
; LO G I N : D ecem b e r 20 0 8 cO N fe re N ce re p O rt s 99

endpoint firewall. There are some disadvantages, however,
including routing table size and a hacker’s ability to map
services without a scan.

n	 A Web Without the Same-Origin Policy
Francis Hsu

The same-origin policy gets in the way of some Web ap-
plications and allows too much access for Web applications
located on the same domain. To address this problem, Hsu
proposes blocking access to everything, and then treating
pages as objects to enable necessary interaction between
them.

n	 The Cost of Free Calls: Identifying Accents in Encrypted
Skype Traffic
Paul DiOrio

Despite encryption, you can extract a fair amount of
information from VoIP traffic based on variable bit rates.
Previous research shows that the language and specific
phrases can be identified in this manner. DiOrio’s research
looks at detecting different accents based on the encoding
bit rate. Preliminary results show that the average accuracy
of differentiating accent pairs is 73%, with the best being
Italian/Japanese at 91% accuracy.

n	 Mementos, a Secure Platform for Batteryless Pervasive
Computing
Benjamin Ransford

Batteryless computing is hard; you have no battery, little
time to compute, and very few resources. The goal of Me-
mentos is to enable long-running computations on battery-
less devices. The idea is to execute a little bit and then write
results to nonvolatile storage before losing power.

n	 Debian, OpenSSL, and SSL Certificates
Hovav Shacham

There was a bug in OpenSSL where the Debian folks ac-
cidentally removed code to generate entropy, leading to keys
in a 32,000-value space based solely on process ID. Sha-
cham conducted a survey of SSL keys installed on popular
Internet sites four days after the vulnerability was disclosed
and found that 279 out of 43,491 certificates contained bad
keys, including many key collisions.

n	 An Enhancement of Windows Device Driver Debugging
Mechanism for VMM-based Live Forensics
Andy Ruo

There is no direct way to transfer information between
a virtual machine and the host operating system. Ruo is
working on a system for mapping certain regions of memory
from the guest VM to the host OS to enhance debugging.

n	 Botnet Enumeration: The Nugache Case
Sven Dietrich

Nugache is a bot that uses peer-to-peer communication
with encryption for command and control. Dietrich queried
Nugache bots for information about connected peers, ver-
sion, etc. One particularly interesting result was that the

number of reachable nodes on the botnet declined signifi-
cantly following each “patch Tuesday” every month.

The accepted WiPs abstracts can be found at http://www.
usenix.org/events/sec08/wips.html.

2nd USENIX Workshop on Offensive Technologies
(WOOT ’08)

July 28, 2008
San Jose, California, USA

papers

Summarized by Joshua Mason (josh@jhu.edu)

n	 Engineering Heap Overflow Exploits with JavaScript
Mark Daniel, Jake Honoroff, and Charlie Miller, Independent
Security Evaluators

Jake Honoroff discussed a new mechanism for control-
ling the heap in browser-based attacks using the JavaScript
engine. The technique allows attackers reliable control of
the temporal deallocation of memory by forcing garbage col-
lection. Honoroff ’s analysis was conducted on the WebKit
JavaScript implementation, wherein garbage collection is
triggered either by a timer or by necessity. The garbage col-
lection timer in WebKit will not preempt a running script
to deallocate memory. Thus, Honoroff forces the invocation
of the need-based garbage collection routine by allocating
large portions of memory via object instantiation and subse-
quently removing references to the created objects.

More specifically, attackers can force very specific heap lay-
outs by allocating large arrays of objects and simply remov-
ing the references for any objects that need be deallocated.
Then, by allocating and immediately unreferencing enough
objects to trigger garbage collection, the attacker forces the
deallocation of memory and has the exact heap layout nec-
essary to complete the attack. More succinctly, Honoroff ’s
methodology allows certain vulnerability types that previ-
ously could only be exploited unreliably to be exploited
with virtual certainty.

n	 Experiences with Model Inference Assisted Fuzzing
Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikäinen,
Mika Seppänen, Kimmo Halunen, Rauli Puuperä, and Juha Rön-
ing, University of Oulu, Finland

Joachim Viide presented work that attempts to model and
subsequently fuzz file formats automatically. Naive file-
format fuzzing simply generates a large number of files by
flipping random bits in an input file. This approach allows
the fuzzer to change fields present in the existing objects
to unexpected values but not to create an invalid number
of valid objects or order certain objects in an unexpected
fashion. Thus, naive file fuzzing typically yields very limited
code coverage.

Viide’s model inference relies on automatically learning a
context-free grammar from a selection of files of the speci-

100 ; LO G I N : VO L . 33, N O. 6

fied file format. To train their models, the authors generate
between 10 and 100 files by hand. The audience argued
that creating these training files by hand presupposes some
knowledge of the underlying file format, but the authors
decided not to use a randomly harvested corpus, owing to
copyright and privacy concerns.

The derived context-free grammar then allows the fuzzer to
automatically generate or omit entire objects when creating
files of a given format. File generation is accomplished by
choosing a random probability, or “fuzz factor.” The fuzz
factor acts to decide, during file generation, whether a gram-
mar rule is to be skipped, processed normally, or repeated
twice. The results of their fuzzing technique were fairly im-
pressive. The authors chose to fuzz compression/archiving
file formats (e.g., ace, arj, bz2, gz, zip). They generated at
most 320,000 files per file format and used them as inputs
to antivirus software. These files yielded 51 unique crashes
in five different pieces of antivirus software using 10 differ-
ent file formats.

n	 Insecure Context Switching: Inoculating Regular Expres-
sions for Survivability
Will Drewry and Tavis Ormandy, Google, Inc.

Tavis Ormandy presented work that explores the insecuri-
ties present in popular regular expression engines. Many
of these engines now exist in both popular software and
popular programming languages. Ormandy and Drewry
designed an engine to fuzz these common regular expres-
sion engines and were able to discover vulnerabilities in
SQL, PHP, TCL, Adobe Acrobat Reader, Adobe Flash, Safari,
and even GnuPG.

The engine itself is written in C and attempts to gener-
ate regular expressions that will break regular expression
interpreters. The process begins by randomly choosing both
the expression length and the beginning term. The regular
expression then expands from the inside out by randomly
choosing subsequent terms. It uses feedback from GCOV,
a program coverage tool used in conjunction with GCC, as
input to a feedback loop that chooses paths that will trigger
new portions of code. Using their fuzzer, they discovered
exponential-time execution and/or compilation vulnerabili-
ties in all tested regular expression implementations.

Because of this last revelation, an audience member asked
Tavis to recommend a regular expression engine. Tavis
seemed to indicate a lack of confidence in any currently
available libraries but seemed hopeful about those that are
being developed. He also expressed his hope that cur-
rent regular expression engines would improve in the near
future.

papers

Summarized by Sam Small (sam@cs.jhu.edu)

n	 There Is No Free Phish: An Analysis of “Free” and Live
Phishing Kits
Marco Cova, Christopher Kruegel, and Giovanni Vigna, Univer-
sity of California, Santa Barbara

Marco Cova presented a study of Internet phishing kits.
Phishing is a form of identity theft in which attackers try
to elicit confidential information (e.g., online bank-account
information) from Internet users. These attackers, or phish-
ers, frequently deploy Web sites that look nearly identical
to legitimate Web sites, often fooling unsuspecting visitors.
The information collected from such phishing attacks is
frequently used to support illicit and fraudulent activity.
The phishing kits examined by this study were all obtained
freely from underground distribution and live phishing
sites.

In particular, the study focuses on the organization and
technical sophistication of phishing kits. Its results pro-
vide some insight into the current motivations and modus
operandi of phishing kit authors and distributors. After sur-
veying more than 500 phishing kits, the researchers were
able to document a number of characteristics common to
many of them. Of the kits included in the survey, the vast
majority target online banks and auction Web sites such as
PayPal, Bank of America, and eBay.

Marco and his colleagues also discovered that the kits
themselves are frequently designed to defraud inexpe-
rienced phishers through vulnerabilities and back-door
mechanisms in the kits. To prevent detection by suspicious
phishers, the authors of such kits use various methods, from
ones as simple as diverting a phisher’s attention with mis-
leading source-code comments to code hiding and obfusca-
tion techniques.

One audience member asked whether the discovery of
back-door mechanisms in the phishing kits was a result of
the survey or served as its inspiration. Marco explained that
such functionality was not expected initially and was dis-
covered early on while analyzing one kit in particular. This
led the researchers to develop the infrastructure used for
their survey to identify similar functionality in other kits.
Another audience member inquired about those phishing
kits described in the survey without back-door mechanisms
and asked what motivation people have to freely distribute
such kits. Marco reasoned that in some cases the back-door
functionality may have been removed by discerning phish-
ers before installation.

n	 Towards Systematic Evaluation of the Evadability of
Bot/Botnet Detection Methods
Elizabeth Stinson and John C. Mitchell, Stanford University

Elizabeth Stinson began by posing a question: “Is there a
way to systematically evaluate the evadability of a [botnet]

; LO G I N : D ecem b e r 20 0 8 cO N fe re N ce re p O rt s 101

detection method?” She went on to explain that as research-
ers continue to develop various botnet-detection meth-
ods, concerns about the evadability of each method (i.e.,
a botnet’s ability to evade detection) invariably arise. The
purpose of Stinson’s work is to analyze how to accurately
and objectively evaluate these concerns. Elizabeth was quick
to acknowledge that evadability is not the only significant
factor to consider when evaluating a detection method; how-
ever, it serves as a consistent litmus test to asses both utility
and practicality across various detection techniques.

After reviewing some basic background information on
bots, Stinson presented a framework developed by herself
and co-author John Mitchell for measuring the evadabil-
ity of botnet detection methods. Central to this metric are
two costs: implementation complexity and effect on botnet
utility. Implementation complexity is a qualitative measure
of the effort to which an attacker must go to alter its bots
to evade detection; the latter cost embodies an attacker’s
net reduction in botnet utility as a consequence of success-
ful evasion of particular detection techniques. Stinson next
discussed leading botnet detection methods, current evasion
tactics, and, using their evaluation framework, the related
costs. This evaluation led to a number of suggestions for
improving existing and future detection methods.

One audience member wondered whether botnet detec-
tion is difficult in practice. Stinson explained that difficulty
in detecting botnet activity is contingent upon a number
of conditions including, among other circumstances, the
perspective of the observer and the design of a botnet’s
command and control structure. Another audience member
added that in enterprise environments in particular, detec-
tion and removal of even a handful of bots is often given
high priority because of concerns of data theft and that, in
general, current automated detection methods are imperfect.

n	 Reverse Engineering Python Applications
Aaron Portnoy and Ali-Rizvi Santiago, TippingPoint DVLabs

Portnoy and Santiago discussed the exposure of program
structure inherent to programs written in dynamically
typed program languages (e.g., Python and Ruby) and spoke
about their experience leveraging such exposure to reverse-
engineer Python binary applications. Owing to late-binding,
applications written using dynamically typed programming
languages often contain object metadata that is not typically
present in statically typed programs.

In their presentation, Portnoy and Santiago demonstrated
how this information can aid disassembly, decompilation,
code object modification, and arbitrary instrumentation of
Python applications. Using such techniques, they developed
an application called AntiFreeze that is capable of visual-
izing and modifying Python binaries. Portnoy and Santiago
demonstrated the value of AntiFreeze by presenting a case
study reverse engineering a commercial Python application:
Disney’s Pirates of the Caribbean Online. Using AntiFreeze,
the presenters were able to quickly and meaningfully

modify the application, an MMORPG, granting their avatar
otherwise unobtainable capabilities.

As the adoption of Python and other similar languages
grows, Portnoy suggested that developers of dynamically
typed applications should be wary of making assumptions
about the privacy of their application logic, given the ease
with which such programs can be reverse-engineered. San-
tiago suggested a number of possible approaches to mitigate
exposure—for instance, modifying the Python interpreter.
The presenters have publicly released AntiFreeze as a
Google Code project. The URL is http://code.google.com/p/
antifreeze/.

n	 Exploitable Redirects on the Web: Identification, Preva-
lence, and Defense
Craig A. Shue, Andrew J. Kalafut, and Minaxi Gupta, Indiana
University

Internet users may notice that when contacting a Web site,
their browsers are, on occasion, automatically redirected
to addresses other than those explicitly provided. This is
frequently done to seamlessly track user behavior, display
moved content, and correct common typing mistakes in
domain names. Under some circumstances (e.g., phishing
attacks), attackers are able to exploit this redirection behavior
to direct users to untrusted and malicious Web sites via
links that appear superficially benign. These open redi-
rects and their exploitation were the subject of Craig Shue’s
presentation.

One particular goal of Shue’s research is to develop heuris-
tics that automatically identify open redirects on the Web.
Doing so allows Shue and his colleagues to measure the
prevalence of such phenomena and provides an opportunity
to mitigate their abuse by attackers. To evaluate their tech-
nique, they evaluated a large number of links for potential
redirects. The links themselves came from three distinct
data sets, each representing a different perspective on typi-
cal Internet usage. Of the three data sets, one consisted
of links from the most popular Web sites (overall and by
category) according to the Alexa Web Information Service.
The other two data sets were composed of links from sites
visited by members of Shue’s Computer Science Department
as recorded by their DNS queries and from the DMOZ open
directory project. An evaluation of the researchers’ tech-
niques using these data sets yields positive identification of
redirects in more than 58% of all tests.

Next, Shue proposed a number of approaches to reduce the
opportunities for exploitation of open redirects. For each
approach Shue detailed both positive and negative aspects,
highlighting the challenges to protecting users from exploit-
able redirects. Some audience members inquired about the
seriousness of this threat in light of other common system
and network attacks. Shue and other members of the audi-
ence expressed the opinion that although such comparisons
can be made, they are generally less beneficial than finding
ways to mitigate or eliminate these threats.

102 ; LO G I N : VO L . 33, N O. 6

papers

Summarized by Joshua Mason (josh@jhu.edu)

n	 Modeling the Trust Boundaries Created by Securable Objects
Matt Miller, Leviathan Security Group

Matt Miller presented his work on automatically discover-
ing data flows between trust boundaries in the Microsoft
Windows operating systems. Trust boundaries are divisions
between privilege levels on a system (e.g., different user ac-
counts or user versus administrator privileges). Discovering
paths of data flow between privilege levels allows software
auditors to audit only those sections of code where vulner-
abilities might actually lead to privilege escalation attacks.
Using Miller’s method, the auditor can quickly and auto-
matically discern the relevant attack surface.

Miller’s technique employs Microsoft’s concept of a secur-
able object to find the relevant data flow paths. A securable
object is merely an abstraction for various system resources,
including processes, files, registry keys, and so on. Each of
these securable objects has a security descriptor that defines
a series of access control lists. Monitoring these objects both
dynamically and statically allows an auditor to discover
those objects that allow complementary operations between
access levels on the same object. For example, if a file can
be written to by a given user and read from by the adminis-
trator, the file acts as a communication channel between the
user and the administrator.

In addition to granting the ability to identify these privi-
leged communication paths, the implementation of dynamic
securable object monitoring allows an auditor to collect
data on running systems that will allow auditors to identify
paths of communication that actually occur. Merely dis-
cerning a user’s ability to write to a given executable and
an administrator’s ability to execute it does not give any
evidence that this actually occurs in practice. So, by letting
a real machine run and collecting data over time, Miller is
also able to discern data flow paths that are likely to occur.

2008 USENIX/ACCURATE Electronic Voting
 Technology Workshop (EVT ’08)

July 28–29, 2008
San Jose, California, USA

new directions and reflections
on old directions

Summarized by Rik Farrow

n	 You Go to Elections with the Voting System You Have: Stop-
Gap Mitigations for Deployed Voting Systems
J. Alex Halderman, Princeton University; Eric Rescorla, RTFM,
Inc.; Hovav Shacham, University of California, San Diego; David
Wagner, University of California, Berkeley

Eric Rescorla spoke very, very fast about tactics for reducing
the risk of using existing electronic voting equipment, such

as Election Management Systems (EMSes), Direct Recording
Electronic (DRE) machines, and optical scanners. Research
has shown that viruses can be spread between manage-
ment, voting, and voting counting devices, and this work
focuses on uncovering data flows and preventing the spread
of viruses among devices.

They considered elections as having five phases: device
initialization, voting, early reporting, tabulation, and audit-
ing. Device initialization, the writing of ballot definitions
to memory cards, can easily spread a virus from the EMS
to each DRE. The EMS can itself be infected from a reused
memory card, so their advice is never to reuse memory
cards, but to preserve used cards as evidence and buy new
cards for each election. For commodity cards, this could
cost as little as $0.10 per voter, but for proprietary ones
(used in Premier/Diebold and some Hart devices), this is
out of the question. They propose using a special-purpose
initialization device that erases cards without first read-
ing them, installs the ballot definitions, and gets physically
reset before initializing the next card.

After voting, early reporting represents the next danger
point. They suggest using a sacrificial EMS just for early
reporting. During the tabulation phase, they again suggest
using a sacrificial EMS and performing a manual audit,
comparing the results of EMS tabulation and a random
selection of summary tapes. As an alternative, before being
passed to the EMS the memory cards would be read on a
separate device and the output sanitized so that it can only
include election results.

The first questioner mentioned that election officials are
“tight on money like you can’t believe” and wondered what
could be done with a nickel per voter. Eric suggested per-
forming audits first, and replacing memory cards each time,
while admitting that replacing cards is infeasible given the
budget, but it is the best and safest thing to do. Josh Bena-
loh then asked, “Why not trust cards you just purchased?”
Eric responded that devices from the factory might not be
trustworthy, and if the EMS gets compromised, it’s game over.

n	 Administrative and Public Verifiability: Can We Have Both?
Josh Benaloh, Microsoft Research

Josh described the difference between administrative and
public verifiability: The first puts all the trust in some
special group of people, whereas the second presents the
best solution. But getting the public to believe this, and to
participate in verifying the accuracy of elections through the
use of cryptographic checks, is difficult. He then described
a system that combines features of both types of checking.

Josh’s solution relies on changes to optical scanners. Opti-
cal scanners tally votes as ballots are fed into them, and he
wants scanners to encrypt the results of the scan, save the
encrypted result and give a paper receipt to the voter, print
the interpretation of the scanner on the ballot with a digital
signature, and, finally, allow the voter to cancel and return
a ballot. The returned ballot should match the voter’s paper

