
2 ; LO G I N : vO L . 3 4, N O. 1

R i k F a R R o w

musings
rik@usenix.org

L I S A ’0 8 I n S A n D I e g o S e e m S t o m e
like a place far away, in both time and space.
But the memories are still fresh in my mind
as I write this: sitting outside eating, drink-
ing, and talking, listening to talks and pa-
pers, and meeting people I haven’t seen in a
while in the halls. In this column, I am going
to pick up on a couple of subthemes from
the conference: documentation and system
configuration.

You can read about the invited talk on writing doc-
umentation in the reports on LISA in this issue.
As I read them, they brought to mind a couple of
things from my own deep, dark past. Yes, I once
wrote documentation and liked doing it. Somewhere
along the way I lost that feeling, and I am still won-
dering why.

Hardware

When I started consulting, I fell into writing hard-
ware documentation. I had pestered George Mor-
row [1] and his wife about getting work, and one
day I got a call asking me if I could revise a disk
controller manual. They had taken an existing
floppy-disk controller card and reworked it so that
it was I/O-mapped instead of memory-mapped. Re-
writing the manual meant translating all memory
references to I/O references, starting with the old
manual as a WordStar file.

I could read circuit diagrams and had actually
patched CP/M device drivers, even relocated one so
that it worked at different memory addresses (by
using a FORTH program), so this sounded easy.
And it was. I whipped through the job, turned it
in (on an 8-inch floppy disk), and got paid on the
spot. This project led to many other writing proj-
ects for Bay Area companies in the early 1980s.

I was a carefree sort of guy back then and spent
three months sailing to Panama in 1984. When I
went back to Morrow Designs, I discovered that
the next hardware manual had been given to a pro-
fessional documentation writer. I was disappointed,
but the manager explained that it would cost them
a lot less.

Right on cue, the documentation writer shows up,
and she tells everyone that she has written the first
10 pages of documentation. Then she asks the en-
gineers sitting nearby how to install this hard disk
controller she needed to document in her single-
board computer system. This was an impossibility,

as there were no slots for add-ons in her system. The manager asked me to
leave the two of them alone for a few minutes. Shortly after, I learned I had
gotten the job.

The disk controller was very cool: An early RISC processor handled both
DMA and disk reads and writes. Timing was critical, as early disk control-
lers actually read and wrote analog data from the drives. The consultant who
had designed the board had created his own language for programming the
RISC chip, and the 30-some pages of printout were my main source for writ-
ing the manual.

The controller emulated IBM mainframe channel controllers, in that the de-
vice driver programmer could create a linked list of commands in memory,
then tell the controller to carry out the list of commands, notifying the CPU
with interrupts when desired. Documenting the short list of commands
only took perhaps 30 pages. Later, a device driver programmer told me that
writing the device driver from my documentation was easier than any other
driver he had ever written. The slick design was certainly mostly responsi-
ble. But so was having accurate documentation.

I later learned that the professional writer had complained that she was re-
jected because a man had shown up. However, that wasn’t the real issue: Her
talent was in writing, not in reading circuit diagrams and homebrew source
code for rare RISC processors. I could do that as well as write.

And that, I believe, speaks to the core issue in documentation. People who
write most documentation are writers, and not generally technically apt.
Real engineers, for the most part, hate writing documentation. Once a proj-
ect, be it hardware or software, is working, it is no longer interesting. So the
documentation gets written by someone with at best a weak technical back-
ground and grudging access to the engineers. And you get documentation
written by someone who has little clue.

Today, buying software without any documentation is common, and hard-
ware documentation rarely goes beyond badly translated explanations of
how to connect cables and perhaps install firmware (but only when using
Windows). A huge after-market in books that provide documentation (con-
sider O’Reilly’s missing manual series) has developed, where an outsider re-
verse-engineers a product and writes about it in a book that will be outdated
within a year.

Perhaps there are examples of great documentation out there, for hardware
or software. I fondly recall unpacking Sun 3/60s, finding a short length of
cable and a BNC T connector, and wondering what the hell it was for (Ether-
net, dummy!). Like all “real men,” and probably many women as well, I had
to figure it out for myself. Well, who bothers to read the manual?

Sysadmins and Documentation

When I began writing my system administration book, I had already written
several UNIX system manuals. One thing I had learned to do was take good
notes, and I preached that in my first chapter of my book.

Today, I take notes inconsistently. And I regret this whenever I am faced
with solving the same problem I solved months earlier but didn’t take good
notes about the process. My usual excuse was just like the engineers’: I am
too busy to waste time taking notes. Later I pay for not “wasting” the time,
by wasting more time. Puzzle-solving is fun, but not so fun when the time
pressure is great.

; LO G I N : Fe b rua ry 20 0 9 musI N Gs 3

4 ; LO G I N : vO L . 3 4 , N O. 1

Janice Gelb, in her “WTFM: Documentation and the System Administrator”
invited talk, covers this angle and much more, so read the report—the slides
are online and this talk is available in streaming video from LinuxPro[2].
And start writing good documentation. If you cannot write, work with
someone else who can write by patiently answering their questions. Provide
examples with comments. If your work is poorly documented, you might be
the only one who ever uses it, no matter how brilliantly designed it is.

Configuration Management

The configuration management tools war appeared to have cooled down. Ei-
ther there weren’t loud arguments for a particular tool during workshops, or
I missed them. Yet the architects of the four most popular tools—Cfengine,
Bcfg2, LCFG, and Puppet—were all present, and I got to talk with all of
them in the hallway or over meals.

There were two invited talks, one by Paul Anderson, architect of LCFG, who
wanted to look at configuration management from a different perspective,
and has written about it in this issue (page 20). Then there was an invited
talk from Ticketmaster about its own tool, Spine. Like many before them,
the Ticketmaster sysadmins decided that nothing in existence really worked
for the company’s model, so they built their own toolset.

I got another data point about the state of these tools when architects from
two of the big four approached Jordan Hubbard, Director of UNIX Develop-
ment at Apple (and well-known FreeBSD developer before that) after Jordan’s
talk. Each claimed that his tool was a popular way of managing Apple prod-
ucts, and each time Jordan suggested that they create a document describing
the configuration knobs they wanted from Apple to expose via APIs.

Jordan’s comment got me thinking. His goal was to publish an API that
would isolate the internal details from configuration management tools. I
imagined that this would mean that Apple engineers could document this
API and still be free to mangle the file formats used for configuration how-
ever they liked. But I also wondered what this API would need to cover to
handle the most common configuration management tasks.

Currently, all tools edit configuration files, along with other tasks such as
restarting or reloading services. If there was a common API for most operat-
ing systems, this would make system management easier. However, current
tools present a one-tool-does-everything approach to configuration manage-
ment. In my mind, I can break down the tool into a set of components: a
secure communication protocol, a client-side, and a server-side. The server-
side seems like the real place to innovate, with components for storing cur-
rent and past configurations, a GUI to make using the tool simple, more
GUI tools for monitoring the effectiveness of the tool, and, of course, CLI
versions.

So even though there are many configuration management tools in existence
today, there still seems room for research on any of these aspects. I can
imagine sysadmins being able to mix-and-match their favorite tools, based
on desired features, something that I can only dream about today because of
the monolithic architectures.

The Lineup

I started the lineup with an article about insecurities in Linux package
management. Cappos and Samuels have written for ;login: before (February

; LO G I N : Fe b rua ry 20 0 9 musI N Gs 5

2008), and when they got slash-dotted this summer, I asked if they would
write for us again.

The issue this time has to do with how different Linux distros secure their
package management systems. The right way to do it is to have a signed
manifest from a trusted source and to use that manifest to verify packages
that can be downloaded using mirrors. But this is not how most distros do
this, and the consequences are scary indeed.

Dehus and Grunwald cover a different angle of package management. Based
on their LISA ’08 paper, they describe the system they developed for in-
stancing virtual servers. A key feature of their project, STORM, is that pack-
ages that are common to many services get shared, so that these packages
can be updated in just one location.

Paul Anderson expounds on the topic of his invited talk at LISA in the next
article. Paul ponders about the parallels between the adoption of program-
ming languages and the adoption of configuration management tools and
languages. He wonders whether that aren’t lessons to be learned there.

Corey Brune decided to evangelize Python for system administration. He
wrote a script for extracting password records, converting them to LDAP
data, and adding them to an LDAP database. Brune uses this to explain fea-
tures of Python, a scripting language that is showing up in more places all
the time.

David Blank-Edelman shows how to screen-scrape Web pages using WWW::
Mechanize. As usual, David provides us with clear examples for using this
module, including methods for automating form-filling and submission.

Peter Galvin waxes enthusiastic over a DTrace-based feature found in new
Sun storage appliances. Although these are truly appliances, with no visible
traces of either DTrace or Solaris, Peter both explains and demonstrates the
cool ways of viewing current and past performance of a storage appliance
that uses DTrace under the hood.

Dave Josephsen bemoans the death of email, then quickly moves on to ex-
plain the use of SMS or Asterisk as a replacement for remote notification sys-
tems. I’d heard about texting used in this way before, and it’s cool to have a
concrete set of examples using Nagios and Nokia phones.

Robert Ferrell goes where no sane sysadmin has gone, and that is into the
thicket that is the vi versus emacs debate. Well, sort of.

In the book reviews, Elizabeth Zwicky leads off with three graphic introduc-
tions to statistics (no kidding). I add a nongraphic suggestion later, for those
of you who don’t care whether your statistics textbook is funny. Zwicky
then writes about Peter Salus’s new book on open source software, then on a
book concerning the use of diagrams for explanations and as a way of win-
ning arguments. Finally, she compares two books on the use of Photoshop
CS4 for photographers.

Jason Dusek is up next, beginning with a review of Maven: The Definitive
Guide. Maven is a tool for code build management, and Jason clearly de-
scribes how this book handles the uneven documentation surrounding the
open-source project. Then Jason takes a deeper dive into Design Concepts in
Programming Languages, a book about programming language theory that ap-
pears most useful to those designing languages, whether big or small.

Sam Stover reviews The Craft of System Security and explains why he likes it.
I have two short reviews, one on Statistics in a Nutshell and the other on Get-
ting Started with Arduino.

6 ; LO G I N : vO L . 3 4, N O. 1

Although I never set out to be a writer, and even hated writing right through
college, I eventually became not just a writer but a successful one. Along the
way, I’ve noticed just how important it is, in the businesses of system ad-
ministration, consulting, and publishing, to be able to write skillfully. If I
had really understood the importance of English 101, I would have looked at
it very differently, as I do now.

referenCeS

[1] George Morrow: http://en.wikipedia.org/wiki/George_Morrow
_(computers).

[2] LISA08, Thursday Tech lineup: http://www.usenix.org/events/lisa08/
tech/#thursday.

