Music & Audio Technologies, Uni-
versity of California, Berkeley; David Zicarelli, Cycling 74; Miller
Puckette, Department of Music, University of California, San
Diego; Amar Chaudhary, Digidesign; Dinesh Manocha, Depart-
ment of Computer Science, University of North Carolina

David Wessel explained that live sound produced by com
puters has extreme real-time requirements. Video, even
at 30 frames/second, can drop frames without a person
noticing, but a much shorter audio lapse gets perceived as a
click or pop. Wessel designs and plays instruments that use
a computer for sound “rendering.” One of his designs, the
SLABS, consists of many multi-touch sensitive pads. A 20"
by 20" array of pads consists of 100 taxels/inch with 12 bits
of sampling data per taxel, a sampling rate of 10 kilohertz,
for a total of 4.6 gigabits per second. You can hear an ex-
ample of Wessel explaining and play the SLABS here:
http://www.youtube.com/watch?v=q_mtCZqN0Ms.

Wessel mentioned that real-time sound has applications
other than performance, including many channel audio
systems and hearing aids.

Amar Chaudhary of Digidesign (the makers of ProTools
studio sound software) showed off Open Sound World
(http://osw.sourceforge.net/html/note/PlayScore.html). Like
Max/MSP (described later), OSW allows composers to put
together executable objects (shared objects) that transform
their inputs. The inputs can be chained together as well as
work in parallel. There are state variables as well as activa-
tion expressions triggered by variable changes. Activation
expressions can be functions or code similar to C++, and
there are 250 transforms on OSW.

Chaudhary was the first person to demonstrate Max/MSP,
a GUI that looks a little like a digital representation of a
soundboard, with the addition of “patches,” objects that
process sound.

OSW includes implicit parallelism, making this and other
audio software natural users of future multicore processors.
Chaudhary pointed out that the difference between using
a single and two cores on his MacBook Pro was only 3–4%
less CPU usage. David Wessel mentioned that his Mac
usually runs at 80% CPU during performances and has as
many as 16 different patches (for guitar players, think paral-
lel effects) going at once.

Puckette Miller, the author of Max/MSP and later of the
open source pD (Pure Data), used Max/MSP to demon-

strate how you could have 15 oscillators and 64 channels
at the same time. Sasha Fedorova asked about algorithms
and data. Miller responded that there are two worlds, the
outside world and the CPU world. Steve Johnson wondered,
since most OSes are not real-time, how significant would it
be to get an email during a performance. Wessel answered
that you disconnect your network during performances and
don’t use software that does garbage collection. Another
panelist said that things should sound exactly the same way
every time, leading Vakrim Adve to ask if there can be some
slippage, some non-determinism. Chaudhary answered that
things should be bit-accurate every time.

Miller mentioned that the UCB ParLab people present un-
derstand what happens when you try to parallelize multiple
streams. In both Max/MSP and pD, you might have an
array of floating-point numbers representing a stream you’d
like to add to, as you are using it to create sound. But this
implies sharing the data between two processors, which you
can’t do in a general programming language.

David Zicarelli, the current support person behind Max/
SMP (see http://www.cycling74.com/products/), gave a quick
demo of Max/SMP.

Dinesh Manocha, of the University of North Carolina, went
last. Unlike the other presenters, he is not a musician or a
music software designer. Manocha explained that his work
involves rendering sounds in virtual environments. Sound
reflects off surfaces as well as diffracting around edges,
making any accurate rendering very much like 3D image
rendering. Applications of this work include modulating, for
example, cabin noise in airliner design, as well as in games.
Game consoles allot no more than 5% of CPU for sound
rendering, which means that most games have primitive
sound.

Manocha played several demonstrations of moving through
virtual environments. As the virtual position changed,
so did the quality of the sound. In a cathedral demo, he
dramatically changed the apparent size of the room using
altered sound absorption. His work cannot be done in
real time, as it involves petaflop computation that handles
only mid-range frequencies. He also showed demos of a
ball dropping into water and raindrops, without then with
sound to demonstrate how much sound adds to human
perception.

Wessel said that one can make beautiful sounds but you
need to be able to control them in order to perform. Chaud-
hary agreed and said that real time and control were the
biggest challenges faced at this point. Miller suggested that
audio programmers should not use threads but different
address spaces. Zicarelli said that the control algorithms are
very simple, but they are really the bottleneck as everything
goes through them, and part of the challenge is trying
to apply all these techniques. Manocha mentioned using
GPUs to process sound, but said that we have no idea of the
latency of GPUs. Latency, which must be less than 5ms, is
always going to be the challenge.

; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 105

oper ating systems and middleware

Tessellation: Space-Time Partitioning in a Manycore Client ■■

OS
Rose Liu, Kevin Klues, and Sarah Bird, University of Califor-
nia at Berkeley; Steven Hofmeyr, Lawrence Berkeley National
Laboratory; Krste Asanović and John Kubiatowicz, University of
California at Berkeley

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Rose Liu argued that space-time partitions should replace
processes as the main abstraction for new “client” operat-
ing systems. She defined “client” operating systems as those
that are single-user; run a heterogeneous mix of interactive,
real-time, and batch applications; and are battery (power)
constrained. A new client operating system was needed
because existing operating systems were not designed for
parallel applications. Furthermore, those operating systems
that were designed for parallel execution mainly address
server and HPC workloads, not client workloads.

Rose proposed that cores, memory, and even network band-
width can be partitioned. Alexandra Fedorova asked how
spatial partitions differ from Solaris zones. Rose believed
that zones were more of a logical partitioning than a physi-
cal one. She spelled out the benefits of spatial partitioning,
including that it was a natural unit for fault containment
and a natural unit for energy management, and it allows
two-level scheduling, i.e., partitions can schedule them-
selves. Alexandra Fedorova asked what happens when one
partition uses a library that wants to schedule itself. Rose
deferred to the next talk (Lithe) for a solution.

Rose went on to explain how partitions allow operating
system services to be put into partitions, similar to micro-
kernels. The space partitioning is probably not enough,
so the authors propose space-time partitioning. The time
multiplexing is done at a much coarser granularity, which
alleviates some of the overhead of context-switching an
entire partition. Rik Farrow asked if partitions were created
by pinning threads to resources. Rose replied that threads
are not the abstraction used within partitions (or at least
not the default abstraction), and suggested looking at the
abstractions discussed in the upcoming talk (Lithe). Farrow
followed up by asking how data in the cache suffers when
you do the space-time partitioning discussed. Alexandra
Fedorova wanted to know how we can even attempt to par-
tition a cache. Rose proposed hardware support for cache
partitioning. Vikram Adve asked what happens if we don’t
get such hardware support. Alexandra Fedorova proposed
some form of software partitioning (e.g., page coloring).

Rose then explained that the fundamental communication
primitive across partitions is a form of message passing. Ste-
phen Johnson asked what happens when a message is sent
to a partition that is not scheduled. The speaker said they
are investigating mechanisms (such as priority inversion) to
wake up partitions that have pending messages. Alexandra
Fedorova suggested an operating system that could observe
communication patterns and then gang-scheduling those

partitions that communicate with one another. Rose agreed
that this might be a promising idea. Michael Linderman
asked if the authors planned to support legacy applications.
Rose responded that they are considering running VMs for
legacy OSes and applications, but that was not their imme-
diate goal. Stephen Johnson suggested that if they could get
the software to perform fairly well, the hardware commu-
nity would follow suit and produce the hardware needed for
a parallel operating system like this.

Alexandra Fedorova asked how the system would respond
to changing demands of applications. John Kubitowitz
suggested that client devices are fairly bursty, so require-
ments might change between 1000 cores and two cores.
Krste Asanović said that sometimes it might make sense
to just keep execution resources within the partition until
they are needed again rather than changing partition sizes
as frequently. An unidentified audience member suggested
Rose look into cluster-aware managers like SLURM. Rob
Schreiber asked what happens when the operating system
can’t figure out a good way to schedule the partitions (be-
cause, for example, the constraints are unsatisfiable). Krste
Asanović suggested that the system would have to perform
some conservative approximation to handle those cases.

Lithe: Enabling Efficient Composition of Parallel Libraries■■

Heidi Pan, Massachusetts Institute of Technology; Benjamin
Hindman and Krste Asanović, University of California, Berkeley

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Heidi Pan said that Lithe is meant to address the perfor-
mance problem of composing parallel applications. Vari-
ous parallel frameworks are well suited for various parallel
problems, but many applications consist of heterogeneous
problems for which different libraries are suited. Further-
more, this composition is increasingly hierarchical, such
as a machine learning library splitting off tasks where each
task might be a BLAS (Basic Linear Algebra Subprogram)
routine. Naively, these libraries assume full control of the
machine to do many of their optimizations. Previously, de-
velopers could often also assume full control and knowledge
of a machine at design time; the expert could successfully
tune the partitioning of resources through multiple layers.
However, this is not abstracted well enough for mainstream
development, bigger projects, or when there is limited
design-time knowledge of the deployment environment.
Worse, there is a composition problem: a developer call-
ing into a library must tune resource allocation all the way
down the stack.

Lithe is an ABI for cooperative resource allocation within
large programs that use different libraries (that, in turn,
may also be large, etc.). It is envisioned as sitting on top of
the Tessellation OS, moving allocation (if desired) into the
application. The proposal is three-part. First, it asserts that
hardware threads (HARTs) should be reified as a resource
that applications should be able to manipulate. For example,
a core with two threads would have two HARTs active at
any time step, and each HART is owned by only one com-

106	 ; LO G I N : VO L . 3 4, N O. 4

ponent. Second, frameworks should be able to cooperatively
exchange HARTs (and, potentially, other resources). Unlike
other proposals (e.g., Charm), the integration is low at the
ABI level, so the team is already able to support systems like
TBB and OpenMP. Third, not everything needs to be sched-
uled cooperatively—but this pushes the decision to frame-
work writers (who might implement such alternatives). For
their results, the team showed that an untuned application
struggled without cooperative allocation, but a tuned one
did much better. The Lithe version ran a little faster than a
manually tuned version.

Jim Larus asked if interference says something about the
design of libraries (e.g., hidden parameters of number of
threads). Pan answered that today, you can typically assume
control and expert programmers want to do this tuning.
We’re seeing interference now that the scenario is changing.
Someone asked about the Charm++ abstraction of virtual
processors. Pan answered that they only build Charm on
it, but we’re also concerned with supporting other codes—
we have a similar philosophy but a different route. Another
person asked what the difference is between a HART and
a processor. Ben Hindman answered that by making the
HART an abstraction, we can do space-time partitioning.
Someone wondered what happens when an agent wants a
resource and doesn’t get it. Pan answered that it will have to
keep asking. Someone else wondered how many apps in the
consumer space require this type of support. Pan replied
that they have a white paper that shows that a lot of gam-
ing, etc., domains exhibit these properties. Another person
asked whether Lithe introduces composability issues, e.g.,
makes deadlocks more likely. Pan responded that in terms
of synchronization, the runtime systems get to handle it (or
you can use our own), decreasing the risk.

Energy-efficient Parallel Software for Mobile Hand-held ■■

Devices
Antti P. Miettinen, Nokia Research Center; Vesa Hirvisalo,
Helsinki University of Technology

Summarized by Leo Meyerovich (lmeyerov@eecs.berkeley.edu)

Miettinen is interested in providing performance and energy
simulations for heterogeneous mobile devices for developers.
Such devices have many components, such as GPUs, CPUs,
and radios, and some optimizations for one component (e.g.,
slowing down the CPU) might affect another (e.g., running
the wireless card longer than desired). An example was
presented of running various naive multi-threaded sorting
algorithms where one or two didn’t scale, showing that it’s
important to tune.

The proposal is to build a software simulator, parameterized
by a machine model, that can run a mobile application and
show speed and energy performance. It is still in the mo-
tivation and planning stage, and Miettinen asked for input
from the workshop participants, both now and later.

Someone agreed about the existence of the problem and
suggested looking at various groups interested in it, such

as the RAMP project and various projects at Microsoft and
Samsung. Another person suggested that scratchpads and
alternative architectures are important. Finally, someone
wondered if they considered components singly or together
in performance and whether there is monotonicity. Miet-
tinen said that there can be nasty interactions: you might
lower voltage/frequency to lower energy, but if you’re doing
data transfer you don’t need this, which might have an ef-
fect on the wireless interface, losing the benefits from the
CPU. They try to find problems like this early on.

tr ansactional memory

Summarized by Ben Hindman (benh@cs.berkeley.edu)

Lightweight Software Transactions for Games■■

Alexandro Baldassin, State University of Campinas, Brazil;
Sebastian Burckhardt, Microsoft Research, Redmond

Alexandro Baldassin discussed the desire to exploit mul-
ticore/manycore hardware for better performance without
sacrificing software engineering principles, and he hypoth-
esized that software transactional memory (STM) might be
a means to achieve this. To test this hypothesis, Alexandro
proposed applying STM to a multi-threaded game. STM ap-
plies well to games because of the complicated interactions
of threads with lots of shared data structures that make
locking rather difficult.

In their first attempt at using STM they simply turned criti-
cal sections into atomic blocks. They claimed that this still
made code too difficult to maintain, because they had to re-
member which functions inside versus outside transactions,
and they had to perform careful copying of private versus
shared data in and out of critical sections. Moreover, they
claimed that it was still difficult to guarantee atomicity of
what they called “tasks,” because a task may have multiple
critical sections. In their second attempt, they made entire
“tasks” be transactions. This avoided tricky code mainte-
nance issues, but it resulted in horrible performance (too
many conflicts).

Alexandro suggested that most programmers want coarse-
grained transactions that can perform I/O and provide
strong atomicity. He recognized, however, that it may be
very difficult to get performance given the above require-
ments. Alexandro next described their STM-like framework.
Unlike STM, tasks in their framework are never rolled back,
which means they can freely do I/O. He explained that the
execution of tasks is atomic and isolated, but there are no
serializability or linearizability guarantees.

Dhruva Chakrabarti asked how this system can guarantee
the absence of deadlock without rollback. Alexandro ex-
plained that rollback is only necessary for handling con-
flicts, not deadlock, and he described the mechanisms for
resolving conflicts without rollback. Micah Best asked how
exactly a programmer might decide how to handle many
updated conflicts. Alexandro explained that the program-
mer only gets to resolve pair-wise conflicts. In the event

; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 107

of many conflicts all at once the programmer will only be
presented with two at a time, and the programmer will have
to decide which one to propagate only based on those two.

Exceptions and Transactions in C++■■

Ali-Reza Adl-Tabatabai, Intel Corporation; Victor Luchangco,
Virendra J. Marathe, and Mark Moir, Sun Microsystems Labo-
ratories; Ravi Narayanaswamy and Yang Ni, Intel Corporation;
Dan Nussbaum, Sun Microsystems Laboratories; Xinmin Tian
and Adam Welc, Intel Corporation; Peng Wu, IBM Research

Ali-Reza Adl-Tabatabai described the current state of the
world regarding software transactional memory (STM). He
limited the scope of his discussion to exception handling
within a software transaction. He presented the following
example:

atomic {
	 x++;
	 if (cond)
		 throw MyException();
}

and posited the question: should the update to x be com-
mitted? Ali then discussed both sides of the argument:
commit-on-exception vs. abort-on-exception (rollback).

The commit-on-exception has the benefit of being sim-
pler to implement as well as having more sequential-like
semantics (or even global lock-like semantics). However, if
you commit rather than abort, you might actually break an
invariant that some critical section is supposed to maintain,
especially if it is because an exception is thrown that the
programmer wasn’t expecting.

The abort-on-exception handles the broken invariant issue,
but it raises another weird issue involving the propagating
exception. Specifically, what if you capture some state in the
exception that gets propagated, yet you rollback that state
before the exception propagates?

Ali proposed that the right solution is to have both and let
the programmer decide what they need, and he suggested
that the only point of contention between the commit-on-
exception and abort-on-exception camps now is what the
default should be. An audience member said that there
should be no default, and every programmer must specify
what they want. Ali decided to hold a vote. A majority of
the audience agreed that there should be no default.

Leo Meyerovich asked how prepared the community is for
STM standards like this and how close STM is to being an
actual product where the standards will be really important.
Ali suggested that it was still very much a work in progress
and he hopes that lots of programmers will attempt to use
their STM implementation (with these standards) so they
can learn from their mistakes and make them better. Dave
Patterson asked if the problems regarding exceptions and
STM were specific to C++. Ali explained that the problems
were not C++ specific, and applied just as well to languages
like Java.

Transactional Memory Should Be an Implementation ■■

Technique, Not a Programming Interface
Hans-J. Boehm, HP Laboratories

Hans Boehm reminded the audience why locks are hard
to use. Specifically, he targeted deadlocks as being a major
downfall to the use of locks. Hans suggested that an obvi-
ous, although strawman, solution is to use a single (re-
entrant) global lock. He argued this eliminated lock-based
deadlocks as well as the need to distinguish between strong
and weak isolation and the need to worry about irreversible
I/O actions.

Robert Bocchino asked how a global lock actually provides
strong atomicity (strong isolation). Hans explained that a
key assumption is the absence of data races and, therefore,
sequential consistency of the possible interleavings.

Hans went on to ponder whether a global lock-like model
will ever get good performance or scale. He suggested that
one can use software transactional memory to attempt to
implement this global lock-like semantics, but some trans-
actional memory-like constructs might not be admissible
with such semantics. For example, implementing something
like the retry construct will be difficult, if not impossible.
He suggested relying on locks and condition variables for
this type of construct instead.

Rob Schrieber asked how exception handling might be done
with the global lock semantics. Hans said that the right
thing is the commit-on-exception model, where the pro-
grammer will have to deal with fixing any broken invariants
manually. Jim Larus asked how valuable something like
atomic blocks really is for programmers. Hans reiterated
that they relieve the burden on programmers to have to
avoid deadlocks, but he felt only time and experience will
show how valuable they really are.

models and par adigms i i

Summarized by Micah Best (mbest@sfu.ca)

New Abstractions for Data Parallel Programming■■

James C. Brodman, University of Illinois at Urbana-Champaign;
Basilio B. Fraguela, Universidade da Coruña, Spain; María J.
Garzarán and David Padua, University of Illinois at Urbana-
Champaign

After James Brodman introduced the topic of the talk, that
of extensions to and new techniques for data parallelism,
an audience member asked whether task parallel programs
were scalable. Brodman replied that task parallel programs
may be redefined as data parallel programs. He outlined the
advantages of data parallelism in terms of programs with
data parallel operators. These programs will be a sequence
of data and there is an extensive collection of data parallel
operators that allow expression of parallelism but are not
designed explicitly for control.

Brodman then began a detailed description of an instance
of the suggested techniques, a method to explicitly parti-

108	 ; LO G I N : VO L . 3 4, N O. 4

tion array data called the hierarchically tiled array (HTA).
Their approach was to make tiles first-class objects in the
language to recognize the importance of tiling in terms of
control. Someone asked about the uniformity of tile sizes.
Brodman responded that tiles could be non-uniform.

Higher-level HTA operations include element-by-element
operations such as reduction, circular shift, replicate, trans-
pose, MapReduce, etc. Additionally, programmers can create
new complex parallel operators through the primitive hmap.
The operators in their library were sufficient naturally to
implement several programs from a number of benchmark
suites. The results compared favorably in terms of efficiency,
and Brodman noted that HTA notation also produces code
that is compact and more readable. Someone asked about
the methods of communication for the library. Brodman
answered that communications were done in MPI, which
was hidden from the programmer.

Brodman pointed out that although HTA worked well for
numerical programs, many programs are not numerical.
There was a need to identify the data parallel operators and
data structures needed for other data structures. Sets were
identified as a target for this inquiry and Brodman outlined
what would be needed to support this. Sets would require
operators such as map, union, and reduce. Their research
had extended to studying several applications, including
search, data-mining, and mesh refinement.

The next segment of the talk detailed an example of data
parallel search in the form of the “15 puzzle,” a 4 by 4 grid
with a single hole. A model for search and a process were
then detailed. The effectiveness of tiling was the same as for
arrays by emphasizing locality and parallelism; however,
tiled sets are not created as easily as tiled arrays. The talk
concluded with ideas for enforcing determinacy through
map primitives or annotations for atomicity. The benefits of
data parallelism for portability and parallelism were reiter-
ated. Finally, sets were discussed again as a promising data
type for further research.

Someone asked about the size of tiles and the depth of
hierarchy. Brodman responded that these parameters would
be set by the programmer. Who was the target audience,
in terms of programmer expertise? The “average program-
mer” would receive the data types that would have been
implemented in turn by experts who would produce highly
tuned code. Could tiles from different data structures be
tied together? They hadn’t looked into that yet, but he could
see it as a possibility as long as the data structures were
amenable. A final question concerned encapsulating atomic
sections. Brodman said they were looking into it.

Ease of Use with Concurrent Collections (CnC) ■■

Kathleen Knobe, Intel

Knobe’s research goal was to create a separation of concerns
between the domain expert and the tuning expert. She ad-
mitted that this had not been completely achieved, but there
was positive movement in that direction. The problem was
that most serial languages over-constrain orderings, while

most parallel programming languages are embedded within
serial languages. The solution is to isolate roles and to raise
the level of the programming model just enough to avoid
over-constraints. Two ordering constraints were identified:
producer/consumer constraints for dataflow dependencies,
and controller/controllee for control dependencies.

The design of Concurrent Collections (CnC) was informed
by streaming and tuple spaces. From streaming came the
concept of associating data items with computational steps,
labeled with control tags. Tuple spaces inspired the tagging
of each instance for independent scheduling. To illustrate
these concepts she provided a simple example of filtering
strings. This system of tagging relies only on application
knowledge and does not require considering parallelism.
Despite this, the results are still parallel, deterministic (with
respect to results), and race-free. She then described the ex-
ecution model of how tags were used to schedule instances.

Knobe introduced dataflow as the third influence. An audi-
ence member asked her to compare CnC and the Linda
language and the relative restrictiveness of the two. Knobe
answered that CnC does not require streams and they were
careful not to make that constraint. Linda produced a result
where, in Knobe’s words, a computation just “sits there,”
whereas CnC is dynamically scheduled and also allows
specification of control flow. She did note that there was a
slight constraint in terms of syntax in only allowing deter-
ministic programs and having single assignment.

She then offered another example, a “cell tracker,” present-
ing a CnC graph that fully captured all the information
needed to parallelize the application. The system supports
not only different schedules but a wide range of runtime
systems. There are many options in the back-end for tun-
ing, since the only thing provided by the program is the
constraint. John Kubiatowicz pointed out that there are no
data-ordering constraints. Knobe responded that there are
the two kinds of constraints already specified and that the
domain expert has to know the producer-consumer rela-
tionships in the program. Another audience member asked
about allowed data types such as arrays. Knobe responded
that any serial code was a candidate for CnC and that data
items can be of any type. This was followed with an inquiry
into the feasibility of handling trees. Knobe answered that
they used them all the time.

The discussion of the CnC implementation continued with a
description of the various back-ends available. CnC perfor-
mance results were roughly equivalent on multicore systems
to those obtainable with Intel TBB (Thread Building Blocks)
or OpenMP. Someone asked about the gains in performance
by CnC over p-threads in a dedup, one of the benchmarks
tested. Knobe was not sure, as she didn’t write the applica-
tion. To another similar question comparing performance
results to TBB, Knobe pointed out that the overheads were
unknown, applications tend to vary, and there are differ-
ences in scheduling. How does developer time vary between
TBB and CnC? Anecdotally, developers have far preferred

; LO G I N : Au gust 20 0 9	 con fe re n ce re p o rt s	 109

CnC to TBB. In response to questions about code reuse she
added that both code and frameworks were amenable to
reuse. Additionally, reuse could be accomplished by linking
graphs.

Motohiro Takayama asked about a development environ-
ment (IDE) for CnC. Knobe said that they hadn’t yet looked
into it, but it needed to be addressed. She would like to
see it merged it with a GUI, including both a debugger and
visualizer. Romain Cledat asked what issues still remained
between the domain and tuning expert. Knobe responded
that issues such as grain size, support for tiling, and similar
facets still needed to be exposed. She would like to see
those made a little easier.

Optimizing Collective Communication on Multicores■■

Rajesh Nishtala and Katherine A. Yelick, University of
California, Berkeley

Rajesh Nishtala noted that as core counts continue to grow
and application scalability takes the center stage, it is quick-
ly becoming infeasible to support uniform access to shared
memory. An audience member wondered whether there
was a limit, as sometimes applications simply don’t need to
go faster. Rajesh agreed, but this research was focused on
high-performance applications. The discussion then focused
on a product of the research, the Partitioned Global Address
Space Language. The central concept is to expose the idea
of locality to programmers, a technique that has proven suc-
cessful in distributed memory.

Nishtala discussed collective communications, which in-
volves an operation called by many threads to perform glob-
ally coordinated communication. Interfaces to the collec-
tives, used as parallel communication building blocks, are
typically delivered through a software library and exposed
in modern programming languages. Two categories of com-
munication were defined: one-to-many and many-to-many.
The focus of the work was given as reducing one-to-many
and optimizing the many-to-many pattern with barriers.
Example trees were given with barrier performance results.
Fast barrier enables finer-grained synchronous programs.
Optimizing collectives for shared memory allows the pro-
grammer to do finer-grained synchronous programs.

Potential synchronization problems were then discussed,
to highlight the need for strictly synchronized collectives.
These may be alleviated by using synchronization before
and after the collective and enforcing a global ordering of
the operations. The collective is considered complete once
all threads have the data.

In conclusion Rajesh reminded the audience that future sys-
tems will certainly rely on NUMA, underscoring the need
for this type of research. Application scalability will take
center stage. Tuning collectives for latency of throughput
can lead to significantly different algorithmic choices, neces-
sitating passing the requirements to the collective library.

Someone asked whether the type of communication was to
be specified by the user, if this was a “tuning issue.” Rajesh

responded that the collective library is designed to be part
of the runtime library, capable of detecting a situation where
loosely synchronized collectives are applicable. Another
question involved a particular comparison with p-threads
in the given results. Barriers using p-threads had taken
3ms on the Niagra. As a possible explanation, Rajesh noted
that p-threads assumes more threads than cores. When the
resources are not over-subscribed, the overhead becomes
detrimental.

12th Workshop on Hot Topics in Operating
Systems (HotOS XII)

Monte Verità, Switzerland
May 18–20, 2009

keynote address

The Elements of Networked Urbanism■■

Adam Greenfield, Head of Design Direction, Nokia

Summarized by Simon Peter (simon.peter@inf.ethz.ch) and
Tudor Salomie (tsalomie@inf.ethz.ch)

Adam is working on a book called The City Is Here for You
to Use and his talk was related to that. Adam began with a
speculative manifesto and a diagnosis on where converging
technical and social possibilities in our environment are
taking civilization. If the promises of ubiquitous computing
came true, how would we be living?

Over 50% of the world’s population is now living in cit-
ies, and this trend is accelerating. Today’s mega-cities are
prototypes of the conditions within which post-urban
humanity is going to live in. On the other hand, there are
de-populating cities, like Detroit, that are beginning to lack
vital infrastructure, like police and fire-fighters.

By the end of 2012, embedded network sensors will be
responsible for 20% of non-video Internet traffic. By then
the Internet will no longer be primarily a human-to-human
communication channel. Instead, an increasing amount of
data about the physical environment will be exchanged.
Due to these factors, technology will be intersecting primar-
ily with an urban population, not civilization in general.

Adam structured his talk into 14 rough transitions that are
likely to develop in urban societies:

1. Networked resources will be the components of urban
environments. We will be surrounded by physical instal-
lations that have IP addresses and are probably program-
mable, afforded by IPv6.

2. Open APIs will become lingua franca. Consumers will be
plugging systems seamlessly into one another. Moore’s Law
has given us cheap, powerful sensors, and we are getting to
a point where we just incorporate them anywhere because
they are so cheap.

3. Building blocks of our cities will be able to adapt to
changing conditions. Buildings will be able to configure

