
; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 93

FAST ’08: 6th USENIX Conference on File and
Storage Technologies

San Jose, CA
February 26–29, 2008

ke ynote address : “it ’s like a fire. you just
have to move on”: rethinking personal
digital archiving .

Cathy Marshall, Senior Researcher, Microsoft

Summarized by Swapnil Bhatia (sbhatia@cs.unh.edu)

To a storage systems researcher, all user bytes are created
opaque and equal. Whether they encode a timeless wed-
ding photograph, a recording of a song downloaded from
the WWW, or tax returns of yesteryear is not germane
to the already complex problem of their storage. But ac-
cording to Cathy Marshall, this is only one stripe of the
storage beast. There is a bigger problem that we will have
to confront eventually: The exponentially growing size of
our personal digital estate will soon—if it has not done
so already—surpass our management abilities.

In a visionary keynote address delivered in her own
unique style, Marshall successfully argued the increasing
importance, complexity, and enormity of the problem of
personal digital archiving: the need for tools and meth-
ods for the collection, preservation, and long-term care of
digital artifacts valuable to us.

In the first part of her talk, using data gathered from
extensive surveys, interviews, and case studies, Marshall
characterized the prevailing attitudes of users toward the
fate of their digital data. She discovered a strange mix of
reckless resignation, paranoia, and complacency based
on flawed assumptions about the role of backups, the
perceived permanence of the content on the WWW, and
a misperception of one’s own ability to manage one’s data
over a variety of time scales.

Marshall outlined four fundamental challenges in per-
sonal digital archiving: value, variation, scale, and con-
text. According to Marshall, personal digital archiving is
not just about backing up data; it is the selective pres-
ervation and care of digital artifacts that are of value to
us. Quantifying the value of a digital artifact appears to
be a difficult task, even for its owner. Furthermore, the
variability in the value of a digital artifact over time to its
user only adds complexity to the problem. Current meth-
ods of backup are value oblivious and therefore promote
blind duplication rather than selective archival.

The second challenge arises from the distributed storage
of our digital assets. Personal digital artifacts are almost
never stored in a single central repository. Typically, they
end up copied from their source to a number of personal
computers and servers, some of which may not be con-
trolled by the owner(s) of the digital artifacts. Moreover,
all the many copies created in the process of the distribu-

conference reports

thaNks tO OUr sUmmarIzErs

6th USENIX Conference on File and Storage
Technologies (FAST ’08)93
Medha Bhadkamkar
Swapnil Bhatia
Chris Frost
James Hendricks
Elie Krevat
Dutch Meyer
Shafeeq Sinnamohideen

2008 Linux Storage & Filesystem Workshop
(LSF ’08) . 107
Grant Grundler, with help from James Bottomley,
Martin Petersen, and Chris Mason

The LSF ’08 summaries were substantially abbreviated for
publication. For the complete summaries, see http://www.
usenix.org/events/lsf08/lsf08sums.pdf.

94 ; LO G I N : VO L . 33, N O. 3

tion may not be identical; for example, differences in resolu-
tion of images or associated metadata may result in many
differing versions of essentially the same digital artifact.
Without any supervening method of preserving provenance,
the problem of archiving a family of related but different
digital artifacts dispersed across many locations—building
a digital Noah’s ark of sorts—quickly becomes intractable.

Archiving would still be a manageable problem, were it
not for its sheer enormity. According to Marshall, there are
about seven billion pictures on the Yahoo! and Facebook
sites. Most users are simply incapable of dealing with large
numbers of digital artifacts because of a lack of either tech-
nological savvy or the time and effort needed. Archiving
personal data requires stewardship, but no tools currently
exist to facilitate it at this scale.

Finally, even the perfect archiving tool augmented with the
best search interface would be of no help if, years later, one
has forgotten the content and the context of one’s archive.
Such forgetfulness is—as Marshall found through her user
interviews—an often underestimated problem. Marshall
suggested that re-encountering archived data is a promising
solution to this problem. The idea behind re-encountering
is to enable archived data to remind the user of their own
provenance by facilitating periodic review or revisitation.

Marshall concluded by saying that solving these challenges
would require a method for assessing the value of digital
artifacts and better curatorial tools and services with built-
in facilities for re-encountering. Marshall also pointed out
that this problem will require cooperation and partnership
among social Web sites, software companies, data reposito-
ries, ISPs, and content publishers.

In response to a question from an audience member, Mar-
shall mentioned that, as yet, users were not willing to pay
for an archiving service. Another questioner asked Marshall
to explain why it was not enough to back up all user data.
The same misequation of backup with archiving also arose
in audience discussions after the talk. Marshall explained
that users were not looking to save everything: This would
only make the problem of context and re-encounter harder.
Rather, what users need is a selective way of preserving per-
sonally valuable data, along with the context that makes the
data valuable, and doing so over a time scale that is signifi-
cantly longer than that of a backup.

distributed stor age

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Pergamum: Replacing Tape with Energy Efficient, Reliable,
Disk-Based Archival Storage
Mark W. Storer, Kevin M. Greenan, and Ethan L. Miller, Univer-
sity of California, Santa Cruz; Kaladhar Voruganti, Network
Appliance

Mark Storer spoke on the Pergamum system, which uses
disks, instead of tape, for archival storage, and their work

toward reducing power costs. With Pergamum, Storer et
al. wanted to achieve power cost and data space scalability
similar to tape systems but achieve random access per-
formance similar to disk array and Massive Array of Idle
Disk systems. Their approach uses an evolvable distributed
network of disk-based devices, called tomes. Each tome
can function independently and is low-power enough to
run on Power over Ethernet. Pergamum uses intradisk and
interdisk reliability to protect against corruption and tome
failure, including trees of data algebraic signatures to ef-
ficiently detect and locate corruption. A tome spins down its
disk when inactive and stores metadata in nonvolatile RAM
(NVRAM) to help keep its disk spun down even longer.

Storer et al.’s experiments show that adding one to three
backup tomes per tome increases the mean time to failure
by orders of magnitude. A tome’s low-power CPU and SATA
disk sustain a 5 MB/s write speed; they anticipate raising
this with further CPU optimizations. One thousand tomes
with a spin rate of 5% could ingest 175 MB/s. They cite
costs as being 10%–50% of today’s systems.

David Rosenthal of Stanford asked how well they under-
stood drive failures, especially given a tome’s difference
from the expected environment. Storer noted that acceler-
ated drive testing is a good idea and also that this is one
reason they use interdisk redundancy and data scrubbing.
Geof Kuenning of Harvey Mudd asked what would hap-
pen if a tome’s NVRAM were to fail. Storer replied that
they would replace the device and use interdisk reliability
to rebuild. Another person asked about how much energy
routers use, since disk arrays do not have this component.
Storer answered that router and disk array backplane en-
ergy costs are similar.

n	 Scalable Performance of the Panasas Parallel File System
Brent Welch, Marc Unangst, and Zainul Abbasi, Panasas, Inc.;
Garth Gibson, Panasas, Inc., and Carnegie Mellon University;
Brian Mueller, Jason Small, Jim Zelenka, and Bin Zhou, Panasas,
Inc.

Brent Welch presented Panasas’s parallel file system, which
has installations as large as 412 TB with sustained through-
put of 24 GB/s using thousands of Panasas servers. The
Panasas system is composed of storage and manager nodes;
a storage node implements an object store and a manager
node runs a metadata service that layers a distributed file
system (PanFS, NFS, or CIFS) over the object store. Scal-
ability is the goal of Panasas and is primarily achieved by
distributing metadata and supporting scalable rebuilds.

Each file and its metadata are stored together, in an Object
Storage Device File System. The system automatically selects
redundancy (RAID) levels on a per-file basis based on file
size, optimizing space usage for small files and run-time
performance for large files. By randomly placing data among
storage nodes, failure recovery is made scalable, an essential
feature for such a large, distributed system. Panasas serv-
ers also include integrated batteries to permit them to treat

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 95

RAM as nonvolatile RAM (NVRAM), significantly increasing
metadata manipulation performance. Welch et al. find that
system write performance scales linearly with the number
of servers; read performance scales fairly well, although ef-
fective readahead becomes difficult at large scales.

One audience member asked how many objects backed a
typical file. Welch said, “Several; a new 512-kB file would
consist of about ten objects.” Another person asked how
much of Panasas’s scalability is due to using an object store.
Welch replied that the object store primarily simplified the
software. Another person, worried about the lack of true
NVRAM, asked what would happen if a hardware fault lost
the contents of RAM. Welch said an exploded storage server
would not harm the file system, because data and logs are
replicated synchronously.

n	 TierStore: A Distributed Filesystem for Challenged Net-
works in Developing Regions
Michael Demmer, Bowei Du, and Eric Brewer, University of
California, Berkeley

Michael Demmer spoke on sharing data among comput-
ers in developing regions, where network connectivity is
intermittent and of low bandwidth. Many approaches exist
for working in such environments, but all start from scratch
and use ad hoc solutions specific to their environment–ap-
plication pair. Demmer et al. aim to extend the benefits of
Delay Tolerant Networking to provide replicated storage for
applications to easily use for storage and communication.

TierStore’s design has three goals. (1) Software should
be able to easily use TierStore. They achieve this goal by
exposing TierStore as a file system. This permits many
existing programs to use TierStore and takes advantage of
the well-known, simple, programming language-agnos-
tic, and relatively weakly consistent filesystem interface.
(2) TierStore should provide offline availability. Therefore
TierStore provides locally consistent views with a single-
file coherence model and uses application-specific conflict
resolvers to merge split views after a write–write conflict.
(3) TierStore should distribute data efficiently. Delay-toler-
ant publish–subscribe is used to provide transport portabil-
ity. A simple publish–subscribe protocol is used to manage
interest on fine-grained publications (e.g., a user’s mailbox
or an RSS feed).

One audience member asked how TierStore deals with
churn. Demmer replied that their current prototype is
manually configured and has a fairly stable overall topology.
Another person asked why Demmer et al. propose a fancy
solution when they also say one cannot use fancy technol-
ogy in such environments. Demmer answered that econom-
ics is often the barrier. When asked about the usability of
conflict resolution in their system, Demmer said that, thus
far, applications have been designed to be conflict-free (e.g.,
Maildirs). They hope applications will continue to be able to
store data so that conflicts are not a problem.

you c ache, i c ache . . .

Summarized by Swapnil Bhatia (sbhatia@cs.unh.edu)

n	 On Multi-level Exclusive Caching: Offline Optimality and
Why Promotions Are Better Than Demotions
Binny S. Gill, IBM Almaden Research Center

Binny S. Gill presented the two primary contributions of
his work on a multi-level cache hierarchy: a new PROMOTE
operation for achieving exclusivity efficiently, and policies
that bound the optimal offline performance of the cache
hierarchy.

Gill started his talk with a discussion of the DEMOTE
technique used for achieving exclusivity. When a higher-
level cache evicts a page, it DEMOTEs it to the lower cache,
which in turn makes room for the new page, possibly
demoting a page in the process itself. Gill argued that DE-
MOTE is an expensive operation and performs poorly when
bandwidth is limited. Furthermore, for workloads without
temporal locality, DEMOTEs are never useful.

Gill proposed a new technique for achieving exclusivity
based on a new operation called PROMOTE. PROMOTE
achieves exclusivity by including an ownership bit with
each page traversing the hierarchy, indicating whether
ownership of the page has been claimed by some lower-
level cache. Each cache on a path PROMOTEs a page with
a certain probability, which is adapted so as to equalize
the cache life along a path. (A higher-level cache periodi-
cally sends its cache life to the next-lower-level cache.)
Experimental results show that PROMOTE is better than
DEMOTE when comparing average response time, and it
cuts the response time roughly in half when intercache
bandwidth is limited.

Gill also presented two policies, OPT-UB and OPT-LB,
which bound the performance of an optimal offline policy
for a multi-level cache hierarchy. Essentially, both policies
use Belady’s optimal offline policy for a single cache and
apply it incrementally to a path. In his paper, Gill proves
that no other policy can have a better hit rate, intercache
traffic, and average response time than OPT-UB. Gill
presented experimental results that showed that the two
bounds were close to each other.

One audience member pointed out that using PROMOTE
would require a change in the command set of the protocol
used for intercache communication. Gill argued that the
performance gained by using PROMOTE would hopefully
incentivize such a change. In response to another question,
Gill clarified that the response times of the caches need
only be monotonically increasing, with no constraint on the
magnitude of the differences. Another questioner provided
a counter-example scenario in which the working set of the
workload is highly dynamic and asked what impact this
would have on the adaptive PROMOTE probabilities. Gill
pointed out that when cache lives are equalized, the be-
havior of the PROMOTE scheme would be no different—in
terms of hits—than that with DEMOTE.

96 ; LO G I N : VO L . 33, N O. 3

n	 AWOL: An Adaptive Write Optimizations Layer
Alexandros Batsakis and Randal Burns, Johns Hopkins Uni-
versity; Arkady Kanevsky, James Lentini, and Thomas Talpey,
Network Appliance, Inc.

Although an application writes data to the disk, in reality
the file system caches writes in memory for destaging later.
Alexandros Batsakis’s talk tried to answer the following
questions about such write-behind policies: How much and
which dirty data should be written back? And when should
this be done? The answers require careful consideration of
the tradeoffs between writing too quickly or waiting too
long, and using available memory for caching writes versus
reads. To this end, Batsakis proposed a three-part solution:
adaptive write-back, ghost-caching, and opportunistic queu-
ing.

Batsakis explained an adaptive high–low watermark algo-
rithm in which write-back commences when the “dirtying”
rate crosses the high mark and stops when it falls below the
low mark. The two watermarks are dynamically adapted in
harmony with the dirtying and flushing rates.

Batsakis proposed ghost-caching to balance memory usage
across reads and writes. The scheme involves the use of two
ghost caches. The Ghost Miss Cache (GMC) records meta-
data of evictions resulting from write buffering. A cache
miss with a GMC hit is used to deduce that write buffering
is reducing the cache hit ratio. The Ghost Hit Cache (GHC)
records a subset of the cached pages. A read hit that falls
outside the GHC is used to deduce that additional write
buffering will lower the read hit rate. Thus, the GHC is used
to prevent interference from writes early on, rather than
recover from it using the GMC later.

Batsakis proposed the use of opportunistic queuing to
decide which data to write back. An I/O scheduler main-
tains separate queues for blocking (read) and nonblocking
(writes) requests with requests sorted by block number to
minimize seek time. In Batsakis’s scheme, dirty blocks are
added to a third (nonblocking) opportunistic queue. When
a page is flushed from any of the other queues, the sched-
uler is free to service a “nearby” page from the opportunistic
queue. Overall, experiments show that the three optimiza-
tions can improve performance by 30% for mixed work-
loads.

n	 TaP: Table-based Prefetching for Storage Caches
Mingju Li, Elizabeth Varki, and Swapnil Bhatia, University of
New Hampshire; Arif Merchant, Hewlett-Packard Labs

Mingju Li presented the two primary contributions of her
work: a method for detecting sequential access patterns in
storage-level workloads and a method for resizing the stor-
age-level prefetch cache optimally.

Table-based prefetching (TaP) is a sequential detection and
cache resizing scheme that uses a separate table for record-
ing workload history and resizing the prefetch cache opti-
mally. TaP records the address of a cache miss in a table. If

a contiguous request arrives later, then TaP concludes that
a sequential access pattern exists in the workload, and it
begins prefetching blocks on every subsequent cache hit
from that stream. Separating the workload history needed
for detection from other prefetched data prevents cache
pollution and allows TaP to remember a longer history. As
a result, TaP can detect sequential patterns that would have
otherwise been lost by interleaving.

When the prefetch cache is full, TaP evicts a cache entry,
but it records its address in the table. If a request for this
recorded address arrives later, then TaP concludes this to be
a symptom of cache shortage and expands the cache. Thus,
TaP uses the table to resize the cache to a value that is both
necessary and sufficient and hence optimal. As a result, TaP
exhibits a higher useful prefetch ratio, i.e., the fraction of
prefetches resulting in a hit. In many cases, TaP can achieve
a given hit ratio using a cache that is an order of magnitude
smaller than competing schemes.

In response to audience questions, Li mentioned that she
planned to address the design of a prefetching module,
which is responsible for deciding the size and time of
prefetching, in her future work. Another question called
attention to the cost of prefetch cache resizing: What is the
impact of the frequent change in the size of the cache on
performance? Li responded by saying that the rate at which
the cache size is decreased can be controlled and set to a
reasonable value. The final questioner asked Li how TaP
would compare in performance to AMP (Gill and Bathen,
FAST ’07). Li pointed out that AMP could in fact be incor-
porated into TaP as one possible prefetching module and
that this would be addressed in her future work.

work-in-progress reports (wips)

Summarized by Shafeeq Sinnamohideen (shafeeq@cs.cmu.edu)

n	 Byzantine Fault-Tolerant Erasure-Coded Storage
James Hendricks and Gregory R. Ganger, Carnegie Mellon
University; Michael K. Reiter, University of North Carolina at
Chapel Hill

Hendricks presented a scheme that provides Byzantine fault
tolerance for a slight overhead over non-Byzantine-fault-tol-
erant erasure-coded storage. Traditionally, storage systems
have used ad hoc approaches to deciding which faults to
tolerate and how to tolerate them. As storage systems get
more complex, the kinds of faults that can occur get harder
to predict; thus, tolerating arbitrary faults will be useful.
Providing Byzantine fault tolerance in an erasure-coded sys-
tem requires each storage server to be able to validate that
the data fragment stored on that server is consistent with
the data stored on the other servers. This is difficult because
no server has a complete copy of the data block. Using the
recent technique of homomorphic fingerprinting, however,
each server can validate its fragment against a fingerprint
of the complete data block, and a client can validate that
all the fragments it received from the servers are consistent

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 97

with a single fingerprint. In a prototype system, Hendricks’s
scheme provides write throughput almost as good as a
crash-only tolerant system, and with far better performance
than existing Byzantine fault-tolerant schemes.

n	 Mirror File System
John Wong, Twin Peaks Software

Wong presented an overview of Twin Peaks’s filesystem rep-
lication product. Since files stored on a local file system are
vulnerable to failures of the local machine, and files stored
on remote servers are vulnerable to failures of that server
or the network, the Mirror File System (MFS) attempts to
get the best of both worlds by mirroring the state of a local
EXT3 file system onto a remote NFS server. It does so by
transparently intercepting file system operations at the VFS
layer and applying them to both the local and remote file
systems, while requiring no modifications to applications,
EXT3, or NFS.

n	 Quantifying Temporal and Spatial Localities
Cory Fox, Florida State University

Fox states that accurately describing workloads is critical
to comparing different real workloads and creating accu-
rate synthetic workloads. Because locality is an important
property of a workload, understanding how the locality
of a workload is transformed as it passes through system
components, such as caches, is crucial. Fox suggests that
current metrics such as cache hit ratios, reference distance,
and block distance do not adequately describe locality.
Instead he proposes a metric called “affinity,” which builds
on block and reference distances, while being less sensi-
tive to hardware details. Much future work is anticipated in
showing how well it captures locality and in studying how
the workloads seen by individual components relate to the
overall workload.

n	 Filesystems Should Be Like Burger Meals: Supersize Your
Allocation Units!
Konstantin Koll, University of Dortmund, Germany

Koll discussed the tradeoff between small and large filesys-
tem allocation units, through a humorous analogy to fast
food meal sizes. In both file systems and restaurants, exces-
sively small allocation units reduce waste, but at the same
time they reduce performance and add administrative over-
head. Koll stated that fast food vendors have realized that
since food is cheap, avoiding waste is less important than
reducing overheads, and since a study of filesystem work-
loads reveals that the amount of wasted space grows less
than linearly with allocation unit size, filesystem designers
should use larger allocation units. An unnamed questioner
stated that XFS and other extent-based filesystems do use
large allocation units. Koll responded: Then I hope you
found this talk amusing.

n	 Zumastor: Enterprise NAS for Linux
Daniel Phillips

Zumastor is a NAS product, built on Linux, that provides
live volume snapshots, remote volume replication, online
volume backup, NFS, Samba, and CIFS interfaces, and easy
administration. It is based on the ddsnap engine, which is a
mostly userspace driver presenting a block device interface
with copy-before-write snapshots. The snapshots can be
replicated to other Zumastor servers using techniques such
as compression or binary differencing to reduce the amount
of data to be transmitted. Future work includes adding a
graphical administrative console, better volume manage-
ment, online resizing, and incremental backup.

n	 View-based Collective I/O for MPI-IO
Javier Garcia Blas, Florin Isaila, and Jesus Carratero, University
Carlos III of Madrid

Blas proposed an alternative to two-phase collective I/O
with the goal of increasing performance by reducing the
cost of data scatter-gather operations, minimizing the
overhead of metadata transfer, and reducing the amount
of synchronous communication. The alternative, called
view-based collective I/O, relies on clients once providing
the aggregators with additional information about the type
of the data the client will be accessing. This reduces the
amount of information the client must send with every ac-
cess, as well as permitting the aggregators to cache file data
across operations, allowing one operation to benefit from a
previous operation’s cache miss. In the MPI-IO benchmark
performed, view-based I/O reduced write times by more
than a factor of 2 and read times by at least 10%.

n	 Towards a Performance Model for Virtualised Multi-Tier
Storage Systems
Nicholas Dingle, Peter Harrison, William Knottenbelt, Abagail
Lebrecht, and Soraya Zertal, Imperial College London, UK

Lebrecht’s goal is to model the performance of a complex
system using nested queuing network models of its basic
components. Starting with models of simple disk and RAID
system, the models she has developed closely match the
performance of the real devices for random workloads. Fu-
ture work includes extending these results to more complex
and heterogeneous workloads.

n	 Adapting RAID Methods for Use in Object Storage Systems
David Bigelow, Scott A. Brandt, Carlos Maltzahn, and Sage Weil,
University of California, Santa Cruz

Bigelow proposes characterizing the tradeoffs among vari-
ous methods of implementing RAID in object-based storage
systems. These include “client-based RAID,” in which the
client performs parity calculations, “RAID across objects,”
in which the storage system stores an object on one node
but includes a different object on each node in the parity
calculation, and “RAID within objects,” in which the storage
system stores a portion of each object on each node and
computes parity across all of them. Bigelow is currently
working on implementing these schemes in the Ceph Object

98 ; LO G I N : VO L . 33, N O. 3

Storage System and evaluating their relative performance, as
well as developing more complex and hierarchical schemes.

n	 How Shareable Are Home Directories?
Carlos Maltzahn, University of California, Santa Cruz

Maltzahn hypothesizes that most users manage a subset of
their files in a way identical to other users. Thus, it should
be possible to share the work of managing files across users.
He proposes to quantify this shareability by categoriz-
ing files through a user survey. His survey, in which users
categorized files as “unshareable,” “shareable within one
user,” “shareable within one group of users,” and “publicly
shareable,” revealed that 75% of users have at least half their
files shareable in some way, and 50% of users have at least
half their files in common with a different user.

n	 Load Balancing in Ceph: Load Balancing with Pseudoran-
dom Placement
Esteban Molina-Estolano, Carlos Maltzahn, and Scott Brandt,
University of California, Santa Cruz

Molina described several issues that could be encountered
in Ceph owing to its use of pseudo-random placement of
objects, along with potential solutions to these issues. In the
case of one node that happens to hold the primary replica
of many popular objects, that node can be switched to be
a secondary replica of some of them, moving the load to
the new primary replica. In the case of a read flash crowd,
some of the readers can be directed to other nodes that hold
a secondary replica of the object, or even to other clients
that have a recently cached copy of the object. In the case of
a write flash crowd, some clients can be directed to write to
the secondary replicas, but this relies on HPC I/O exten-
sions that allow the application to describe ordering and
dependencies. Preliminary results show that these tech-
niques allow load to be shifted away from an overloaded
storage node.

n	 Ringer: A Global-Scale Lightweight P2P File Service
Ian Pye, Scott Brandt, and Carlos Maltzahn, University of Cali-
fornia, Santa Cruz

Pye presented a global file service that provides filesystem
semantics as well as indexing based on document contents.
Filesystem semantics are necessary for application compat-
ibility, and indexing is necessary to help users find the files
they are interested in. The architecture Pye proposes is a
Hybrid P2P approach in which metadata servers maintain
the filesystem indices and perform searches, but file data is
transferred directly from the peer that has it. Future work
includes implementing, testing, and evaluating the system.

n	 The New and Improved FileBench
Eric Kustarz, Spencer Shepler, and Andrew Wilson, Sun Micro-
systems

Spencer described the current state of the FileBench frame-
work. It provides a collection of configurable workloads
and can apply them to a number of storage server types. It
recently underwent a large code cleanup and is distributed

in OpenSolaris and through SourceForge.net. Features in
development include support for random workloads, NFS,
CIFS, and multiple clients.

n	 HyFS: A Highly Available Distributed File System
Jianqiang Luo, Mochan Shrestha, and Lihao Xu, Wayne State
University

Luo proposes a Linux filesystem that uses erasure coding
to provide redundancy against hardware failure. HyFS is
implemented at the user level by using FUSE and erasure
codes file data across a user-configured number of NFS
servers. Performance and scalability evaluations are ongo-
ing.

n	 Virtualizing Disk Performance with Fahrrad
Anna Povzner, Scott Brandt, and Carlos Maltzahn, University of
California, Santa Cruz; Richard Golding and Theodore M. Wong,
IBM Almaden Research Center

Povzner extends existing work in providing soft perfor-
mance isolation to provide hard isolation guarantees. The
Fahrrad disk scheduler allows clients to reserve disk time
and attempts to minimize the seeks required to serve the
client workloads. If seeks between streams are necessary,
they are accounted to the streams that required them and
thus the necessary overhead time can be reserved, allowing
for hard isolation. Experiments show that this can provide
complete isolation of competing workloads, with only a 2%
overhead.

n	 RADoN: QoS in Storage Networks
Tim Kaldeway and Andrew Shewmaker, University of Califor-
nia, Santa Cruz; Richard Golding and Theodore M. Wong, IBM
Almaden Research Center

Kaldeway presented RADoN, which aims to coordinate the
individual network, cache, and storage QoS parameters in
order to provide end-to-end QoS guarantees for a given ap-
plication. Doing so requires discovering how the parameters
of individual system components affect the overall QoS.
This project seeks to discover the important parameters
through modeling and simulating the system and coordina-
tion strategies and will build a framework for applications to
specify their QoS requirements.

n	 Improving Efficiency and Enhancing Concurrency of Un-
trusted Storage
Christian Cachin, IBM Zürich; Idit Keidar and Alexander
Shraer, Technion: Israel Institute of Technology

Cachin summarized recent improvements in protecting
against storage servers that present different views of history
to different clients. Fork linearizability is a useful build-
ing block because it ensures that once a server has forked
a view, it must remain forked. The authors reduce the
communication cost of a fork-linearizable protocol to nO(n)
messages instead of O(n2) and show that such a proto-
col can never be wait-free. Instead they introduce a weak
fork-linearizable protocol that is wait-free and has the same
communication cost.

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 99

n	 Reliability Markov Models Are Becoming Unreliable
Kevin M. Greenan and Jay J. Wylie, Hewlett-Packard

Greenan described the Markov models traditionally used
for reliability analysis. Whereas the single disk and RAID-5
models accurately model the reliability of such systems, a
naive RAID-6 model underestimates the MTTDL of a RAID-
6 system by a factor of 2. This is because the memoryless-
ness of the model ignores data that may have been rebuilt
onto other disks after a disk failure. Although not accurate,
Markov models may provide the correct intuition in reason-
ing about failures, and future work is necessary to develop
them further or devise new models.

ke ynote address : sustainable inform ation
technology ecosystem

Chandrakant D. Patel, HP Fellow, Hewlett-Packard Labs

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

In a far-looking presentation, Chandrakant Patel explored
the hidden costs of disks and the data center, along with
the potential to deliver more efficient and reliable services.
Patel suggested that in the future, bringing IT to all levels
of developing economies will require a sustainable ecosys-
tem. This is based on the conviction that the technologies
with the least footprint, lowest power consumption, and
least materials will eventually have the lowest total cost of
ownership. To realize this transformative change, we must
recharacterize the costs associated with IT, drawing on deep
technical knowledge of the physical processes involved.

The costs of IT can be measured at several levels. Initially,
materials are extracted and formed into a usable product;
next, the product is used in operation for some time; finally,
the product is recycled, allowing some resources to be
reclaimed while others are irreversibly lost. Other consid-
erations such as transportation and human effort can also
be incorporated. A quantifiable metric for these costs is
“exergy,” which is drawn from thermodynamics as the mea-
sure of the available and usable energy in a system. In the
illustrative case of a cellular phone, the CPU draws power
from the battery in order to perform its function. In the
process, exergy consumed by the CPU is converted to heat,
which is dispelled passively in the body of the phone. In the
future, owing to high power density and the difficulty of
removing heat passively from stacked chip packages, even
heat removal will require powered solutions. To mitigate the
added power requirements, Patel suggested an active-pas-
sive solution—a phone filled with a phase-change material
such as wax, which absorbs heat for short conversations and
switches to active solid state heat removal. Such active-pas-
sive cooling solutions will be necessary to provision power
based on need.

Using some of these principles, Patel and his associates are
developing data centers that are significantly more energy-
efficient. The key observation is that the common practice

of over-provisioning results in unnecessary redundancy and
cooling. By emphasizing the pervasive use of sensors, one
can develop a flexible and configurable approach driven
by policies. Applying this technique to the cooling system
of a data center has resulted in a 35% energy savings. Patel
argued that the system also results in improved reliability,
because it can quickly adapt to problems as they occur.
The cooling is provided on-demand and over-provisioning,
although it remains important, can be limited to a cost-ef-
ficient and pragmatic level.

In closing, Patel elaborated on some future directions for
the work. He stressed the need to analyze the costs associ-
ated with the lifetime use of IT and showed how software
tools can help with this analysis. He suggested combining
the data from sensors with thermo-mechanical attributes
of compute and storage components, to detect anomalies
and predict failure. Stressing that the currency of the flat
world will be joules of exergy consumed, Patel emphasized
the importance of collaboration among computer scientists,
mechanical engineers, and electrical engineers.

Eric Brewer, of Intel Research and U.C. Berkeley, asked if
the joule is an accurate measure of total cost of ownership.
He suggested that market inefficiencies are prevalent and
seem to be growing. Patel acknowledged this discrepancy
but postulated that in the long run sustainability concerns
will come to dominate the costs. He also pointed to recent
successes in the data center, where a sustainability-oriented
approach has allowed him to quickly reduce costs. Mochan
Shrestha noted that limiting provisioning could result in an
increased error rate and wondered whether it was necessary
to incorporate the value of the data into the model. Patel
said that in practice this valuation is problematic but that it
can be approximated with service-level agreements.

failures and loss

Summarized by Medha Bhadkamkar
(medha@cs.fiu.edu)

n	 The RAID-6 Liberation Codes
James S. Plank, University of Tennessee

Plank offered an alternate RAID-6 encoding scheme that
has near-optimal performance for encoding, decoding, and
modifications. Plank first described the motivation, which
is based on the drawbacks of the current implementation
of RAID-6 systems: They are typically slow and modifica-
tions are suboptimal and inflexible. The proposed code,
termed Liberation Codes, uses parity arrays, which are w
× w bit matrices, where w is a prime number equal to or
greater than the number of devices. The performance is
compared with the Reed-Solomon coding. The evaluations
show that the encoding is primarily focused on parity-based
protection and single errors in RAID systems. Modification
performance is overoptimal, but decoding performance is
15% of optimal. To further optimize decoding operations,
a Bit Matrix scheduler for the XOR operations is proposed

100 ; LO G I N : VO L . 33, N O. 3

to reduce the Liberation decoding overhead by a factor of
between 6 and 11, depending on the values of w. Optimal
values have also been achieved for the nonprime values of w
= {2,4}. The paper also provides a URL to the freely available
source of the Liberation Coding Library.

Nitin Garg of Data Domain posited that other matrices can
have bad cache performance and wondered whether Plank
had compared his method with any other methods, such as
the Reed-Solomon error correcting code. Is it true that eval-
uating cache performance is important? Plank replied that
they haven’t explored caching with Reed-Solomon codes. To
a question about the optimal value of k for an 8- to 10-GB
disk, Plank responded that roughly a factor of 2 for encod-
ing, but up to 4 for decoding, was optimal.

n	 Are Disks the Dominant Contributor for Storage Failures?
A Comprehensive Study of Storage Subsystem Failure
Characteristics
Weihang Jiang, Chongfeng Hu, and Yuanyuan Zhou, University
of Illinois at Urbana-Champaign; Arkady Kanevsky, Network
Appliance, Inc.

Jiang began by stating the importance of reliability and
availability in storage systems. As storage systems have
evolved from single hard disks to network storage systems,
it is necessary to have a good understanding of the failure
characteristics of disk drives. The data used in this study
was obtained by analyzing failure logs for about 44 months
from 39,000 commercial storage systems and about 1.8
million disks. The data was analyzed in three dimensions,
with four failure types being classified based on their root
cause and symptoms, the effect of design factors such as
disk models and enclosures, and statistical properties. The
results show that, first, whereas disk failures (29%) form a
substantial part of storage system failures, failures of other
components also make a substantial contribution (7% pro-
tocol failures and 60% interconnect failures). Second, after
a failure, the probability of another failure of the same type
is higher. Third, interconnect redundancy is an important
factor. Finally, shelf enclosures play an important role in
failure patterns. This study does not take into account the
impact of workloads, the reason behind failures, or the con-
sequences of different failure types.

Someone from Wayne State University asked how disk
failures are defined: by data loss or by service loss? Jiang
answered that problems such as scratches, vibrations, or
malfunctioning of internal components are responsible for
disk failures. Data loss is a consequence of disk failures.

n	 Parity Lost and Parity Regained
Andrew Krioukov and Lakshmi N. Bairavasundaram, University
of Wisconsin, Madison; Garth R. Goodson, Kiran Srinivasan,
and Randy Thelen, Network Appliance, Inc.; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wiscon-
sin, Madison

Andrew Krioukov explained that RAID systems offer nu-
merous data protection techniques and it is unclear which

technique or combination of techniques can protect against
which kind of errors. The focus is primarily on parity-based
protection and single errors in RAID systems. To solve this
problem, a formal method based on model checking is used
to analyze the design of the protection techniques. The
model checker outputs a state machine that shows the state
transitions that are obtained and searches the space for all
possible states. It provides primitives for disk operations,
such as atomic reads and writes, and for data protection,
such as checksums and parity. For every analysis, exactly
one error is injected. The model checker is also used to
generate data loss or corruption probabilities. The results
show that, for all designs, single errors can cause data loss.
In addition, data scrubbing, which is used to reduce double
disk failure, actually spreads corrupt data in one block to
other blocks because of parity calculations. Also, data loss
has a higher probability than data corruption. To address
the issues uncovered, the authors also propose a protection
mechanism, which uses version mirroring and combines
block checksums, identity information, parity, and scrub-
bing.

Someone asked how one would handle a case where a mis-
directed write overwrites a parity block. Krioukov said that
since parity blocks are protected by checksums, by a com-
parison of blocks on the data disk and the parity disk we
know whether data has been lost, and it can be restored by
reconstruction. Erik Reidel of Seagate asked about the com-
plexity involved in representing the operations in a model.
Krioukov said that building the model checker was simple,
but building the framework with primitives was difficult.
John Carrier of Cray, Inc., asked whether the model checker
can be extended to RAID 6, especially since RAID 5 will
be phased out soon. Krioukov answered that it can be used
with double parity and can definitely be extended.

cpus, compilers, and packets, oh my !

Summarized by Elie Krevat (ekrevat@cs.cmu.edu)

n	 Enhancing Storage System Availability on Multi-Core Archi-
tectures with Recovery-Conscious Scheduling
Sangeetha Seshadri, Georgia Institute of Technology; Lawrence
Chiu, Cornel Constantinescu, Subashini Balachandran, and Clem
Dickey, IBM Almaden Research Center; Ling Liu, Georgia Insti-
tute of Technology; Paul Muench, IBM Almaden Research Center

As legacy storage systems transition toward multi-core
architectures and embedded storage software systems
(controllers) are becoming more complex and difficult to
test, Sangeetha Seshadri and her co-authors argue that it
is important not to focus just on performance but also on
system availability. Storage controllers have many inter-
acting components and exhibit many different types of
transient failures (these types are classified in the paper).
A transient failure that occurs in one thread is typically
handled by restarting and reinitializing the entire system,
which also requires consistency checks. As systems grow to

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 101

larger numbers of cores, systemwide recovery may not scale.
However, task-level recovery has the potential for recover-
ing a smaller subset of components in the system, with the
additional challenges of determining the correct recovery
semantics (dynamic and stateful), identifying recovery de-
pendencies, and bounding the recovery process in time and
resource consumption.

To improve recovery time and better scale the recovery pro-
cess with system growth, the authors propose a framework
for more fine-grained task-level recovery. The design goals
of these recovery-conscious scheduling algorithms include
creating a nonintrusive recovery framework, dynamically
determining recovery actions, tracking recovery dependen-
cies, and generally improving system availability by reduc-
ing the ripple effect of failures. Developers specify clean-up
blocks (task-specific recovery procedures) and explicit
dependencies between tasks, which are then refined by the
system into recovery groups that include implicit dependen-
cies. To limit the number of dependent tasks dispatched
concurrently, resource pools partition the processors into
smaller independent units. A recovery-conscious scheduler
maps recovery groups to resource pools in a static or dy-
namic fashion while adhering to recoverability constraints.
The scheduler bounds the time of recovery and reduces the
impact of a failure in a proactive manner by limiting the
number of outstanding tasks per recovery group, and in a
reactive manner after a failure occurs by waiting to dis-
patch new tasks for a group currently undergoing recovery
until after the recovery completes. The authors implement
their recovery-conscious scheduler (RCS) on real industry-
strength storage controllers and compare it with a standard
performance-oriented scheduler (POS) that does not con-
sider recovery dependencies. They measure the good-path
performance during normal operation, and the bad-path
performance under localized failure and recovery, using
the z/OS Cache-Standard workload for which they identify
16 recovery groups. Experiments show that Dynamic RCS
closely matches the good-path throughput of POS while
improving bad-path throughput by 16.3%.

One of the participants asked how easy it is to define re-
covery groups, and if the developer gets it wrong, how that
would affect performance. Sangeetha answered that a de-
veloper defines recovery groups explicitly based on whether
a task accesses the same resource, which depends on the
system, complexity of code, and other interactions. She
noted that task-level recovery is an option, but system-level
recovery is still needed as a safety net. Another participant
asked what properties of tasks make them easier to identify
than components as a reasonable boundary for recovery.
The response was that techniques such as micro-reboots
will reset the system, but tasks handle resources across
different components. In some situations the controller can
retry the operation at the task level and succeed, and based
on task functionality these situations can be identified. The
last question addressed how the system would scale for

pool sizes greater than a single processor. The response was
that the experimental setup had eight processors, a larger
pool size is possible, and it’s just an issue of defining the
right granularity. For coarser constraints between groups, it
would make sense to have a larger pool size.

n	 Improving I/O Performance of Applications through Com-
piler-Directed Code Restructuring
Mahmut Kandemir and Seung Woo Son, Pennsylvania State
University; Mustafa Karakoy, Imperial College

Large-scale applications in science and engineering have
grown dramatically in complexity, requiring huge computa-
tional needs and generating large amounts of data. Accord-
ing to Seung Woo Son and his co-authors, I/O is always a
pressing problem for these data-intensive applications, but
disk performance has not kept pace with the large annual
growth in storage capacity density and processor speeds.
One promising way to handle this problem and improve
I/O performance is to reduce the number of disk accesses,
achieved at different layers of the I/O subsystem by cach-
ing or restructuring the application code to maximize data
reuse. Since the compiler has better knowledge of the entire
application code, including data access patterns, the authors
address the growing I/O problem through compiler-directed
code restructuring, which can be used along with other OS-
and hardware-based schemes.

The authors propose an approach to increase disk reuse in
the compiler, which will hopefully also reduce the number
of disk accesses by improving the chances of finding data
in the cache. Their approach optimizes the entire program
code rather than individual loop-nests, and they discussed
file layout optimizations for adapting to parallel execution.
The targeted disk system architecture is one in which file
striping occurs over parallel disks, where a compiler should
know which disks are accessed by certain portions of an
array, either because this information is already supplied to
the compiler or because it is available from an API. Inter-
iteration data dependencies may not allow for code restruc-
turing for better disk reuse, but if an ordering is legal for
the particular data dependencies, then the authors make
use of polyhedral algebra based on Presburger arithmetic to
capture and enumerate those legal loop iterations that ex-
hibit disk access locality. A disk map is defined to capture a
particular set of disks, and a disk locality set is a set of loop
iterations that access the same set of disks. Then the authors
use two procedures to maximize disk reuse. First, for a
given disk array, iterations in the disk locality set are ex-
ecuted consecutively. Second, when moving from one disk
locality set to another, a disk locality set that accesses a new
disk map is selected to have minimum Hamming distance
from the current disk map. This second condition mini-
mizes the number of disks whose status is changed when
executing the iterations in a new disk locality set. Since
real applications have other data dependencies, the authors
also demonstrate how to use existing heuristics to merge or
split nodes in a locality set graph (LSG) that captures these

102 ; LO G I N : VO L . 33, N O. 3

dependencies, thereby converting a nonschedulable LSG to
a schedulable one. The authors also show how file layout
modifications (striping info) can be changed, using profiling
to detect the most suitable file layout for each file and then
transforming the layout during optimization. Because good
disk reuse for a single CPU does not imply that good disk
reuse happens overall, the scheduling algorithm determines
the global (inter-thread) usage of disks and selects disk
locality sets based on a global estimate.

To evaluate these scheduling algorithms, a compiler was im-
plemented using SUIF, and different algorithms were tested
on a number of applications. The whole program-based
disk reuse optimization (DRO-WP) algorithm achieved on
average 23.9% better performance in I/O time than the
base algorithm and 15% better performance than using
conventional data locality optimization (CLO) techniques.
This performance improvement occurs because the average
number of times a given data block is visited is much lower
with DRO-WP than with CLO (2.1 compared to 3.9). Other
results show that performance gains are sensitive to the size
of the cache but still substantial with higher cache sizes,
and parallel thread optimization is important in maximiz-
ing overall disk reuse, especially with a large number of
CPUs.

One of the participants tried to understand the limitations
of this approach by asking whether there have been other
optimizations besides using the polyhedral approach that
were considered but did not map well. Seung answered
that they use conventional solutions from other domains,
which looks reasonable for now, but there is still room for
more optimizations. Another participant asked whether the
approach to file layout optimization, when looking over all
the access patterns to find a better layout, used estimated
weights for different bits of code accessing the same block
or assumed the same rate of access. The response was that
a ranking system is used to determine the best candidate,
rating each optimization and selecting the highest value, but
weights for the rate of access in different code regions were
not used. Another participant, noting that in large-scale sys-
tems things change constantly, wanted to know if he would
need to recompile for a changing environment to better
optimize I/O. The answer to this question was that reop-
timization is suggested in changing environments. To the
question of how this work of limiting data reads performs
in areas of HPC that don’t do many data reads (e.g., internal
file systems may not even cache data), the answer was that,
when possible, the compiler can reduce the set of disks that
are accessed at any time. The last question, whether the
compiler can identify data reads and reuse explicitly or can
only monitor disk reuse, elicited the response that no infor-
mation on data reuse is given to the compiler.

n	 Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems
Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G.
Andersen, Gregory R. Ganger, Garth A. Gibson, and Srinivasan
Seshan, Carnegie Mellon University

Building cluster-based storage systems using commodity
TCP/IP and Ethernet networks is attractive because of their
low cost and ease of use, along with the desire to use the
same routing infrastructure for LAN, SAN, and high-perfor-
mance computing traffic. However, Amar Phanishayee and
his co-authors argue that an important barrier to high-per-
formance storage using these commoditized networks is the
problem of TCP throughput collapse: the incast problem.
Incast occurs during synchronized reads of data striped
over multiple storage servers, where the system is limited
by the completion time of the slowest storage node, and the
concurrent flood of traffic from many servers increases past
the ability of an Ethernet switch to buffer packets. Dropped
packets at the switch can cause one or more TCP timeouts
which impose a relatively large delay until TCP recovers,
resulting in a significant degradation of throughput. The au-
thors recreate the incast problem while performing synchro-
nized reads on an Ethernet-based storage cluster. They fix
the amount of data read from each storage server, defined
as a Server Request Unit (SRU), and increase the number of
servers involved in a data transfer. This experiment shows
an initial improvement of throughput up to around 900
Mbps with three servers, and then a sharp order-of-magni-
tude collapse. Other experiments fixing the block size while
scaling the number of servers produce the same collapse.
Although one might expect TCP to completely utilize the
bottleneck link, and a tool that measures throughput using
long-lived TCP streams does not experience incast, it is
perplexing that a particular setup with typical communica-
tion patterns in storage systems can cause such a significant
performance loss.

The authors study the network conditions that cause TCP
throughput collapse, characterize its behavior under a
variety of conditions, and examine the effectiveness of TCP-
and Ethernet-level solutions. To understand the reasons for
throughput collapse, a distinction is made between TCP’s
mechanism for data-driven loss recovery, which occurs
when a sender receives three duplicate acknowledgments
and is relatively fast, and timeout-driven loss recovery,
when no feedback is available from receiver to sender and
the sender must wait until the Retransmission TimeOut
(RTO) time has passed before continuing the flow, a rela-
tively slow process. Timeouts cause throughput collapse
because a server loses its packets at the switch, and without
any feedback it must fall back to timeout-driven recovery.
Simulations of the incast problem show that doubling the
switch buffer size from 32 to 64KB also doubles the number
of servers supported before a collapse. However, switches
that support fast buffers are expensive. Increasing the SRU
size means that servers have more data to send per data

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 103

block and produce less idle time on the link; however, a
larger SRU size also requires each server to do more data
prefetching while the client has to allocate more memory
for the complete block. The TCP variants of NewReno and
SACK avoid certain timeout situations when compared
to Reno, with NewReno performing best, but all variants
eventually experience throughput collapse as the number
of participating servers is increased. Reducing the penalty
of a timeout by lowering TCP’s minimum retransmission
timeout period from 200 milliseconds to 200 microseconds
helps significantly but is impractical and unsafe, because it
requires timer support in microseconds from the operating
system and may create unnecessary timeouts and retrans-
missions when talking to clients in the wide area network.
Ethernet flow control helps only for the simplest network
settings, but in more common multi-switched systems it
has adverse effects on other flows, produces head-of-line
blocking, and is inconsistently implemented across different
switches. New standards for Data Center Ethernet are being
developed to create a lossless version of Ethernet, but it is
unclear when these new standards will be implemented in
switches, and there are no guarantees that implementation
of these standards will be uniform or that new switches will
be as inexpensive as they are currently. Without any single
convincing network-level solution, application-level solu-
tions by the storage system may be more appropriate, since
the storage system has the knowledge of all data flows and
the control to limit situations that may cause throughput
collapse.

One of the participants asked whether this problem is
related to TCP using a single stream, and if a solution such
as SCTP, which transports multiple message streams, would
be better. Amar answered that only TCP was considered be-
cause it is used by most developers and is very simple and
workable, since most machines have TCP implementations.
In response to the question of whether work on an adaptive
RTO would apply, Amar said that RTO is already adaptive
and is based on the round-trip time estimation. Another
participant asked about the queuing discipline implemented
at the switch. Amar said that drop tail and random drops
were used, but these didn’t provide a solution. Another
participant, remarking that the problem with TCP flows is
that they are bursty and stay open for a long time, asked
whether explicitly causing TCP to close its congestion
window was used. The answer was that disabling TCP slow
start in experiments did not help. To the suggestion that
other TCP variants that avoid loss altogether be used, Amar
responded that with the TCP variants that were tried, RED
(which drops packets early) and ECN (which notifies the
server to back off) were not successful in preventing incast.
Two participants asked about application-level solutions,
such as introducing random delay at the servers, and the
response was that indeed this was one of the solutions that
might help, that staggering should help to limit overflow at
the switch buffer, but that very early experiments did not
demonstrate much improvement.

where did we go wrong ?

Summarized by James Hendricks
(James.Hendricks@cs.cmu.edu)

n	 Portably Solving File TOCTTOU Races with Hardness
 Amplification
Dan Tsafrir, IBM T.J. Watson Research Center; Tomer Hertz,
Microsoft Research; David Wagner, University of California,
Berkeley; Dilma Da Silva, IBM T.J. Watson Research Center

Awarded Best Paper!

Dan Tsafrir started by explaining the time-of-check-to-time-
of-use (TOCTTOU) race problem. Suppose some root-privi-
leged script deletes files in /tmp that are not accessed for a
while. The script would (1) check the access time of each
file F and (2) delete F if it had not been accessed recently.
This approach, however, may allow an attacker to trick the
script into deleting any file because there is a window of
vulnerability between the check operation (examining F’s
access time) and the use operation (deleting F). For ex-
ample, an attacker may make a directory /tmp/etc and file
/tmp/etc/passwd, then symlink /etc to /tmp/etc at the right
moment. Check will decide to delete /tmp/etc/passwd, but
use will delete /etc/passwd because /tmp/etc will be pointed
to /etc during the window of vulnerability. (Search the Web
for “TOCTTOU symlink” for real-world vulnerabilities.)

TOCTTOU vulnerabilities occur between any check-use
pair of system calls that involve a name of a file; in the ex-
ample here it’s lstat(F) and unlink(F). Thus, there are many
variants of the problem, often providing attackers with the
ability to obtain permanent root access. One proposed solu-
tion is hardness amplification (Dean and Hu). The idea is to
check the condition multiple times, reducing the probabil-
ity of a TOCTTOU race. Unfortunately, a maze of sym-
bolic links makes TOCTTOU attacks much more feasible
(Borisov et al.) because traversing symbolic links is slow,
easily defeating such defenses and many similar proposals.
The authors propose a generic check-use mechanism that
emulates the kernel’s file-path resolution procedure in user
mode. This approach allows programmers to safely execute

Ph
ot

o
by

 E
th

an
 M

il
le

r

104 ; LO G I N : VO L . 33, N O. 3

most check-use operations without suffering from the asso-
ciated TOCTTOU problems, effectively binding the check-
use pair into an atomic transaction. The fine-grained control
over the path resolution process allows programmers to
express policies such as forbidding symbolic links along the
path or verifying that a given user is allowed to operate on
a given file. The solution is portable and works for existing
systems, in contrast to prior proposals which changed the
kernel or the API.

Bill Bolosky from Microsoft Research noted that the race
exists because the check-use mechanism is not atomic, that
transactions remove this race, and that Windows Vista has
transactions. The speaker responded that the solution in the
paper is portable. Another questioner asked about the cost
of doing the check in userspace. The speaker responded
that some performance is lost. There is a tradeoff between
efficiency and safety, and the proposed mechanism takes
3–6 times longer to complete than the naive insecure alter-
native.

n	 EIO: Error Handling Is Occasionally Correct
Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Ben Liblit, University
of Wisconsin, Madison

Haryadi Gunawi started by stating that errors are often
improperly propagated. The authors considered 34 error
codes (e.g., EIO, ENOMEM) on 51 file systems (all in
linux/fs/*) and three storage drivers (SCSI, IDE, software
RAID) and found that 1153 of 9022 function calls do not
save the propagated error codes. More complex file systems
have more propagation violations, and writes are worse
than reads. Propagation errors are common, not just corner
cases. Common problems occur when the error code goes
unchecked (e.g., err = func() is called, but err is not propa-
gated), unsaved (e.g., func() is called, ignoring any returned
errors), or overwritten (e.g., err = func1(); err = func2() is
called, discarding the error code from func1).

The authors built a tool to map the call graph, demon-
strating which error calls are incorrectly propagated. The
call graphs are impressive and the reader is encouraged
to peruse them in the online proceedings. Coda correctly
propagates all errors (the audience applauded efforts by the
Coda team); several systems incorrectly propagate more
than a quarter of all errors. The authors concluded the talk
and the paper with entertaining responses from developers
(e.g., “Should we pass any errors back?” and “Just ignore
errors at this point. There is nothing we can do except try
to keep going.”).

Dave Chinner of SGI noted that some of the XFS faults have
been fixed. SGI has recently implemented a tool to ensure
that errors that should be checked are checked. He would
be interested in a more recent run. Another questioner
asked whether the tool would be released; developers often
hear anecdotes of problems but are given no way to correct
them. The speaker responded that the tool will be released

(it will be located at http://www.cs.wisc.edu/adsl/
Publications/eio-fast08/readme.html). Keith Smith of
 NetApp asked whether they had any experience trying this
technique in other parts of the kernel; the speaker re-
sponded that he is beginning to look into other parts of the
kernel.

n	 An Analysis of Data Corruption in the Storage Stack
Lakshmi N. Bairavasundaram, University of Wisconsin, Madi-
son; Garth Goodson, Network Appliance, Inc.; Bianca Schroeder,
University of Toronto; Andrea C. Arpaci-Dusseau and Remzi H.
Arpaci-Dusseau, University of Wisconsin, Madison

Awarded Best Student Paper!

Lakshmi Bairavasundaram started by saying that files
get corrupted and that corruptions are often correlated.
Unfortunately, our understanding of how data is corrupted
is mostly anecdotal. The authors analyzed over 1.5 million
disks in thousands of NetApp systems over 41 months.
There are many types of corruption, such as basic bit cor-
ruption, lost writes (writes ignored by disk), misdirected
writes (blocks sent to the wrong physical location), and torn
writes (in which only part of the block is written). NetApp
applies various techniques, including checksums and disk
scrubbing, to detect the effects of these faults, such as
checksum mismatches, parity inconsistencies, and identity
discrepancies. Enterprise disks have 10% as many faults as
nearline disks, and bit corruption and torn writes are more
common than lost writes or misdirected writes. Different
models age differently (some fail early, some fail late, and
some are less affected).

Nearline drives have checksum mismatches more often. But
when enterprise drives have any checksum mismatches,
they tend to get several mismatches. Checksum mismatches
are often for consecutive or nearby blocks, with high tempo-
ral locality. Furthermore, they are not independent in a disk
array. In one drive model, a particular logical block number
was much more likely to exhibit faults, and certain ranges

Ph
ot

o
by

 E
th

an
 M

il
le

r

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 105

of blocks were somewhat more likely to develop faults than
others. Thus, staggering RAID stripes for each disk may be
a good idea. Given the variety of faults, it is wise to make ef-
forts to detect, prevent, and recover from faults. Preventing
data loss may require double parity and vigilant scrubbing.

Mary Baker from HP Labs asked whether the numbers were
broken down by firmware revision in addition to model; the
speaker responded that this is a good point but that they
were not. Rik Farrow asked whether, given that hard drives
reorganize data on the disk, the speaker could say any-
thing about the fact that he found correlations with block
numbers. The speaker replied that the correlations were
found using logical block numbers. Another questioner sug-
gested that error correlations could be due to the NetApp
boxes, given that all tests were run on NetApp systems.
The speaker said that was not likely, since he found very
different types of errors for different disk models. Another
questioner asked whether the type of errors correlates to the
type of end user, but the speaker said this was not studied.
Bruce Worthington of Microsoft asked whether part of the
correlation could be due to overwriting critical blocks re-
peatedly and whether it would make sense to move master
blocks around. The speaker responded that the errors seem
to be more due to firmware and software, so overwrite fre-
quency was not a likely culprit.

buffers, power, and bot tlenecks

Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

n	 BPLRU: A Buffer Management Scheme for Improving Ran-
dom Writes in Flash Storage
Hyojun Kim and Seongjun Ahn, Software Laboratory of Samsung
Electronics, Korea

Hyojun Kim proposed adding a RAM-based cache and
management system to flash devices in order to improve
random write performance. NAND-based flash memory has
grown to become the primary storage solution for mobile
devices owing to its good overall performance and low
power consumption. However, the medium suffers from low
random write performance, which may hamper its growth
in the future.

Existing filesystems perform write operations that are ill-
suited to flash memory because of hardware limitations
that force I/O operations to be aligned at a coarse granular-
ity. In addition, overwrite operations require first erasing
the target area, which incurs additional cost. By adding a
RAM buffer, similar to those that exist in conventional disk
drives, write operations can be coalesced and performed
more efficiently. The Block Padding Least Recently Used
(BPLRU) algorithm was introduced to manage this buffer. It
operates by merging adjacent requests such that they can be
written at the block size of the flash unit and by prioritizing
these lower-cost write operations. The system was evaluated
with trace-based simulations, a subset of which were then
verified on a prototype directly.

Brent Welch of Panasas wondered about the buffer’s opera-
tion under power failure. The current system does not
tolerate this scenario, but Kim identified the problem as one
that may be solved in the future. The potential for increased
latency was also a concern, as it was not formally evaluated.

n	 Write Off-Loading: Practical Power Management for Enter-
prise Storage
Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron,
Microsoft Research Ltd.

Dushyanth Narayanan made the case that significant power
savings can be achieved in data centers by spinning down
idle disks. He also demonstrated that further savings are
possible when writes to idle disks are redirected to already
active disks. The results, which were based on a trace
of measurements of real workloads, stand in contrast to
previous benchmark-based findings that suggested such an
approach to be impractical.

Narayanan described an approach that allows incremen-
tal deployment by working with existing storage and file
systems. By adding a management module to the storage
stack of each volume, drives that idle for some period of
time can be spun down. In addition, future writes to such a
disk can be redirected to another disk that is already active,
thus avoiding the overheads associated with spinning up
idle disks, and allowing fewer disks to remain in operation
at any given time. This latter technique was referred to as
write off-loading.

In servicing these off-loaded write requests, a log structure
associated with the remapping operation is stored on the
active disk at a known location. In addition, a record of the
remapped block is stored in the memory of the original
host. Future reads may then be redirected to the appropriate
disk, which will be activated if needed. These remapping
operations are temporary, which ensures that the underly-
ing storage structure is not degraded. The system tolerates
failure by reestablishing the block locations after an unclean
shutdown. Narayanan also showed that the increased
latency associated with an operation that activates an idle
disk was significant but that this occurrence was rare in
practice.

The audience responded actively, allowing Narayanan to
elaborate on several topics. He described the load-based
heuristic for selecting an off-loading target and the transpar-
ency benefits to ensuring that remapped blocks are short-
lived. He also asserted that the benefits of write off-loading
would be present even on a system that had consolidated its
data onto fewer disks.

n	 Avoiding the Disk Bottleneck in the Data Domain Dedupli-
cation File System
Benjamin Zhu, Data Domain, Inc.; Kai Li, Data Domain, Inc.,
and Princeton University; Hugo Patterson, Data Domain, Inc.

Data Domain’s system for enterprise data backup and net-
work-based disaster recovery was described by Benjamin

106 ; LO G I N : VO L . 33, N O. 3

Zhu. He showed how the company’s file system provides a
high degree of data deduplication and off-site backup, with
good performance. The system was evaluated with data
gathered from real customers, which showed a data com-
pression rate up to 30 times, with throughput meeting or
exceeding the system’s 100 MB/s target.

After providing some background, Zhu detailed the differ-
ences between primary storage and backup. Whereas the
former focuses on latency, seek times, and throughput, the
latter is concerned with large batched writes and space ef-
ficiency. In the case of a remote backup, bandwidth over the
WAN link is also a concern. The Data Domain File System
targets these problems with a combination of compression
and deduplication based on content hash.

In a large data set, detecting duplicates can be costly. The
size of the hash table can quickly exceed the available RAM
and, when flushed to disk, the table shows no temporal or
spatial locality. To address this challenge, a Bloom filter is
used to determine whether a particular segment is a dupli-
cate. Since a negative result from the Bloom filter is only
probabilistically correct, such a hypothesis must be con-
firmed by consulting an on-disk structure. To help regain
locality, segments written by the same stream are placed to-
gether on-disk in containers. Once duplicate data is merged
in storage, it is compressed to further save space.

After the presentation, a lengthy exchange ensued regarding
the performance of the system at some boundary condi-
tions. At least one attendee was concerned that a long series
of nonduplicate data could overwhelm the system’s ability
to efficiently flush metadata. The debate was deferred until
later before any consensus was reached. Others wondered
about the potential for hash collision. Zhu initially said that
such a collision was rare enough to be of no concern; he
later clarified, explaining that a mechanism to test for colli-
sions existed but was disabled by default.

compliance and provisioning

Summarized by Chris Frost (frost@cs.ucla.edu)

n	 Towards Tamper-evident Storage on Patterned Media
Pieter H. Hartel, Leon Abelmann, and Mohammed G. Khatib,
University of Twente, The Netherlands

Everyone wants to prevent data tampering, and Write-Once
Read-Many (WORM) devices may be of help. Compared
to disks and flash, they have high access times and low
throughput. Hartel suggested that an alternative approach
to tamper-resistant storage is tamper-evident storage, where
data may be modified, but any modification will be de-
tected. Common techniques include calculating the hash
of data and writing this to a notebook and giving it to a
notary public. The difficulty with these approaches lies in
managing these hashes and keeping them consistent with
their tracking of the data-hash pairs. This talk proposed a
hardware device based on patterned media that can store

both Write-Many Read-Many and WORM data, effectively
providing Selectively Eventually Read-Only (SERO) storage.

Hartel et al. show how, in theory, a device could support
magnetic read and write operations as well as electri-
cal read and write operations. An electrical write would
permanently change the location’s magnetic properties, but
electrical reads and writes are significantly slower than the
magnetic equivalents, so one could make data tamper-evi-
dent by storing only a secure hash electrically. Specifically,
they propose storing each hash bit in two bits with a parity
of one (the Manchester encoding) of electrical storage. To
modify data an attacker would need to either find data with
an equal hash or modify the hash value. But an attacker
could only set unset bits in the hash, and this would change
the bit’s parity. They also presented a filesystem design for
SERO storage, in which fragmentation becomes a serious
concern as more of the disk becomes read-only.

Peter Honeyman asked whether they have simulated opera-
tion timings. Hartel answered that they have not, but that
they hope patterned media will support both archival and
online storage. Bill Bolosky asked what would stop an at-
tacker from blanking the entire SERO device and rewriting
it with modifications, to work around the tamper-evidence
guards. The authors replied that one could, but this would
take some time, and perhaps the device could record the
fact.

n	 SWEEPER: An Efficient Disaster Recovery Point Identifica-
tion Mechanism
Akshat Verma, IBM India Research; Kaladhar Voruganti, Net-
work Appliance; Ramani Routray, IBM Almaden Research; Rohit
Jain, Yahoo! India

Akshat Verma presented their work on quickly finding a
backup snapshot from before a latent error occurred. Cur-
rent methods for quickly finding such a backup are ad hoc;
their system systematizes the location process. SWEEPER
logs system events that, with a goal recovery time and
recovery point objective, help speed up good backup iden-
tification. SWEEPER’s balanced search strategy calculates
probabilities that certain events are correlated with the
specified error and uses its event log, along with a binary
search, to locate good backups. Example events include
misconfiguration, virus activity, hardware warnings and er-
rors, and applications logs.

An audience member asked about the sensitivity of their
benchmark to event weights. Verma replied that SWEEP-
ER’s informed search can be way off but that this is accept-
able because the binary search will still find a good backup.

n	 Using Utility to Provision Storage Systems
John D. Strunk, Carnegie Mellon University; Eno Thereska,
Microsoft Research, Cambridge, UK; Christos Faloutsos and
Gregory R. Ganger, Carnegie Mellon University

In provisioning a storage system (e.g., for OLTP or scien-
tific or archival purposes), trade-offs are unavoidable. For

; LO G I N : J U N E 20 0 8 cO N fE rE N cE rE p O rt s 107

example, increasing data protection can harm performance
or increase purchase cost. Whereas the existing practice
is to consult an area expert, John Strunk spoke on how
utility functions can convey the cost-benefit structure to an
automated provisioning tool. Users are then able to make
appropriate trade-offs among various system metrics.

Strunk et al. use utility functions, functions from a set of
metrics (e.g., revenue, availability, data value, power usage,
or purchase cost) to a utility value (e.g., dollars), to char-
acterize a particular point in the purchase space. To find
a desirable point in this (large) space they use a genetic
algorithm to refine a configuration population over many
generations. Strunk then illustrated the value of this ap-
proach through three case studies, including scenarios with
a limited budget and where system cost can affect the long-
term solution.

Peter Honeyman asked why linear programming was not
used instead of a genetic algorithm. Strunk answered that
linear programming’s constraints on objective function form
rules out many real-world utility functions. Honeyman
also asked whether one can maximize multiple objectives;
Strunk replied that you would convert these to one utility.
Another audience member asked whether they had looked
at a method for generating good utility functions, noting
that Strunk’s seemed simplistic. Strunk said they have,
that the paper has more examples, and that this is also an
area where they are doing further work. One person asked
whether this approach can determine whether it is better
to upgrade an existing system or migrate to a new system.
Strunk answered that they can do this, but that it is the
second part of his thesis. Two audience members asked
whether Strunk’s approach supported varying input values
as a function of time. Strunk answered that their system fo-
cuses only on static provisioning. The final questioner asked
whether not finding the most optimal solution is a problem.
Strunk replied that in the real world one often only gets in
the ballpark, and that this approach already does at least as
well as today’s ad hoc approaches.

LSF ’08: 2008 Linux Storage & Filesystem
Workshop

San Jose, CA
February 25–26, 2008

stor age tr ack

Summarized by Grant Grundler (grundler@google.com)
Copyright 2008 Google, Inc. (Creative Commons Attribution
License, http://code.google.com/policies.html or http://
creativecommons.org/licenses/by/2.5/)

Several themes came up over the two days:

Theme 1: Solid State Drives
SSDs (Solid State Disks) are coming. There was a good
presentation by Dongjun Shin (Samsung) on SSD internal

operation, including some discussion on which param-
eters were needed for optimal operation (theme #2). The
I/O stack needs both micro-optimizations (performance
within driver layers) and architectural changes (e.g., you
have to parameterize the key attributes so that file systems
can utilize SSDs optimally). Intel presented SCSI RAM
and ATA_RAM drivers to help developers tune the SCSI,
ATA, and block I/O subsystems for these orders-of-magni-
tude-faster (random read) devices. Hybrid drives were a
hot topic at LSF ’07 but were only briefly discussed in the
introduction this year.

Theme 2: Device Parameterization
The device parameters discussion is just beginning on
how to parameterize device characteristics for the block
I/O schedulers and file systems. For instance, SSDs want
all writes to be in units of the erase block size if possible,
and device mapping layers would like better control over
alignment and placement. The key object here is how to
provide enough parameters to be useful but not so many
that “users” (e.g., the file system) get it wrong. The general
consensus was that having more than two or three param-
eters would cause more problems than it solved.

Theme 3: I/O Priorities
I/O priorities and/or bandwidth sharing has lots of folks
interested in I/O schedulers. There was consideration about
splitting the I/O scheduler into two parts: an upper half to
deal with different needs of feeding the Q (limit block I/O
resource consumption) and a lower half to rate-limit what
gets pushed to the storage driver.

Theme 4: Network Storage
Two technologies were previewed for addition to the Linux
kernel: pNFS (parallel NFS) and FCoE (Fiber Channel over
Ethernet). Neither is ready for kernel.org inclusion, but
some constructive guidance was given on what directions
specific implementations needed to take.

The issues facing iSCSI were also presented and discussed.
User- versus kernel-space drivers was a hot topic in Net-
worked Block Storage forums.

n	 Introduction and Opening Statements: Recap of Last Year
Chris Mason and James Bottomley

This session was primarily a scorecard of how many topics
discussed last year are fixed or implemented this year. The
bright spots were the new filesystem (BTRFS, pronounced
“butter FS,” which incorporates B-trees for directories and
an extent-based filesystem with 264 maximum file size) and
emerging support for OSD (Object-base Storage Device) in
the form of bidirectional command integration (done) and
long CDB commands (pending); it was also mentioned that
Seagate is looking at producing OSD drives.

Error handling was getting better, but there’s still a lot of
work to be done and we have some new tools to help test
error handling. The 4k sector size, which was a big issue

