
2 ; LO G I N : VO L . 33, N O. 4

R i k F a R R o w

musings
rik@usenix.org

I f e e l l I k e I ’ v e f I n a l ly e n t e r e d t h e
future. I now have a microwave dish on my
rooftop, watch television using a computer,
listen to radio from online streams, and am
even installing my own solar power plant.
But when it comes to security, we are all
still stuck in the Dark Ages.

In this issue you can read about a Web browser
designed with security in mind. Don’t think for a
minute that current Web browsers include security
in their design, because security is, at best, some-
thing added on as “desirable.” Sure, Firefox, IE, Sa-
fari, and Opera are all carefully vetted for bugs and
poor programming practices. And all also have se-
curity “features.” But these browsers all share one
thing, something that all browsers have done since
Mosaic: They download and execute remote code
in your own user context.

Just think about it for a moment. Would you rou-
tinely go off to strange Web sites, download code,
and run it? Well, of course you would, because five
nines (99.999%) of the people I know do exactly
that. The 0.001% don’t use Web browsers. And I
am not kidding. I know one security geek who is
still using nc for “browsing” the Web. That guy
sure has to work hard to read Web pages (espe-
cially these days!), but he is secure, as the text he
reads has been eviscerated of any danger because it
is treated just as text.

Drive-by Downloads

I wrote about drive-by downloads exactly one year
ago. Niels Provos and his team at Google [1] are
still trolling caches of Web pages looking for pages
that cause the downloading of first-stage exploits.
And they are still finding them—thousands every
day. The vast majority of these Web pages weren’t
made that way by their owners, but their Web
server was exploited, and small changes were made
not just to stored pages but also (in some cases) to
dynamic content as well. All it takes is the inser-
tion of an iframe or script tag to take control of
almost any Web browser that visits the page.

Exploiting personal computers is big business and
is completely untaxed and unregulated (a libertar-
ian’s dream, in that sense). Exploited systems are
used in relaying spam, exploiting other systems,
and to collect identity information. Oh, I forgot to
mention DDoS, but when you control thousands of
distributed systems all with Internet connections,
that should be obvious. All of these activities are il-

legal (apparently with the exception of the U.S. record industry [2]), yet
occur routinely.

The OP browser’s design (page 14) does what all browsers should—isolate
one site’s content from another site’s. With the OP browser, you don’t get
multiple sites’ content all running within the same security context. Each
site runs within its own page-rendering process. And actual display of con-
tents is done by yet another process, also running within a secure environ-
ment. The current browser design runs everything within your standard
security context, and that means that anything you can do, your browser
can do too. Sure, browser designers do make honest attempts to limit what
your browser can do to your system, but these limitations have failed over
and over again. And they must continue to fail, because the basic browser
design is so terribly flawed.

We run our desktop systems as if they were mainframes with multiple users.
The operating systems were designed for multi-user systems (unless you are
still running Windows 95 or Mac OS 9), yet you (and your exploiter du jour)
are the only ones using your computer. Our processors are also designed
like old time-sharing systems. Neither has kept up with the way comput-
ers are actually used today. The biggest reason for this is inertia, in that OS
designers build familiar systems, and CPU designers take advantage of their
decades of building the same architecture.

I don’t want to suggest that starting over will be easy. We need a way of
transitioning from our insecure desktops, laptops, and smart phones to sys-
tems designed with security, performance, and efficiency from the ground
up. The OP browser provides a model for the transition. But without all the
sexy features and performance we have grown so accustomed to, the OP
browser will not replace Firefox or IE.

Our current situation reminds me of the bad guys in the movie Who Killed
the Electric Car? [3]. In that movie, General Motors (GM) recovers the hun-
dreds of electric vehicles that people had leased and has them crushed—
even when the owners offer to pay $24,400 for each several-year-old car
rather than allow them to be taken away and destroyed.

The villains in that movie were all part of the status quo: manufacturers
who owned factories that build internal combustion engine vehicles, oil
companies with vast refineries and distribution systems, and even vehicle
maintenance suppliers (since the GM EV1 had three items that needed to
be replaced: tires, brake pads, and windshield washer fluid). So instead of
another ten years’ experience with electric vehicles, we have $4/gallon gas
(perhaps it will be $5 when you read this) and a glut of SUVs that have lost
their appeal (and most of their resale value). Note that consumers were also
found guilty in the film (as they were not willing to change).

Have we reached the $4/gallon point in terms of desktop insecurity? I really
don’t know, but I do make Linux Live CDs for my friends who need to man-
age some of their finances online. Today, I wouldn’t type anything on a Win-
dows system that I wanted to keep private, and I almost feel the same about
Macs and even Linux systems. They all share similar design flaws, in that
one user runs remote code via the Web browser and mailtool as well. Linux,
BSD, Mac OS X, and other UNIX-like systems at least separate the user from
the administrator, making kernel-level exploits more difficult. But the instal-
lation of code within the browser will capture all of your keystrokes, and
tools have existed for some time that selectively filter out those keystrokes
that look like credit card numbers or what you have typed during a visit to
a large number of domains, all related to finance. These captured keystrokes
then get posted to a Web server under the control of the dark industry.

; LO G I N : Au Gust 20 0 8 musI N Gs 3

4 ; LO G I N : VO L . 33, N O. 4

The Lineup

I really hate being so negative, but I do prefer to be brutally honest, even
at the risk of sounding like a broken record. The Grier article about the OP
browser gave me the perfect opportunity to sound off about this issue again.
But all is not dark and dreary.

In this issue, we lead off with an article from Brandon Enright and some
 researchers from UCSD. While building an internal tool to track Storm bot-
net infections within the campus network, the team developed Stormdrain,
an efficient means for discovering Storm bots wherever they are. You can
read their LEET ’08 paper [4], but I asked them to write about something
a bit different: their experiences when they discovered that there were whole
families of Storm-bot pretenders to uncover as well. Some of these look-
 alikes were created by other Storm researchers, and others represent attacks
against Storm by other botnet owners. During the LEET workshop presen-
tations related to Storm, it was common to hear comments like “That was
you?” or “I owe you a beer” from researchers who had collided with them
in the Storm network.

Colin Dixon and his co-authors wrote an article about their proposed DDoS
defense for sites that generate dynamic content. DDoS is still a real issue
eight years after these attacks first made headlines, and ways of providing
access to servers with dynamic content while under attack—and that don’t
involve massive changes to the Internet’s infrastructure—are rare. I liked
what I heard during their paper presentation during NSDI ’08 and asked
them to write this article describing their very interesting approach.

Diana Smetters and her co-researchers had presented a paper at the UPSEC
workshop that dealt with issues I felt we all face routinely. In the course of
our work, we often need to share information electronically, yet doing so
without running foul of security policies is just about impossible. Smetters
and her co-authors interviewed people who needed to share data as part of
their jobs, and they report just how these people actually handled sharing. I
think there are lessons in this article for all of us, whether we write the se-
curity policies or violate them with file-sharing practices.

Rohan Murty and his co-authors present a different approach to providing
better Wi-Fi bandwidth. In this article, related to their NSDI paper, Murty
explains how they went about using existing infrastructure (plus some Wi-
Fi cards) to control how wireless clients associate with access points, with-
out modifying the clients.

Alva Couch thoughtfully provides us with his own viewpoint about why
we need real standardization in sysadmin. Couch cogently explains not just
why he thinks we need standards but what these might look like, and he
provides real-world examples.

David Blank-Edelman presents us with cool Perl debugging techniques.
Peter Galvin offers his favorite list of procedures for analyzing system prob-
lems, as well as opening this topic up for discussion in a wiki. Dave Jo-
sephsen demonstrates relatively unknown tricks that you can do with
RRDtool, as long as you can grok RPN (Reverse Polish Notation). Finally,
Robert Ferrell revels in cajoling us into considering using memes as a
method of sharing encryption keys.

We have five summaries, including two from the recent BSDCan ’08 confer-
ence in Ottawa. We also have the NSDI and LEET summaries. Finally, we
have the short version of the summaries of WOWCS, the Workshop on Or-
ganizing Workshops, Conferences, and Symposia for Computer Systems, a

meta-workshop. Given the importance to researchers of getting their work
published, the WOWCS workshop summaries should be required reading.
WOWCS discussion covered many of the issues involving Program Commit-
tees, so if you plan to participate in a PC or submit a paper to one, I suggest
you read this summary (or the longer version found at [5]).

As our personal computing devices get more powerful, and even as our cell
phones may soon take over for our laptops, we need real security. What’s the
point of having computers if they can’t be trusted? Our security model, our
OS model, and even our CPU/system architecture were designed for a long-
gone time. It is time for us to prepare for a secure future.

references

[1] Ghost turns Zombie: Exploring the Life Cycle of Web-based Malware:
http://www.usenix.org/events/leet08/tech/full_papers/polychronakis/
polychronakis_html/.

[2] MediaDefender shuts down legitimate BitTorrent tracker with DDoS
 attack: http://blog.wired.com/27bstroke6/2008/05/mediadefender-d
.html?cid=117123750.

[3] http://en.wikipedia.org/wiki/Who_Killed_the_Electric_Car?.

[4] The Heisenbot Uncertainty Problem: Challenges in Separating Bots from
Chaff: http://www.usenix.org/events/leet08/tech/full_papers/kanich/
kanich_html/.

[5] WOWCS scribe notes: http://www.usenix.org/events/wowcs08/tech/
WOWCSnotes.pdf.

; LO G I N : Au Gust 20 0 8 musI N Gs 5

